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Abstract 

We define debt ratio as the market value of a firm’s debt divided by the market value 
of the firm. In a perfect market with corporate taxes, given that the cost of debt is in-
creasing and concave up and that the firm rebalances its debt, the cost of equity is an 
increasing and concave up function of the debt ratio if and only if the third derivative 
of the cost of debt is non-negative; otherwise, the cost of equity is increasing but its 
exact shape cannot be ascertained. In all cases, however, the cost of equity must be 
concave up initially. Also in this world, the weighted average cost of capital of the 
firm, WACC, is decreasing and concave down. In an imperfect market, the WACC 
may not have an absolute minimum between zero and 100 percent debt. Even if it 
does, the minimum may not occur at the debt ratio that maximizes firm value. The 
“pure-play” method to determine a new project’s discount rate is correct only if the 
opportunity cost of capital of the comparable firm remains constant with respect to 
the debt ratio or if the debt ratio of the comparable firm is equal to the target debt ra-
tio of the firm evaluating the project. Strictly speaking, even if the two debt ratios are 
the same, the opportunity cost of capital of the comparable firm is not necessarily 
equal to that of the project unless the two costs of capital are identical functions of 
the debt ratio. Therefore, this method may not be valid. 
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1. Introduction 

[1] and [2] define the relationships among capital structure, costs of capital, and firm 
value in a perfect market with or without corporate taxes. When corporate taxes are 
absent, the use of debt does not change the present value of future cash flows generated 
from the assets and thus there is no “optimal capital structure”, the unique combination 
of debt and equity that maximizes the value of the firm. The weighted average cost of 
capital of the firm remains constant across debt ratios. [3] shows that these results hold 
even if debt is risky. If corporate taxes exist, the value of the firm is an increasing func-
tion of the debt ratio, resulting in an optimal capital structure that is approaching 100% 
debt. Meanwhile, the weighted average cost of capital is a decreasing function of the 
debt ratio, reaching the minimum at the same debt ratio. [4] shows that these results 
hold regardless of whether the debt is risk-free or risky.1 

Later authors examine how market imperfections such as bankruptcy costs and 
agency costs affect firm value and the choice between debt and equity. When bank-
ruptcy imposes significant monetary penalties on the firm, corporate financing deci-
sions become a trade-off between interest tax savings and bankruptcy costs, resulting in 
an optimal capital structure somewhere between zero and 100% debt. These results can 
be seen in [5]-[10]. Later literature replaces bankruptcy costs with financial distress 
costs for a more general treatment on this issue. 

[11] posits that due to agency costs, the firm’s expected cash flow stream is not inde-
pendent of its ownership structure and that this fact may affect the choice between debt 
and equity. The agency cost of equity is a decreasing function of the debt ratio while the 
agency cost of debt is an increasing function. An optimal combination of debt and eq-
uity may exist that minimizes total agency costs and thus maximizes firm value. 

Combining the considerations on interest tax savings, financial distress costs, and 
agency costs emerges the trade-off capital structure theory, in which the value of the 
firm is maximized when the optimal trade-off between the savings and the costs is 
reached. Less well explored, however, is how the inclusion of these costs affects the 
firm’s costs of capital. Nevertheless, the general view is that the cost of debt is an in-
creasing and concave up function of the debt ratio, the cost of equity is an increasing 
function of the debt ratio, and that there exists a unique capital structure between zero 
and 100% debt that simultaneously maximizes the firm value and minimizes the 
weighted average cost of capital. However, no explanation can be found in the literature 
on why the weighted average cost of capital should simultaneously reach the minimum. 
Most likely, researchers simply assume that the firm’s expected cash flow stream is in-
variant to changes in the debt ratio. With this assumption, the present value of the ex-
pected cash flow stream is maximized when the discount rate, namely, the weighted 
average cost of capital, is at its lowest. However, is this assumption valid when market 
imperfections such as financial distress and agency costs exist? 

As mentioned above, the cost of debt, cost of equity, and weighted average cost of 
capital are expressed as functions of the debt ratio in general, but the debt ratio is de-

 

 

1[1] [2] [4] do not assume that the firm rebalances its debt to maintain the debt ratio over time. 
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fined either as the debt to firm value ratio or the debt to equity value ratio. This incon-
sistency causes unnecessary confusion. In this paper, we use a single definition of debt 
ratio to reconstitute capital structure and cost of capital theories. In the process, we cla-
rify the relationships among capital structure, costs of capital, and firm value in perfect 
and imperfect markets. In a perfect market, if the debt is risky and the firm rebalances 
its debt, the cost of equity is an increasing and concave up function of the debt ratio if 
and only if the third derivative of the cost of debt is non-negative; otherwise, the cost of 
equity is increasing but its exact shape cannot be ascertained. In all cases, however, the 
cost of equity must be concave up initially. Also in this world, the weighted average cost 
of capital is decreasing and concave down. In an imperfect market, the weighted aver-
age cost of capital may not have an absolute minimum between zero and 100% debt. 
Even if such minimum exists, the maximum firm value and the minimum weighted av-
erage cost of capital may not occur at the same debt ratio. 

