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Abstract 
This paper is concerned with the stability analysis of nonlinear third order ordinary 
differential equations of the form ( ) 0x ax g x cx+ + + =   . We construct a suitable 
Lyapunov function for this purpose and show that it guarantees asymptotic stability. 
Our approach is to first consider the linear version of the above ODE, by taking 
( )g x bx=   and study its Lyapunov stability. Exploiting the similarities between li-

near and nonlinear ODE, we construct a Lyapunov function for the stability analysis 
of the given nonlinear differential equation. 
 

Keywords 
Nonlinear ODE, Energy, Lyapunov Function, Assymptotic Stability 

 

1. Introduction 

In 1892, Lyapunov [1] proposed a fundamental method for studying the problem of 
stability by constructing functions known as Lyapunov functions. This function is often 
represented as ( ),V t x  defined in some region or the whole state phase that contains 
the unperturbed solution x = 0 for all t > 0 and which together with its derivative 
( ),V t x  satisfy some sign definiteness. The following definitions of stability were given 

by Lyapunov. 

1.1. Definition (Lyapunov) 

Consider the system 

( ) ( )0 0, ,x f t x x t x= =                        (1) 

where x denotes an n-dimensional vector and ( ),f t x  ( [ ): , 0,n nf I I× → = ∞  ) is 
continuous. Let ( )0 0; ,x t x t  be a solution of the Equation (1) through ( )0 0,x t  then 
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the trivial solution ( )0 0, 0x x t =  of the system (1) is said to be stable at 0t t= , pro-
vided that for arbitrary positive 0ε > , there exist a ( )0, tδ δ ε=  such that whenever 

0x δ< , the inequality ( )0 0; ,x t x t ε<  is satisfied for all 0t t≥ . 

1.2. Definition (Lyapunov) 

The trivial solution ( )0 0; ,x t x t  of the system (1) is said to be asymptotically stable if it 
is stable, and for each 0 0t > , there is an 0η >  such that 0x η<  implies 

( )0 0; , 0x t x t →  as t →∞ . If in addition all solutions tend to zero, then the trivial 
solution is asymptotically stable in the large. 

1.3. Lyapunov’s Theorem on Stability (Lyapunov) 

Suppose there is a function V which is positive definite along every trajectory of (1), 
and is such that the total derivative V  is semi definite of opposite sign (or identically 
zero) along the trajectory of (1). Then the perturbed motion is stable. If a function V 
exists with these properties and admits an infinitely small upper bound, and if V  is 
definite (with sign opposite of V), it can be shown further that every perturbed trajec-
tory which is sufficiently close to the unperturbed motion 0x =  approaches the latter 
asymptotically. 

1.4. Remark 

1) The basis of Lyapunov theory in simple terms is that; if the total energy is dissi-
pated, then the system must be stable. 

2) The main advantage of this approach is that; by looking at how an energy-like 
function V (Lyapunov function) changes over time, we might conclude that a system is 
stable or asymptotically stable without solving the differential equation. 

3) The disadvantage of this approach is that; finding a Lyapunov function may not be 
so easy! [2]. 

1.5. Motivation 

1) Eigenvalue analysis concept does not hold good for nonlinear systems [1] [3]. 
2) Nonlinear systems can have multiple equilibrium points and limit cycles [4]. 
3) Stability behaviour of nonlinear systems need not always be global (unlike linear 

systems) [5] [6]. 

1.6. How Energy Is Associated with Dynamical Systems 

We illustrate here how we can derive the Hamiltonian for a dynamical system of the 
form 

( ) 0x f x+ =                             (2) 

The Hamiltonian of a system is the sum of its kinetic (T) and potential energies (V), 
i.e. 

H T V= +                              (3) 
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Given Equation (2), multiply by x  to get; 

( ) 0xx xf x+ =                              (4) 

We observe that; 

( ) ( )2 2d 1 d2
d 2 d

x xx xx x
t t

= ⇒ =     

Hence substituting in (4) we get; 

( ) ( )21 d 0
2 d

x xf x
t

+ =   

Integrating with respect to t, 

( ) ( )21 d dd d constant
2 d d

xx t f x t
t t

+ =∫ ∫  

( )21 d constant
2

x f x x⇒ + =∫  

The required Hamiltonian is; 

( )21 d
2

H x f x x= + ∫                         (5) 

1.7. Remark 

1) Any dynamical system of the form ( ) 0x f x+ =  is conservative [7], i.e. the total 
energy of the system is conserved, and this implies that there exists a function H such  

that d 0
d
H
t
= , where H is the Hamiltonian of the system. 

