

The Design of a Novel Bearing Manufacturing Line Based on Simulation

Abeshek Ram Natarajan

Department of Mechanical Engineering, SSN College of Engineering, Chennai, India Email: abeshek13001@mech.ssn.edu.in

How to cite this paper: Natarajan, A.R. (2016) The Design of a Novel Bearing Manufacturing Line Based on Simulation. *American Journal of Operations Research*, **6**, 425-435. http://dx.doi.org/10.4236/ajor.2016.66039

_____,

Received: September 15, 2016 Accepted: October 25, 2016 Published: October 28, 2016

Copyright © 2016 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

<u>cc</u> 0

Open Access

Abstract

This paper is a case study of the production line at an automotive ancillary manufacturing plant. At first, the production line is studied for possible areas of improvement. Time study data are collected for each process and the best set-up is calculated to make the plant leaner. Furthermore, suggestions are made to procure machines from the market that make the plant leaner and more efficient. To make the suggestions indubitable, a time study calculation is done for the new machine layout.

Keywords

Production Line, Simulation, GPSS, Throughput

Kaizen-Continuous improvement is the essence of successful manufacturing industries worldwide. There always exist some scopes for improvement in the company, hence efforts to improve should never be allowed to cease. The manufacturing industry is a major contributor to the growth of the Indian economy. Also, amongst the manufacturing industries, it is the automotive industry that contributes a larger percent. Despite having continued this trend for decades, the automotive industry still faces the difficulty of improving production. When the automotive industry is only predicted to grow from here, it is only obvious that its contribution to India's GDP will increase. However, this also means that the country's reliance on the industry will increase. Therefore, in this age of price competitiveness, it is important to avoid the company's profit slip due to the inability to produce parts on time. Hence, efficient balancing of the production line is of utmost importance. This paper uses simulation approach to effectively improve the output rate of the plant to satisfy the production goal of a bearing manufacturing company.

2. Literature Review

This section reviews literature of simulation approach for improving the productivity of different production/service systems.

Panneerselvam and Veerapandian [1] considered the simulation of a season ticket issue counter of a transport organization at Chennai. They analyzed the behavior of male queues and female queues at different time intervals (one hour interval) from 3 P.M. to 8 P.M. and suggested to operate variable number of counters depending on the estimated queue length. The simulation logic has been implemented in FORTRAN language. Senthilkumar [2] developed an algorithm for multiple AGVS (Automated Guided Vehicle System) scheduling, which uses Floyd's algorithm as a subroutine to find the shortest distance between any pair of nodes in the distance network of the shop floor where the AGVs operate. This uses simulation approach to sample the demand points. The simulation logic has been implemented in Basic language. Panneerselvam and Senthilkumar [3] developed a text book titled 'System Simulation, Modeling and Languages', which presents several practical examples and case studies where the simulation approach can be used. The examples cover applications in shop floors and service systems using high level languages, GPSS (General Purpose Simulation System), Arena, etc, which is instrumental in understanding the use of GPSS. Gordon Geoffrey [4] and Jerry Banks [5] gave the concept of simulation and introduce different simulation languages. Furthermore, Panneerselvam [6] [7] gave a brief introduction to simulation and presented case studies which have been essential to learning the method of simulation. Moreover, Scriber [8] gave a complete account of GPSS covering all the blocks. Khalili and Zahedi [9] presented a simulation model for a mattress production line using Promodel simulation software. They analyzed the existing system and modified the system using simulation to cope with the demand of mattress for the next five years. Gingu and Zapciu [10] considered a layout design problem and obtained bottleneck locations using simulation to obtain a revised cellular layout.

The literature presented above justifies the need of simulation in industries and also presents foundations of the simulation approach. In this paper, the application of the simulation approach using GPSS to improve the throughput of a production line manufacturing a bearing is presented.

3. Problem Identification

The output of the line manufacturing an engine thrust bearing is unable to meet the demand of its customers. Moreover, the line supervisor is not convinced about the optimality of the lot size that is fixed while producing the bearing. The process times of different operations of the production line of the bearing are probabilistic. Hence, in this paper, an attempt has been made to simulate the production for the existing layout of the production line. After an analysis of the results about the average waiting time and average waiting number of jobs before different operations of the production line, another simulation model is to be constructed again to minimize the time taken which will improve the production volume of the line.