In the next section, we review the literature, develop our arguments, and provide the 
clarifications. Based on the findings in this section, we show in Section 3 that the valid-
ity of the popular “pure-play” method to estimate a project’s cost of capital is uncertain. 
Concluding remarks are provided in Section 4. 

2. The Theories, Discussions, and Clarifications 
2.1. Perfect Market 
2.1.1. Risk-Free Debt 
In the Modigliani and Miller theorems (1958, 1963), the cost of debt is equal to the 

risk-free rate Rf, and the cost of equity Ks is equal to ( )( )1f
BR T
S

ρ ρ+ − − , where 

ρ = the discount rate for an all-equity firm; 
B = the market value of debt; 
S = the market value of equity; 
T = the corporate income tax rate. 
Let V be the market value of the firm, thus  V B S= + . The firm’s weighted average 

cost of capital, WACC, is equal to 

( )1 .f s
B ST R K
V V

− +  

Substituting ( )( )1f
BR T
S

ρ ρ+ − −  for KS in the above equation and simplifying the 

result, we obtain 

1 .BWACC T
V

ρ  = − 
 

 

The firm’s opportunity cost of capital, Ka, is equal to 

.f s
B SR K
V V
+  

Again, substituting ( )( )1f
BR T
S

ρ ρ+ − −  for KS and simplifying the result, we ob-
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tain 

( ) .a f
BK R T
V

ρ ρ= − −  

If 0T = , ( )s f
BK R
S

ρ ρ= + −  and .aWACC K ρ= =  

Note that both Ka and WACC are functions of  B
V

; while Ks is a function of 
B
S

. The  

market value of the firm when it is levered, VL, comes from the value of operations and 
the value of interest tax shields: 

( )1
.f

L U
f

TR BNOI T
V V TB

Rρ
−

+ = +=                   (1) 

NOI is the expected net operating income, VU is the value of the firm when it is un-
levered and TB is the value of interest tax shields. If T = 0, VL = VU.2 For the purposes of 
this paper, we change the notations for KS, WACC, and Ka and express all of them as  

functions of the debt ratio 
B
V

, letting  Bx
V

= . Thus 

( ) ( )( )1 .
1S f

xK s x R T
x

ρ ρ  = = + − −  − 
               (2) 

( ) ( )1 .WACC w x Txρ= = −                           (3) 

( ) ( )  .a fK r x R Txρ ρ= = − −                          (4) 

s(x) in Equation (2) is thus defined on the interval [0, 1). From Equations (3) and (4), 
if 0T = , ( ) ( )w x r x ρ= = . Since r(x) reflects the firm’s asset risk, a constant r(x) im-
plies that the risk of the firm’s expected cash flows is perceived constant across debt ra-
tios. In this article, the risk of the firm’s expected cash flows, the risk of the assets, and 
the risk of the firm are synonymous. Also, unless otherwise specified, the term “risk” is 
referred to as the systematic risk in the context of the capital asset pricing model. The 
behavior of r(x) as a function of debt ratio has not been made clear in the literature in 
the case that debt is risk free, there is no debt rebalancing, and T ≠ 0. As seen in Equa-
tion (4), r(x) is a linear function of x with a negative slope of ( )fR Tρ− − , implying 
that the risk of the firm decreases with a higher debt ratio. This result is not surprising, 
since a higher debt ratio means larger expected interest tax shields and thus a greater 
TB. Since VU remains the same, TB becomes a larger proportion of VL. Since TB is risk- 
free, it lowers the firm risk and thus r(x). Equation (3) shows that w(x) is also a linear 
function; however, it has a more negative slope than r(x) since ( ) –  fT R Tρ ρ− < − . 
From Equation (2), 

( ) ( )( )
( )2

11 0,
1

fs x R T
x

ρ
 

′ = − − > 
 − 

 

 

 

2[1] [2] do not assume that the firm rebalances its debt to maintain the debt ratio over time. If this assump-
tion is made, the expected interest tax shields would have a risk equal to the firm’s operations and should be 

discounted at ρ, and 
( )1

.f
L U

NOI T TR B
V V TB

ρ ρ
−

= + < +  
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and 

( ) ( )( )
( )3

12 1 0.
1

fs x R T
x

ρ
 

′′ = − − > 
 − 

 

Therefore, s(x) is an increasing and concave up function of x. In summary, if debt is 
risk-free, there is no debt rebalancing, and   0T ≠ , s(x), r(x), and w(x) can be depicted 
in the following Figure 1.3 (Note that in the figure, s(0) = ρ.) 

2.1.2. Risky Debt 
Let f(x) denote the cost of debt. It is generally accepted that for risky debt, f(x) is an in-
creasing and concave up function of x; that is, ( ) 0f x′ >  and ( ) 0xf ′′ > . In this paper, 
we assume that f(x) is twice continuously differentiable on [0, 1],4 and that, ( )xf ′′′ ) 
exists on (0, 1). If the firm maintains its debt ratio over time, the expected tax shields 
would have a risk equal to the firm’s operations; therefore, ( )r x ρ= . Since 

( ) ( ) ( ) ( )1 ,r x xf x x s xρ= = + −  

we can express s(x) from the above equation as follows: 

( ) ( )  .
1

xs x f x
x

ρ ρ  = + −    − 
 

 

 
Figure 1. The shapes of s(x), r(x), and w(x) in a perfect market with corporate taxes, risk-free 
debt, and without debt rebalancing. 