2) The function ( )21 d
2

H x f x t= + ∫  is often used as a Lyapunov function candi-  

date in the stability analysis of many conservative systems. 
3) A concrete example of a conservative system is the simple pendulum [8]. 

1.8. Stability Definitions 

We consider nonlinear time-invariant system ( )x f x= , : n nf →   a point 
n

ex ∈  is an equilibrium point of the system if ( ) 0ef x = . We remark that ex  is an 
equilibrium point if and only if ( ) ex t x=  is a trajectory. Figure 1 illustrates schemati-
cally the concept of stability and asymptotic stability with respect to an equilibrium 
point n

ex ∈ . Their definitions follow. 

1.9. Definition 

An equilibrium solution ex x=  of ( )x f x=  is said to be: 
1) stable if, given any 0ε >  and any 0 0t ≥ , there exists a ( )0, tδ δ ε= such that 

( ) ( )0 0, 0e ex t x x t x t tδ ε− < ⇒ − < ∀ ≥ ≥
 

2) uniformly stable if, for every 0ε > , there exits ( )δ δ ε= , independent of 0t , 
such that (3.3.1) is satisfied for all 0 0t ≥ , 

3) unstable if it is not stable. 
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Figure 1. Stability of equilibria. 

 
4) asymptotically stable if there exists a 0δ >  such that 

( ) ( )0 lime et
x t x x t xδ

→∞
− < ⇒ =  

5) The system is globally asymptotically stable (G.A.S.) if for every trajectory ( )x t  
and ( ) ex t x→  as t →∞  (implies ex  is the unique equilibrium point). 

6) The system is locally asymptotically stable (L.A.S.) near or at ex  if there is an 
0R >  s.t. ( ) ( )0 e ex t x R x t x− ≤ ⇒ →  as t →∞ . 

2. Construction of Lyapunov Function for Third Order Linear ODE 

Ogundare [9] constructed a Lyapunov function for a second order linear system of or-
dinary differential equation using a quadratic form. We shall adapt his method with 
slightly more simplified assumptions to construct a Lyapunov function for a third order 
linear ODE of the form 

0x ax bx cx+ + + =                            (6) 

which is equivalent to the system 

x y
y z
z az by cx

=
 =
 = − − −







                          (7) 

where a, b, c are all positive constants. The required quadratic form in this case is given 
as 

2 2 22 2 2 2V Ax By Cz Dxy Exz Fyz= + + + + +                (8) 

where A, B, C, D, E, and F are constants to be determined. Differentiating Equation (8) 
with respect to the system (7) we have 

( ) ( ) ( )2 2 2 2 2 2 2 .V Axx Byy Czz D xy xy E xz xz F yz yz= + + + + + + + +

         

( )
( ) ( )

2

2

V Axy Byz Cz az by cx Dy Dxz Eyz

Ex az by cx Fz Fy az by cx

= + + − − − + + +

+ − − − + + − − −



 

(a) Stability (b) Asymptotic Stability

xe xe

ε

x(t0) x(t0)

δ
δ
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( ) ( ) ( )
( ) ( )

2 2

2 2 2

2 2 2

.

V Axy Byz Caz Cbyz Ccxz Dy Dxz Eyz
Eaxz Ebxy Ecx Fz Fayz Fby Fcxy
Ecx Fb D y Ca F z Eb Fc A xy

Cc Ea D xz Cb Fa B E yz

= + − − − + + +

− − − + − − −

= − − − − − − + −

− + − − + − −



           (9) 

Setting the coefficients of 2 2, , , ,xy xz yz x z  to be zero and coefficient of 2y  greater 
than zero in Equation (9), we obtain 

0
0
0

0
0

0

Ec
Fb D
Ca F
Eb Fc A
Cc Ea D
Cc Fa B E

=
 − >
 − =
 + − =
 + − =


+ − − =

                        (10) 

Solving the system we have, 

( )
( )

2

0

0

E
F Ca
D Cc
A Cac

B C b a

ab c C

=
 =
 =
 =

 = +

 − >

                          (11) 