4. Data Collection

This section presents data that are collected from the production line of the bearing (job). The inter-arrival time of the job to the first machine of the line follows uniform distribution with a mean of 6.79 sec and a half width of 0.375 sec.

The different machines/operations of the production line manufacturing engine thrust bearings as per their sequence to manufacture that product are shown in **Table 1**. The processing time of each of the facilities shown in the **Table 1** follows uniform distribution. The parameters of the uniform distribution of the processing times of the facilities are shown in **Table 2**. The block diagram of the facilities manufacturing the thrust bearing is shown in **Figure 1**.

Order of operation	Name of set up
1	Blanking
2	Deburring
3	Flattening
4	Grooving
5	End-chamfer
6	IDC
7	ODC
8	Grinding
9	Vibro-finishing
10	Flattening
11	Washing
12	Packing

Table 1. Machines/operations to manufacture engine thrust bearings.

Table 2. Processing times of facilities.

Norma af tha faailitaa	Parameters of uniform distributions (A \pm B)				
Name of the facility –	Mean(seconds)	Half-width(seconds)			
Blanking	1.5	±0			
Deburring	1.5	±0			
Flattening	7	±0			
Grooving	5	±0.2			
End-Chamfer	5	±0.2			
IDC	9	±1			
ODC	10	±1			
Grinding	20	±0.2			
Vibro-Finishing	15	±1			
Flattening	2	±0.2			
Washing	2	±0.2			
Packing	3.5	±0.5			

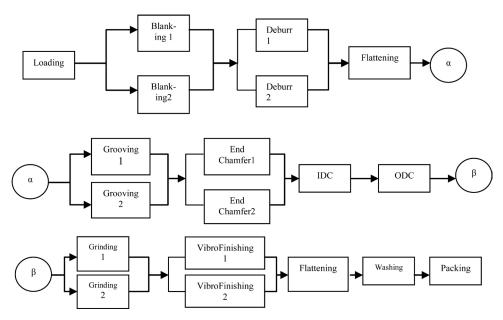
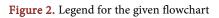
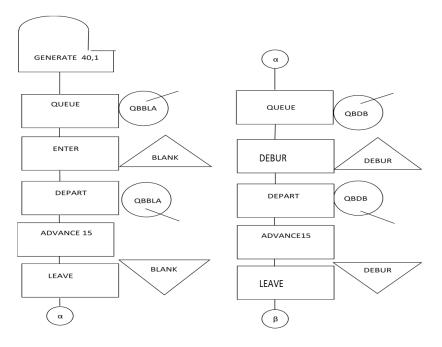
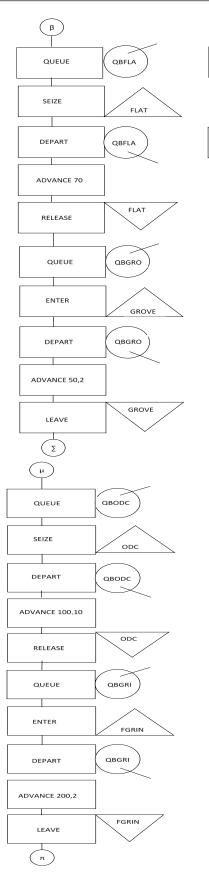


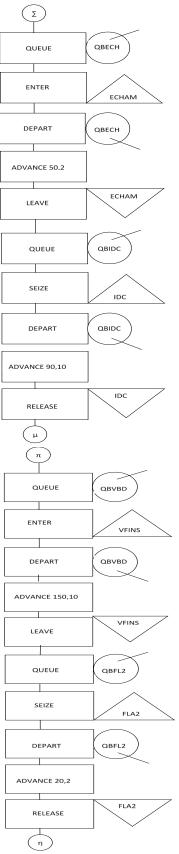
Figure 1. Block diagram of facilities manufacturing engine thrust bearings.