Rate of return

x

Rf

s(x)

100%

s(0) r(x)

w(x)

 

 

3The discussions up to this point are within the frameworks of [1] [2]. However, the discussions are based on 

the debt ratio of x, instead of B
S

. If the horizontal dimension in Figure 1 is B
S

 and the cost of equity is 

equal to ( ) ( )1f

BR T
S

ρ ρ+ − − , it is linear; however, since the weighted average cost of capital is equal to 

1 BT
V

ρ  − 
 

, it is not linear. 

4This means that the first and second derivatives exist and are continuous on [0, 1]. 
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What is the behavior of s(x)? It is commonly believed that the cost of equity is an in-
creasing function of the debt ratio. [12] argues that beyond a certain debt ratio, debt- 
holders begin sharing the firm’s business risk; consequently, the cost of equity should 
be concave down. It appears necessary to further examine the behavior of s(x), espe-  

cially if the debt ratio is defined as x instead of 
B
S

. We prove that if f(x) is increasing  

and concave up and r(x) is constant, s(x) is strictly increasing. The proof is given in the 
following. 

Proposition 1: 
Suppose f(x) is twice continuously differentiable on [0, 1], increasing, and concave up. 

Let ( )1f ρ=  and suppose that s(x) is defined by the equation ( ) ( ) ( )1xf x x s xρ = + −
 

on [ )0,1 . Then ( ) 0s x′ >  and thus s(x) is strictly increasing. 
Proof: 

We first note that ( ) ( )
1

xf x
s x

x
ρ −

=
−

, that ( )s x  is differentiable on [ )0,1 , and that 

( ) ( ) ( ) ( )
( )2

1
1

f x x xf x
s x

x
ρ ′− − −

′ =
−

. 

To see that
 ( ) 0s x′ > , it will suffice to show that the numerator of the above expres-

sion is positive, i.e., 

( ) ( ) ( )1f x x xf xρ ′− > −
 

on [ )0,1 . 

Since 1 0x− > , this latter inequality is equivalent to ( ) ( )
1

f x
xf x

x
ρ −

′>
−

. 

Introducing the notation ( ) ( )
1

f x
x

x
ρ

α
−

=
−

 and ( ) ( )x xf xβ ′= , we wish to show 

that ( ) ( )x xα β> . 
First note that ( ) ( )0 0α β> , since ( ) ( )0 0 0fα ρ= − >  and ( )0 0β = . 
Next, we claim that ( ) ( )x xα β>  throughout [ )0,1 . If not, then using continuity 

we conclude that there is a point c in ( )0,1  such that ( ) ( )c cα β= , i.e., 

( ) ( )
1

f c
cf c

c
ρ −

′=
−

. 

By the Mean Value Theorem for derivatives, there exists a d with 1c d< <  such 
that 

( ) ( )
1

f c
f d

c
ρ −

′=
−

. 

However, using the fact that 0 1c< <  and ( )f x′  is increasing, we then obtain the 
following chain of inequalities: 

( ) ( ) ( ) ( ) ( )
1 1

f c f c
cf c f c f d

c c
ρ ρ− −

′ ′ ′= < < =
− −

, 

which is a clear contradiction, showing that no c with ( ) ( )c cα β=  can exist in ( )0,1  
and thus our proof is complete. 
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If the third derivative of f(x), ( )f x′′′  is non-negative, s(x) is concave up. The proof 
is given in the following. 

Proposition 2: 
Suppose ( )f x  is twice continuously differentiable on [ ]0,1 , increasing, and con-

cave up. Let ( )1f ρ=  and suppose that ( )s x  is defined by the equation 
( ) ( ) ( )1xf x x s xρ = + −

 
on [ )0,1 . Furthermore, suppose that ( )f x′′′  exists on 

( )0,1 and that ( ) 0f x′′′ ≥ . Then ( )s x  is concave up. 
Proof: 
It will be sufficient to show that ( ) 0s x′′ >  on [ )0,1 . (Note that the existence of 
( )s x′′  follows from the assumptions.) Now since 

( ) ( )( ) ( ) ( ) ( ) ( )
( )

( )( ) ( ) ( ) ( ) ( )
( )

2

3

2

3

2 2 1 1

1

2 2 1 1
,

1

f x x f x x x f x
s x

x

f x x f x x x f x

x

ρ

ρ

′ ′′− − − + −
′′ =

−

′ ′′− − − − −
=

−

 

and since ( )31 0x− >  if [ )0,1x∈ , it is enough to show that the numerator of this lat-
ter expression is positive, i.e., the fact that 

( )( ) ( ) ( ) ( ) ( )22 2 1 1f x x f x x x f xρ ′ ′′− > − + − . 

This last inequality is equivalent to 

( ) ( )( ) ( ) ( )21 1
2

f x
f x f x x x xρ

′′
′> + − + − . 