By setting C = 1, we obtain 

( )2

1

0

A ac

B b a

C
D c
E
F a

=


= +
 =


=
 =
 =

                           (12) 

with ( ) 0ab c− > , these values of the constants guarantee the positive definiteness of V 
and negative definiteness of its derivative. So, substituting (12) into Equation (8), gives 

( )

( ) ( ) ( )

2 2 2 2

2 2 2 2 2

2 21 1 2

2 2 2

2 2

V acx b a y z cxy ayz

acx by cxy a y ayz z

ac x a y b ca y z ay− −

= + + + + +

= + + + + +

= + + − + +

              (13) 

We now find the time derivative of V: 

( )22 2 2 2 2 2 2 2V acxx b a yy zz cxy cxy ayz ayz= + + + + + + +

       

( ) ( ) ( )

( ) ( )

2 2 2

2 2 2 2 2 2

2 2 2 2

V acxy b a yz z az by cx cy cxz az ay az by cx

acxy byz a yz az byz cxz cy cxz az a yz aby acxy
cy aby c ab y ab c y

= + + + − − − + + + + − − −

= + + − − − + + + − − −

= − = − = − −



 (14) 
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Equation (13) is positive definite with ( ) 0ab c− > , and (14) negative definite, 
therefore, satisfies Lyapunov stability criteria. 

2.1. Construction of Lyapunov Function for Third Order Nonlinear ODE 

Exploiting the similarities between linear and nonlinear systems, we shall construct a 
Lyapunov function for the stability of third order nonlinear differential equation of the 
form; 

( ) 0x ax g x cx+ + + =                          (15) 

Equation (15) is equivalent to the system 

( )

x y
y z
z az g y cx

 =


=
 = − − −







                        (16) 

Taking into account the similarities between the linear and the nonlinear systems, we 
can see a close comparison with Equations (16) and (7), that by  has been replaced by  

( )g y  or ( )2

0

2 d
y

by g y y= ∫ , where ( ) ( )
0

d
y

G y g y y= ∫ . 

We use Equation (13) as our trial Lyapunov function, given by 

( ) ( ) ( )
2 21 1 22 2V ac x a y z ay G y ca y− −= + + + + −              (17) 

We also assume that 

( ) ( ) ( ) ( ) 20 0, 0, 0, 2
g y

g b ab c G y by
y

= ≥ > − > ≥ . 

This implies that 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 21 1 2

2 21 2 1 2

2 21 1 2

2 2V ac x a y z ay G y ca y

ac x a y z ay by ca y

ac x a y z ay b ca y

− −

− −

− −

= + + + + −

≥ + + + + −

≥ + + + + −

             (18) 

Since ( ) 0ab c− > , we have that 

( ) ( ) ( )2 21 1 2 0ac x a y z ay b ca y− −+ + + + − > , 

Hence V is positive definite. 
Also, the time derivative of V along the solution path of (16) 

( ) ( ) ( ) ( ) ( )1 1 12 2 2 2V ac x a y x a y z ay z ay b ca yy− − −= + + + + + + −

     

( )1 1 2 2 1V ac xx a xy a xy a yy zz ayz ayz a yy g y y ca yy− − − − = + + + + + + + + − 


          

( )( )
( )( ) ( )

( )
( ) ( )

( ) ( ) ( )

2 1 2

2 1

2 1 2 2

2 2 1

2 2 2 2 2

V acxy cxz cy ca yz z az g y cx az
ay az g y cx a yz g y z ca yz

acxy cxz cy ca yz az g y z cxz az
a yz ag y y acxy a yz g y z ca yz

cy ag y y cy ab y y cy aby ab c y

−

−

−

−

= + + + + − − − +

+ − − − + + −

= + + + − − − +

− − − + + −

= − = − = − = − −



             (19) 
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Clearly V  is negative definite and we have asymptotic stability. 
Therefore, the Lyapunov function; 

( ) ( ) ( )
2 21 1 22 2V ac x a y z ay G y ca y− −= + + + + − , 

is an appropriate Lyapunov function for the system (16). 

2.2. Conclusion 

We have seen that the Lyapunov function candidate constructed in this project is a 
good tool in the stability analysis of dynamical systems. Without the need to solve the 
systems of differential equations involved, we were able to obtain the qualitative beha-
viour of the systems near their equilibrium points. 
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