5. GPSS Simulation Model for Existing System

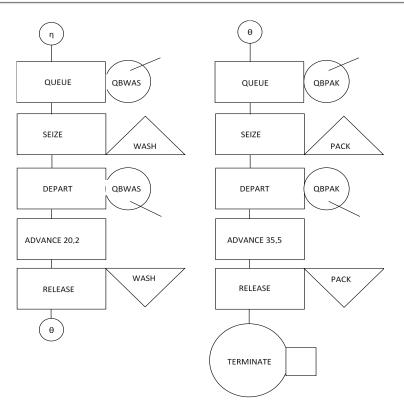

The inter-arrival time at the first operation of the bearing line as well as the processing time of each operation follows uniform distribution. Hence, use of empirical formula to obtain the standard results, viz. average waiting time of the job in front of each operation of the production line, the average waiting number of jobs bearings waiting in front of each operation of the production line and the percentage utilization of the operations, cannot be used. Therefore, the last resort to obtain such results of the production line is the use of simulation, which can provide these results. This section gives the simulation of the existing system whose particulars are shown in **Table 1**, **Table 2** and **Figure 1**. The legends used in **Figure 3** are shown in **Figure 2**. The GPSS block diagram to simulate production system considered in this paper is shown in **Figure 3**. The **Figure 4** gives the timer segment. The corresponding GPSS program is shown in **Figure 5**. This contains the names of the GPSS blocks required to simulate the system shown in **Figure 3**. The simulation model is run for 80 hours, which is 288,000 seconds.


Result of Simulation


The execution of the GPSS program in **Figure 5** gives these results for selected facilities and the corresponding queues are shown in **Table 3** and **Table 4**. From **Table 3**, the number of transactions passing through the "packaging block", which corresponds to the last operation of the production line manufacturing the bearing, gives the production volume of the production line, which is 2870 units. From **Table 4**, it is clear that the maximum average waiting time per transaction is 1542.107 seconds for the facility "flattening". If the processing time for the operation on this facility is reduced by installing one more facility of the same type in parallel, the average waiting time per transition at this stage can be minimized. The next section discusses the improved system.



Symbols	Function
GENERATE	Jobs are generated as per a defined probability distribution
QUEUE	Adds the job into the queue
ENTER	Makes an attempt to check whether at least one of the facilities is free
DEPART	When a facility becomes free, the job moves from the queue and enters the facility for service
ADVANCE	Increments the clock time by the service time required for the job
LEAVE	Frees a facility our of parallel servers
SEIZE	Makes an attempt to capture the facility for a job to be done
RELEASE	Makes an attempt to free the facility after job is done
X	Adds a customer into the queue
Q	Removes a customer from a the queue
\bigcirc	Connector of flow chart
TERMINATE	Sends the job out of the production line



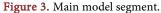




Figure 4. Timer diagram.

6. Simulation of an Improved System

The revised block diagram of the production line after incorporating a parallel facility for the first "flattening" stage is shown in **Figure 6**. The GPSS program for the revised system is shown in **Figure 7**. The execution of the GPSS program shown in **Figure 7** gives the results for selected facilities and the corresponding queues are shown in **Table 5** and **Table 6**. From **Table 5**, the number of transactions passing through the "packaging block", which corresponds to the last operation of the production line manufacturing the bearing, gives the production volume of the production line, which is 6377 units. From **Table 6**, it is clear that the maximum average waiting time per transaction is 390.479 seconds for the facility 'ID chamfering'. The revised design of the line manu-


1 BLANK	STORAGE	2	36	ADVANCE	90,10
2 DEBUR	STORAGE	2	37	RELEASE	IDC
3 GROVE	STORAGE	2	38	QUEUE	QBODC
4 ECHAM	STORAGE	2	39	SEIZE	ODC
5 FGRIN	STORAGE	2	40	DEPART	OBODC
6 VFINS	STORAGE	2	41	ADVANCE	100,10
7	GENERATE	40	42	RELEASE	ODC
8	QUEUE	QBBLA	43	QUEUE	QBGRI
9	ENTER	BLANK	44	ENTER	FGRIN
10	DEPART	QBBLA	45	DEPART	OBGRI
11	ADVANCE	15	46	ADVANCE	200,2
12	LEAVE	BLANK	47	LEAVE	FGRIN
13	QUEUE	QBDB	48	QUEUE	QBVBD
14	ENTER	DEBUR	49	ENTER	VFINS
15	DEPART	QBDB	50	DEPART	QBVBD
16	ADVANCE	15	51	ADVANCE	150,10
17	LEAVE	DEBUR	52	LEAVE	VFINS
18	QUEUE	QBFLA	53	QUEUE	QBFL2
19	SEIZE	FLAT	54	SEIZE	FLA2
20	DEPART	QBFLA	55	DEPART	QBFL2
21	ADVANCE	70	56	ADVANCE	20,2
22	RELEASE	FLAT	57	RELEASE	FLA2
23	QUEUE	QBGRO	58	QUEUE	QBWAS
24	ENTER	GROVE	59	SEIZE	WASH
25	DEPART	QBGRO	60	DEPART	QBWAS
26	ADVANCE	50,2	61	ADVANCE	20,2
27	LEAVE	GROVE	62	RELEASE	WASH
28	QUEUE	QBECH	63	QUEUE	QBPAK
29	ENTER	ECHAM	64	SEIZE	PACK
30	DEPART	QBECH	65	DEPART	QBPAK
31	ADVANCE	50,2	66	ADVANCE	35,5
32	LEAVE	ECHAM	67	RELEASE	PACK
33	QUEUE	QBIDC	68	TERMINATE	
34	SEIZE	IDC	69	GENERATE	288000
35	DEPART	QBIDC	70	TERMINATE	1