On the other hand, since ( )1fρ = , for each fixed 0 1x< <  we obtain from Tay-
lor’s Theorem (using the Lagrange remainder), 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 31 1 1 1
2 6

xf x f c
f f x f x x x xρ

′′ ′′′
′= = + − + − + − , 

for some xc , 1xx c< < . 
Since by assumption ( ) 0xf c′′′ ≥  and ( )31 0x− > , the last term (the remainder) in 

the above equality is non-negative, so omitting it we have the following inequalities: 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 21 1 1 1
2 2

f x f x
f x f x x x f x f x x x xρ

′′ ′′
′ ′≥ + − + − > + − + − , 

where in the last inequality we used the facts that ( ) 0f x′′ >  and 1x < . 
Thus we can conclude that 

( ) ( )( ) ( ) ( )21 1
2

f x
f x f x x x xρ

′′
′> + − + − , 

and since ( )0,1x∈  was arbitrary, our argument is complete. 
( )f x′′′  being non-negative means that the rate of increase of f(x) never “slows 

down.” Without this condition; that is, assuming only that f(x) is increasing, concave 
up, and that r(x) is constant, s(x) will be increasing but its exact shape cannot be ascer-
tained, which allows [12] to argue that s(x) should be concave down beyond a certain 
debt ratio based on economic reasons. However, s(x) must be concave up initially in all 
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cases. The proof is given in the following. 
Proposition 3: 
Suppose f(x) is twice continuously differentiable on [ ]0,1 , increasing, and concave up. 

Let ( )1f ρ=  and suppose that s(x) is defined by the equation ( ) ( ) ( )1xf x x s xρ = + −
 

on [ )0,1 . Then s(x) is “initially concave up”, i.e., ( )0 0s′′ > .5 
Proof: 
Using the formula for ( )s x′′  from the proof of Proposition 2 and substituting 

0x = , we obtain 

( ) ( ) ( )( )0 2 0 0s f fρ′′ ′= − − . 

It is now sufficient to see that the above expression is positive. Thus we aim to prove 
that

 ( ) ( )0 0f fρ ′− > . 

By the Mean Value Theorem for derivatives, there exists ( )0,1c∈  so that 

( ) ( ) ( ) ( )1 0
0

1 0
f f

f f cρ
−

′− = =
−

, 

and since ( )f x′  is increasing, we obtain 

( ) ( ) ( )0 0f f c fρ ′ ′− = > , 

as needed. 
Example 1 in Appendix shows the possibility of an increasing and eventually concave 

down s(x).6 In this example, f(0) = 0.02 and s(0) = 0.07. The reasons to use these num-
bers are given later in this Section. What is the behavior of w(x)? 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( )

1 1

1 1
1

.

w x T xf x x s x

xT xf x x f x
x

Tf x x

ρ ρ

ρ

= − + −

  = − + − + −   −  
= −

 

Based on this equation, 

( ) ( ) ( ) 0w x T f x x f x′ ′= − + <   , 

and 

( ) ( ) ( )2 0.w x T f x x f x′′ ′′ ′= − + <    

Therefore, w(x) is a decreasing and concave down function of x. In summary, if debt 
is risky, 0T ≠ , and the firm rebalances its debt, f(x), s(x), r(x), and w(x) can be de-
picted in the following Figure 2: 

If [12] is correct in that s(x) eventually concaves down, Figure 2 then becomes: Fig-

 

 

5Using the continuity of ( )s x′′ , which follows from our assumptions, ( )0 0s′′ >  implies that ( )s x  is 
concave up in a neighborhood of 0. 
6Although f(x) in this example is specified arbitrarily, it satisfies the conditions that ( ) 0f x′ >  and 

( ) 0f x′′ > . 
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ure 3. 
Again, the market value of the firm when it is levered, VL, comes from the value of 

operations and the value of interest tax shields: 

( ) ( )1
.L U TS

NOI T Tf x B
V V V

ρ ρ
−

= + = +               (5) 

 

 
Figure 2. The shapes of f(x), s(x), r(x), and w(x) in a perfect market with risky debt, corporate 
taxes, and constant debt rebalancing. 
 

 
Figure 3. The shapes of f(x), s(x), r(x), and w(x) in a perfect market with risky debt, corporate 
taxes, and constant debt rebalancing, assuming that at higher debt ratios, bondholders share 
business risk. 

Rate of return

x

f(x)

s(x)

100%

s(0)

r(x) = ρ

w(x)

Rate of return

x

f(x)

s(x)

100%

s(0)

r(x) = ρ

w(x)
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In this equation, VTS is the value of the tax shields. Since ρ is greater than f(x),7 VTS is 
less than TB in Equation (1).8 Also, 

( )
( )

( )
( )

1 1
.L

NOI T NOI T
V

w x Tf x xρ
− −

= =
−

                    (6) 

Equation (6) is commonly known as the WACC method. Equations (5) and (6) are in 
fact equivalent. Multiplying both sides of Equation (6) by ( )Tf x xρ − , we obtain 

( )( ) ( )1 .LV Tf x x NOI Tρ − = −  

Substituting 
L

B
V

 for x in the above equation and rearranging the result, we obtain 

Equation (5). We will assess firm value in an imperfect market based on Equation (6) in 
the following Section; therefore, this proof is necessary to ensure the continuity of the 
theory. Moreover, this proof implies that the WACC method requires constant debt 
rebalancing. 