Figure 5. GPSS program to simulate system shown in Figure 3.

Table 3. Results of facilities.

Name of facility/storage	Number of storages	Number of transactions through facility	Percentage utilization
Blanking	2	7199	18.70
Deburring	2	7199	18.70
Flattening	1	4114	100.00
Grooving	2	4113	35.70
End-Chamfering	2	4112	35.70
IDC	1	3203	99.99
ODC	1	2887	99.99
Grinding	2	2874	99.80
Vibro-finishing	2	2872	74.80
Flattening	1	2872	19.99
Washing	1	2871	19.99
Packing	1	2871	34.80

Name of queue	Average number of waiting jobs	Average waiting time(seconds)
Blanking	0	0.000
Deburring	0	0.000
Flattening	3085	1542.107
Grooving	0	0.000
End chamfering	0	0.000
ID Chamfering	908	453.756
OD Chamfering	325	162.347
Grinding	2	1.171
Vibro-finishing	0	0.000
Flattening 2	0	0.000
Washing	0	0.000
Packing	0	0.000

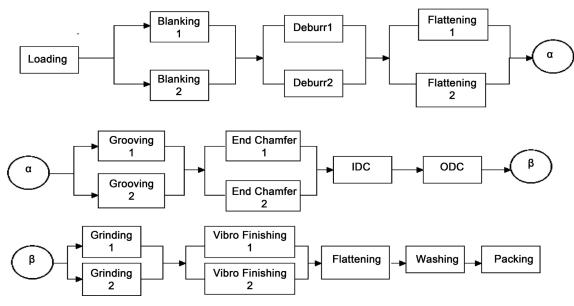


Figure 6. Improved Block diagram of facilities manufacturing engine thrust bearings.

facturing the bearing gives a tremendous improvement in the production volume from 2870 units to 6377 units.

7. Conclusion

The productivity is the key concern of any manufacturing system. In this particular line which manufactures the engine thrust bearing, the existing production volume is very low. Hence, in this paper, in the first phase, the existing system has been simulated to find the critical operation(s). Then, the existing system of production of the bearing has been modified based on the suggestions of the first phase of this study. Then the revised

1 BLANK	STORAGE	2	37	RELEASE IDC
2 DEBUR	STORAGE	2	38	QUEUE QBODC
3 GROVE	STORAGE	2	39	SEIZE ODC
4 ECHAM	STORAGE	2	40	DEPART QBODC
5 FGRIN	STORAGE	2	41	ADVANCE 45,10
6 VFINS	STORAGE	2	42	RELEASE ODC
6.5 FLAT	STORAGE	2	43	QUEUE QBGRI
7	GENERATE	40	44	ENTER FGRIN
8	QUEUE	QBBLA	45	DEPART QBGRI
9	ENTER	BLANK	46	ADVANCE 60,10
10	DEPART	QBBLA	47	LEAVE FGRIN
11	ADVANCE	15	48	QUEUE OBVBD
12	LEAVE	BLANK	49	ENTER VFINS
13	QUEUE	QBDB	50	DEPART QBVBD
14	ENTER	DEBUR	51	ADVANCE 60,10
15	DEPART	QBDB	52	LEAVE VFINS
16	ADVANCE	15	53	QUEUE QBFL2
17	LEAVE	DEBUR	54	SEIZE FLA2
18	QUEUE	QBFLA	55	DEPART QBFL2
19	ENTER	FLAT	56	ADVANCE 20,2
20	DEPART	QBFLA	57	RELEASE FLA2
21	ADVANCE	40	58	QUEUE QBWAS
22	LEAVE	FLAT	59	SEIZE WASH
23	QUEUE	QBGRO	60	DEPART QBWAS
24	ENTER	GROVE	61	ADVANCE 20,2
25	DEPART	QBGRO	62	RELEASE WASH
26	ADVANCE	50,2	63	QUEUE QBPAK
27	LEAVE	GROVE	64	SEIZE PACK
28	QUEUE	QBECH	65	DEPART QBPAK
29	ENTER	ECHAM	66	ADVANCE 35,5
30	DEPART	QBECH	67	RELEASE PACK
31	ADVANCE	50,2	68	TERMINATE
32	LEAVE	ECHAM	69	GENERATE 288000
33	QUEUE	QBIDC	70	TERMINATE 1
34	SEIZE	IDC		
35	DEPART	QBIDC		
36	ADVANCE	45,10		