2.2. Imperfect Market 

In an imperfect market, the trade-off capital structure theory posits that the value of the 
firm is a trade-off among the interest tax shields, agency costs of equity, financial dis-
tress costs, and agency costs of debt. The optimal trade-off is reached at a certain debt 
ratio, denoted by x*, between zero and 100%, at which the value of the firm is max-
imized. Based on this theory, researchers posit that corresponding to the rise and fall of 
the firm value, w(x) would first decrease, reach a minimum at x*, and then rise. In other 
words, the firm value would reach the peak and w(x) would reach the minimum at x*; 
therefore, x* is the optimal debt ratio. For convenience, let’s call this result the “maxi-
mum-minimum proposition.” The relationships among s(x), f(x), and w(x) can be de-
picted in the following Figure 4. 

Note that s(0) is equal to f(1); meaning that the cost of debt when the debt ratio is 
100% equals the cost of unlevered equity. There is no discussion in the literature of 
whether f(1) should be equal to, higher than, or lower than s(0). 

Furthermore, no justification can be found in the literature for the “maximum- 
minimum proposition”. In other words, no clear explanation has been offered for why 
w(x) should be U-shaped with an absolute minimum between zero and 100% debt and 
why the maximum firm value and the minimum of w(x) should occur at the same debt 
ratio. Most likely this proposition is based on the assumption that the firm’s expected 
cash flow stream is invariant to changes in debt ratio; therefore, the value of the firm is 
maximized when the discount rate, w(x), is minimized. However, if this result stems  

 

 

7ρ is greater than f(x) except when x = 1. 
8If there is no debt rebalancing, the tax shields have a risk equal to the debt, thus the discount rate should be 

f(x), and ( ) ( )
( )

1
L U

NOI T Tf x B
V V TB

f xρ
−

= + = + . This result is identical to Equation (1). Thus risky debt does not 

change the Modigliani and Miller proposition (1963). But if there is debt rebalancing, 
( ) fTR BTf x B

TB
ρ ρ

> > , 

thus the interest tax shields have the lowest value when debt is risk-free. 
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Figure 4. The possible shapes of f(x), s(x), and w(x) in an imperfect market under the conven-
tional view that there is a unique debt ratio that maximizes firm value and minimizes w(x). 

 
from the trade-off capital structure theory, can we make such an assumption? [12] 
points out that the firm’s future operating income may not be the same for all debt ra-
tios and as a consequence, maximizing firm value and minimizing w(x) may not occur 
at the same debt ratio. In the following, we give a formal analysis on this issue. 

According to the trade-off theory, the financial distress costs and the agency costs of 
debt are expected to increase with debt ratio; while the agency costs of equity are ex-
pected to decrease with the debt ratio. Thus, if market imperfections exist, NOI(1 − T) 
in Equation (6) may vary across debt ratios, depending on the likelihood for these costs 
to occur and the magnitude of these costs.9 In short, we may not hold expected cash 
flow stream constant across debt ratios. 

In Equation (6), w(x) should reflect systematic risks. According to the literature, fi-
nancial distress and debt-related agency problems are more likely to occur during eco-
nomic downturns.10 Therefore, the costs incurred by these problems may present sys-
tematic risks, and r(x) and w(x) should reflect these risks. Again according to the 
trade-off theory, these problems become more severe with the increase of debt ratio; 
therefore, the systematic risks reflected in r(x) and w(x) should also increase. In addi-
tion, according to the literature, financial distress and debt-related agency problems 
give management the incentive to change the firm’s assets. For example, financial dis-
tress costs include the loss incurred by fire-selling assets, and debt-related agency prob-
lems include switching to more risky assets and “cashing-out.”11 Changing the assets is 
likely to change the asset risk (and thus the systematic risk). Again, since a higher debt 
ratio increases the probability for financial distress and debt-related agency problems to 
occur, the resulting impact on asset risk should also be reflected in r(x) and w(x). Based 

Rate of return

x
f(x)

s(x)

100%

s(0)
w(x)

f(1)

 

 

9The gain from tax shields is accounted for by using the after-tax cost of debt in w(x). 
10Indeed, debt agency costs are often treated as part of the financial distress costs. 
11In “cashing-out,” the management liquidates assets for cash and pay out the cash as dividends to benefit 
shareholders at the expense of the debtholders. 
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on these arguments, r(x) and w(x) may not have the same functions as depicted in Fig-
ure 2 and Figure 3. The “maximum-minimum proposition” argues for a U-shaped 
w(x), but there is no proof to support it. 

To use Equation (6), we need to determine how the financial distress and agency 
problems affect both the numerator and denominator of the equation for a given debt 
ratio. This appears to be an impossible task, given the current state of literature. There-
fore, we can’t say for sure how VL and w(x) behave as functions of the debt ratio in an 
imperfect market. Taking the first derivative of w(x) with respect to x, 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 .w x T f x x f x s x x s x′ ′ ′= − + + − −    

Here, in addition to the assumptions made about f(x), we assume that s(x) is conti-
nuously differentiable and increasing on [ )0,1 , but do not impose that r(x) is a con-
stant.12 w(x) would even increase initially (that is, in a neighborhood of x = 0) if 

( ) ( ) ( ) ( ) ( )0 1 0 0 0 0.w T f s s′ ′= − + − >                  (7) 

Given T, f(0), and s(0), the value of ( )0w′  depends on ( )0s′ . If ( )0s′  is suffi-
ciently large; that is, if the initial slope for s(x) is sufficiently large, ( )0w′  will be 
greater than zero. To put this result in perspective, let’s use some real-world numbers 
from an average-risk S & P 500 firm to evaluate Equation (7). Since such a firm has lit-
tle default risk at the initial debt ratio, its f(0) should be close to the 10-year Treasury 
bond yield, which is about 1.8% at the present time (May, 2016). So let’s use 2% as f(0). 
Assume that 7% (per annum) is a reasonable estimation of the expected return for un-
levered equity for S & P 500 firms in the future.13 Since this firm is average-risk, let’s use 
7% as s(0). For the corporate tax rate T, let’s use the average of 35%. Based on these 
numbers, ( )0w′  is greater than zero if ( )0s′  is greater than 0.057. This slope does 
not seem to be high enough to preclude the possibility of an initially increasing w(x). 
An initially increasing w(x) is inconsistent with the “maximum-minimum proposi-
tion.” 

The behavior of r(x) in an imperfect market has not been examined in the literature. 
Both r(x) and w(x) reflect the firm’s asset risk; therefore, both must have a certain rela-
tionship. In the following, we prove that the first derivative of r(x) is greater than that 
of w(x). 

Proposition 4: 
Suppose ( )f x  and ( )s x  are differentiable on [ )0,1  and ( ) 0f x′ ≥ . If  
( ) ( ) ( ) ( )1r x xf x x s x= + −

 
and ( ) ( )( ) ( ) ( )1 1w x xf x T x s x= − + −  for some ( )0,1T ∈ , 

then 

( ) ( )r x w x′ ′> .14 

Proof: 
First observe that 

 

 

12The assumptions for f(x) are ( ) 0f x′ >  and ( ) 0f x′′ > . 
13The unlevered equity risk premium is thus equal to ( ) ( )0 0 0.05s f− = . If the S & P 500 firms are in gen-
eral levered, the real equity risk premium would be higher than 0.05. 
14The differentiability of r(x) and w(x) follows from the assumptions. 
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( ) ( ) ( )w x r x Txf x= − , 

and thus 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )w x r x Txf x r x T xf x f x r x′′ ′ ′ ′ ′= − = − + < , 

since 0T >  and ( ) ( ) 0xf x f x′ + > , and the proposition is established. 
Based on Proposition 4, when w(x) is decreasing, r(x) could still be rising or could be 

also decreasing but at a slower rate, and when w(x) is rising, r(x) must also be rising but 
at a faster rate. Thus, r(x) cannot be a constant if w(x) is U-shaped, implying a chang-
ing asset risk across the debt ratios.15 

The proponents of the “maximum-minimum proposition” would need to explain 
why expected cash flow stream can be assumed constant across debt ratios in the world 
of the trade-off capital structure theory, if this is an assumption for the proposition. 
They would also need to explain how and why the asset risk is perceived changing 
across debt ratios in the way implied by the shape of r(x) discussed in the last paragraph. 
Also, as mentioned earlier, financial distress costs and agency costs involve possible 
changes in the firm’s assets and their occurrences are functions of the debt ratio; there-
fore, there is no guarantee that s(0) = f(1) = ρ. f(1) may be higher than, equal to, or 
lower than s(0). This potentially adds complications to the shapes of r(x) and w(x). In 
Appendix, Examples 2, 3, and 4 show possible shapes of r(x) and w(x) when f(1) = s(0), 
f(1) > s(0) and f(1) < s(0) respectively. In each example w(x) does not have an absolute 
minimum between zero and 100% debt; also, since the slope of s(x) is greater than 
0.057, w(x) is initially increasing. Although s(x) and f(x) in each example are specified 
arbitrarily, they satisfy the conditions that ( ) 0s x′ > , ( ) 0f x′ > , and ( ) 0f x′′ > . Also, 
f(0) = 0.02 and s(0) = 0.07. Unless s(x) and f(x) can be proved as unrealistic, the result-
ing r(x) and w(x) should be deemed as possibilities in the real world. 

If expected cash flows may not be held constant across debt ratios and if the function 
of w(x) cannot be determined, what can we say about a firm’s optimal capital structure 
in an imperfect world? In a nutshell, the optimal capital structure, if exists, can be any-
where from zero to 100% debt depending on the expected cash flows and w(x) at each 
debt ratio. w(x) may not be U-shaped as conventionally believed. Even if w(x) has an 
absolute minimum between zero and 100% debt, there is no guarantee that the debt ra-
tio that minimizes w(x) also maximizes the value of the firm. This result does not pre-
scribe a specific shape of w(x) and hence r(x), and does not specify whether f(1) is equal 
to, higher than, or lower than s(0). 