Figure 7. GPSS program for improved system involving adding of new IDC, ODC, Grinding, and Vibro-finishing machines.

Table 5. Results of facilities.

.....

Name of facility/storage	Number of storages	Number of transactions through facility	Percentage utilization
Blanking	2	7200	18.70
Deburring	2	7199	18.70
Flattening	2	7199	50.00
Grooving	2	7198	62.50
End Chamfering	2	7196	62.50
IDC	1	6412	99.99
ODC	1	6383	99.99
Grinding	2	6382	66.50
Vibro-finishing	2	6380	66.50
Flattening	1	6379	44.3
Washing	1	6378	44.3
Packing	1	6378	77.5

Name of queue	Average number of waiting jobs	Average waiting time (seconds)
Blanking	0	0.000
Deburring	0	0.000
Flattening	0	0.000
Grooving	0	0.000
End chamfering	0	0.000
ID Chamfering	783	390.479
OD Chamfering	28	16.439
Grinding	0	0.000
Vibro-finishing	0	0.001
Flattening 2	0	0.002
Washing	0	0.000
Packing	0	0.043

Table 6. Results of queues.

model has been simulated and it is found that the revised model gives tremendous improvement in the production volume for the engine thrust bearing line.

Acknowledgements

I thank the anonymous referees for their constructive suggestions, which helped me to improve the paper.

References

- [1] Panneerselvam, R. and Veerapandian, M. (1990) Simulation of a Season Ticket Issue Counter of a Transport Corporation. *Industrial Engineering Journal*, **19**, 21-25.
- [2] Senthilkumar, P., Damodaran, K.M. and Panneerselvam, R. (2003) Algorithm for Multiple AGVS Scheduling. *Industrial Engineering Journal*, **32**, 20-26.
- [3] Panneerselvam, R. and Senthilkumar, P. (2013) System Simulation, Modeling and Languages. PHI Learning Private Limited, New Delhi.
- [4] Geoffrey, G. (1978) System Simulation. 2nd Edition, Prentice-Hall, Englewood Cliffs.
- [5] Banks, J., Carson, J.S., Nelson, B.L. and Nicol, D.M. (2010) Discrete-Event System Simulation. 5th Edition, Pearson Education, New Delhi.
- [6] Panneerselvam, R. (2004) Research Methodology. PHI Learning, New Delhi.
- [7] Panneerselvam, R. (2006) Operations Research. 2nd Edition, PHI Learning, New Delhi.
- [8] Scriber, T.J. (1974) Simulation Using GPSS. John Wiley & Sons, New York.
- [9] Khalili, H.H. and Zahedi, F (2013) Modeling and Simulation of Mattress Production Line Using Promodel. *Proceedings of the* 2013 *Winter Simulation Conference. Simulation: Making in a Complex World*, Washington DC, 8-11 December 2013, 2598-2909. http://dx.doi.org/10.1109/WSC.2013.6721632
- [10] Gingu, E.L. and Zapciu, M. (2014) Improving Layout and Workload of Manufacturing System Using Delmia Quest Simulation and Inventory Approach. *International Journal of Innovative Research in Advanced Engineering*, 1, 52-61.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work Submit your manuscript at: http://papersubmission.scirp.org/

Or contact <u>ajor@scirp.org</u>