3. Firm Opportunity Cost of Capital and Project Evaluation 

Based on the aforementioned analysis, the firm’s opportunity cost of capital r(x) may 
not be a constant across the debt ratio in an imperfect world. A non-constant r(x) poses 
a major difficulty in evaluating a new project. It is necessary to assess a project’s risk to 

 

 

15Also, as proved earlier, if f(x) is increasing and concave up and r(x) is constant, w(x) must be decreasing and 
concave down (see Figure 2 and Figure 3). The contra-positive statement is that if w(x) is in a different shape 
such as U-shape, r(x) cannot be a constant. Although Equation (6) requires constant debt rebalancing, r(x) is 
not necessarily a constant when market imperfections are allowed. 
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determine the project’s opportunity cost of capital r(x)j and hence the project’s 
weighted average cost of capital w(x)j to calculate the net present value. Since the risk of 
a new project is usually difficult to determine, the “pure play” method is often used. In 
this method, r(x) of a comparable firm whose entire business is similar to the project is 
calculated based on the firm’s f(x), s(x), and x.16 Since the comparable firm and the 
project are of the same business, r(x) is used as r(x)j. 

( ) ( ) ( ) ( ) ( )1j jj j jr x r x x f x x s x= = + −  

In this equation, xj is the debt ratio for the project. Based on current literature, it 
should be equal to the target debt ratio of the firm that is considering the project (hen-
ceforth “the project firm”). f(x)j is the cost of debt and s(x)j is the cost of equity for the 
project; both are determined by xj and by the project’s risk. The debt ratio for the com-
parable firm may not be the same as the target debt ratio for the project firm; that is, x 
may not be equal to xj. If they are not equal, f(x) is not equal to f(x)j and s(x) is not 
equal to s(x)j, although the project risk is deemed equal to that of the comparable firm. 
A typical procedure is to first estimate f(x)j based on the project’s risk and xj and then 
solve for s(x)j based on the now known r(x)j, f(x)j, and xj. The project’s weighted aver-
age cost of capital, w(x)j, can then be calculated: 

( ) ( ) ( ) ( ) ( )1 1 .j jj j jw x x f x T x s x= − + −  

However, this method is valid only if the opportunity cost of capital is constant with 
respect to debt ratio or if x happens to be equal to xj. If the opportunity cost of capital is 
not constant, r(x) is not necessarily equal to r(x)j unless x is equal to xj. Strictly speaking, 
even if the two debt ratios are equal, r(x) is not necessarily equal to r(x)j unless r(x) and 
r(x)j are identical functions of the debt ratio. We can’t say for sure that they are. If r(x) 
cannot be used to proxy r(x)j, the “pure-play” method breaks down because the cost of 
capital for the project cannot be determined. 

4. Conclusions 

Theories in capital structure and costs of capital are important because they lay the 
foundation for making financing and investment decisions in a firm. However, incon-
sistent and questionable arguments exist concerning the relationships among capital 
structure, costs of capital, and firm value. We critically re-examine these relationships 
and provide several clarifications. 

We define the debt ratio as the market value of the debt divided by the market value 
of the firm, and express the cost of debt, cost of equity, the firm’s opportunity cost of 
capital, and the weighted average cost of capital as functions of this debt ratio. In a per-
fect market with corporate taxes, given that the cost of debt is increasing and concave 
up and that the firm rebalances its debt, the cost of equity is increasing and concave up 
if and only if the third derivative of the cost of debt is non-negative; otherwise, the cost 
of equity is increasing but its exact shape cannot be ascertained. In all cases, however, 

 

 

16 ( ) ( ) ( ) ( )1r x xf x x s x= + − . 
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the cost of equity must be concave up initially. Also in this world, the weighted average 
cost of capital is decreasing and concave down. 

In an imperfect market, the optimal capital structure can be anywhere from zero to 
100% debt, depending on the expected cash flows and the weighted average cost of cap-
ital at each debt ratio. We can’t say for sure that the weighted average cost of capital has 
an absolute minimum between zero and 100% debt. Even if such minimum exists, the 
debt ratio that results in this minimum may not be the one that maximizes the firm 
value. These results are contrary to the conventional view that there exists a unique 
debt ratio between zero and 100% that simultaneously minimizes the weighted average 
cost of capital and maximizes the firm value. The proponents of this view would need 
to explain how the expected cash flow stream can be assumed constant across debt ra-
tios in the context of the trade-off theory, if this is an assumption. We prove that if the 
weighted average cost of capital is U-shaped, the firm opportunity cost of capital can-
not be a constant across debt ratios. Since the opportunity cost of capital reflects asset 
risk, the proponents would also need to explain how and why the asset risk is perceived 
changing across debt ratios in the way implied by the shape of the opportunity cost of 
capital. 

The “pure-play” method to determine a new project’s discount rate is correct only if 
the opportunity cost of capital remains constant with respect to debt ratio or if the debt 
ratio of the comparable firm is equal to the target debt ratio of the firm evaluating the 
project. Strictly speaking, even if the two debt ratios are the same, the opportunity cost 
of capital for the comparable firm is not necessarily equal to that for the project unless 
the two costs of capital are identical functions of the debt ratio. Therefore, this method 
may not be valid. 

References 
[1] Modigliani, F. and Miller, M.H. (1958) The Cost of Capital, Corporation Finance, and the 

Theory of Investment. American Economic Review, 48, 261-297.  

[2] Modigliani, F. and Miller, M.H. (1963) Corporate Income Taxes and the Cost of Capital: A 
Correction. American Economic Review, 53, 433-443.  

[3] Stiglitz, J.E. (1969) A Re-Examination of the Modigliani-Miller Theorem. The American 
Economic Review, 59, 784-793.  

[4] Rubinstein, M.E. (1973) A Mean-Variance Synthesis of Corporate Financial Theory. The 
Journal of Finance, 167-181. http://dx.doi.org/10.1111/j.1540-6261.1973.tb01356.x 

[5] Robichek, A.A. and Myers, S.C. (1966) Problems in the Theory of Optimal Capital Struc-
ture. The Journal of Financial and Quantitative Analysis, 1, 1-35. 
http://dx.doi.org/10.2307/2329989 

[6] Baxter, N.D. (1967) Leverage, Risk of Ruin and the Cost of Capital. The Journal of Finance, 
22, 395-403. http://dx.doi.org/10.1111/j.1540-6261.1967.tb02975.x 

[7] Stiglitz, J.E. (1972) Some Aspects of the Pure Theory of Corporate Finance: Bankruptcies 
and Takeovers. The Bell Journal of Economics and Management, 3, 458-482.  
http://dx.doi.org/10.2307/3003033 

[8] Kraus, A. and Litzentberger, R.H. (1973) A State-Preference Model of Optimal Financial 

http://dx.doi.org/10.1111/j.1540-6261.1973.tb01356.x
http://dx.doi.org/10.2307/2329989
http://dx.doi.org/10.1111/j.1540-6261.1967.tb02975.x
http://dx.doi.org/10.2307/3003033


C. Hsieh, T. Szarvas 
 

807 

Leverage. The Journal of Finance, 28, 911-922.  
http://dx.doi.org/10.1111/j.1540-6261.1973.tb01415.x 

[9] Scott Jr., J.H. (1976) A Theory of Optimal Capital Structure. The Bell Journal of Economics, 
7, 33-54. http://dx.doi.org/10.2307/3003189 

[10] Kim, E.H. (1978) A Mean-Variance Theory of Optimal Capital Structure and Corporate 
Debt Capacity. The Journal of Finance, 33, 45-63.  
http://dx.doi.org/10.1111/j.1540-6261.1978.tb03388.x 

[11] Jensen, M.C. and Meckling, W.H. (1976) Theory of the Firm: Managerial Behavior, Agency 
Costs, and Ownership Structure. Journal of Financial Economics, 3, 305-360.  
http://dx.doi.org/10.1016/0304-405X(76)90026-X 

[12] Brealey, R.A., Myers, S.C. and Allen, F. (2014) Principals of Corporate Finance. 11th Edi-
tion, McGraw-Hill, Irwin, 438. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1111/j.1540-6261.1973.tb01415.x
http://dx.doi.org/10.2307/3003189
http://dx.doi.org/10.1111/j.1540-6261.1978.tb03388.x
http://dx.doi.org/10.1016/0304-405X(76)90026-X


C. Hsieh, T. Szarvas 
 

808 

Appendix 

 
Example 1. This example shows that if ( )f x′′′  fails to be non-negative on (0, 1), then s(x) may 

fail to be concave up on (0, 1). Let ( ) 3 23 1 1
140 14 50

f x x x= − + + . Furthermore, let ( ) 71
100

fρ = =  

and s(x) be defined by the equation ( ) ( ) ( )1xf x x s xρ = + −  on [0, 1). Then, as a straightfor-

ward calculation shows, ( ) 3 23 1 1 7
140 20 20 100

s x x x x= − + + + . While it is easy to check that 

( ) 0f x′ ≥  and ( ) 0f x′′ ≥  on [0, 1], we have ( ) 9 0
70

f x′′′ = − < . A somewhat tedious, but straight- 

forward calculation shows that ( ) 9 1
70 10

s x x′′ = − + , thus ( ) 0s x′′ <  on the interval ( )7 9,1 . 

Thus, s(x) is concave down on this same interval. The figure below shows the graphs of f(x) and 
s(x). 
 

 
Example 2. Possible shapes of r(x) and w(x) when ( ) ( )1 0f s= . 

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14 ( )s x

( )f x

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15
( ) 0.1 0.07s x x= +

( )r x

( )w x

( ) 20.05 0.02f x x= +



C. Hsieh, T. Szarvas 
 

809 

 
Example 3. Possible shapes of r(x) and w(x) when ( ) ( )1 0f s> . 

 

 
Example 4. Possible shapes of r(x) and w(x) when ( ) ( )1 0f s< . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

( ) 20.06 0.02f x x= +

( )w x

( )r x

( ) 0.1 0.07s x x= +

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15
( ) 0.1 0.07s x x= +

( )r x
( )w x

( ) 20.04 0.02f x x= +


	Critical Re-Examinations on the Relationships among Capital Structure, Costs of Capital, and Firm Value
	Abstract
	Keywords
	1. Introduction
	2. The Theories, Discussions, and Clarifications
	2.1. Perfect Market
	2.1.1. Risk-Free Debt
	2.1.2. Risky Debt

	2.2. Imperfect Market

	3. Firm Opportunity Cost of Capital and Project Evaluation
	4. Conclusions
	References
	Appendix

