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Abstract 
In this paper, an efficient shrinkage estimation procedure for the partially linear va-
rying coefficient model (PLVC) with random effect is considered. By selecting the 
significant variable and estimating the nonzero coefficient, the model structure spe-
cification is accomplished by introducing a novel penalized estimating equation. 
Under some mild conditions, the asymptotic properties for the proposed model se-
lection and estimation results, such as the sparsity and oracle property, are estab-
lished. Some numerical simulation studies and a real data analysis are presented to 
examine the finite sample performance of the procedure. 
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1. Introduction 

With the effort to reduce the risk of model misspecification, more flexible nonlinear 
and non/semiparametric models have been proposed for independent and subject- 
dependent data. See, for example, [1] introduced the varying coefficient model. Refer-
ence [2] and [3] studied the partially linear varying coefficient (PLVC) model and sin-
gle index model, respectively, for longitudinal data. For longitudinal data, see [4] for an 
intensive review. 

As a natural extension of [5], which used marginal model for longitudinal data anal-
ysis, a random effect method is developed when considering within-subject correlation 
and further shrinkage estimation. In the literatures in longitudinal data study, random 
effect method has received relatively enough attention. See, for example, [6]-[9] and so 
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on. Some advantages of random effect method were mentioned in [3] including its 
computation efficiency. 

For the special case of PLVC model with random effect, an important problem is to 
choose the significant covariant variable. Shrinkage estimation based on regularization 
has attracted lots of interest. See, for example, [10]-[13]. Also, some extensions of the 
variable selection under the regularization framework to varying coefficient models in-
clude, [5] [14]-[16]. In this article, the variable selection problem for PLVC model with 
random effect is investigated. Because of the obvious simplicity and wide usage, a pena-
lized estimating equation based shrinkage estimation procedure is introduced, follow-
ing the idea of [17]. 

The rest of this article is organized as follows. In Section 2, the model, estimation 
procedure and statistical properties of the estimators are introduced. In Section 3, the 
practical computational issues are discussed and some numeric simulations and a real 
data analysis for the finite sample performance are illustrated in Section 4. 

2. Estimation and Asymptotic Property 
2.1. Penalized Estimating Equation 

Let ( ), , , ,i i i i iX Z W U Y  be the observed data associated with the ith subject in a longitu-
dinal study. We consider the partially linear varying coefficient mixed effect model 
(PLVCMeM) 

( )T T T , 1, , ; 1, , ,ij ij ij ij ij i ijY X Z U W i n j mβ θ ν ε= + + + = =            (1) 

where β  is a 1q×  coefficient vector, iν  is a 1l ×  vector of random effect with 
mean 0 and covariance matrix D, ( )θ ⋅  is an unknown smoothing 1p×  function 
vector and ijε  is a random variable with mean 0 and variance 2 0σ > . 

Assume that ( ) ( ) ( )( )T

1 1, ,
nk hb u b u b u+ +=   is a set of B-spline basis functions of 

order 1h +  with nk  quasi-uniform internal knots. Then, each ( )l uθ  can be ex-
pressed with a linear combination of normalized B-spline basis function  
( ) ( ) ( )1 T

,1 ,nk h
l s l s lsu b u b uθ γ γ+ +

=
= =∑  where ( )T

,1 , 1,
nl l l k hγ γ γ + +=   is the spline coeffi-

cient vector. Therefore, with the given spline basis ( )b u , model (1) can be approx-
imated as 

( )
1

T T T T T
, , ,

1 1 1
,

nk hp q

ij ij l s ij l s ij s s ij i ij ij ij ij i ij
l s s

Y Z b U X W B X Wγ β ν ε γ β ν ε
+ +

= = =

≈ + + + ≈ + + +∑ ∑ ∑   (2) 

where ( )T T T ,ij ij pB Z I b u= ⋅ ⊗ ( )T
1, , ,i i imB B B=  ( ), ,knp

l s Rγ γ= ∈ ( )1 .
nk np p k h= + +  

Hence, the estimators for β  and γ  can be derived with the following weighted least 
square equation 

( ) { } { }T 1

1

1, ,
p

i i i i i i i
l

Q Y B X Y B X
n

γ β γ β γ β−

=

= − − Ω − −∑             (3) 

where T 2
i i i mW DW IεσΩ = +  is the variance-covariance matrix.  

A primary goal for (1) is to explore useful information for Z and X, it is important to 
select and estimate the nonzero coefficients in β  and nonzero functions in ( )uθ  to 
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enhance model prediction and interpretability. To achieve the simultaneous estimation 
and variable selection, a shrinkage penalty function is developed based on estimating 
equation with a regularization based shrinkage estimation being defined with the fol-
lowing penalized estimating equation, which is similarly introduced in [17] as 

( ) { } ( )( ) ( )1 2

TT 1

1 1 1

1, ,
k l

p qn

i i i i i k l
i k l

Q Z Y B X n q B n q
n λ λγ β γ β γ β−

= = =

= Ω − − + ⋅ +∑ ∑ ∑   (4) 

where ( ),i i iZ B X= . Alternatively, when denoting ( )TT T,α γ β= , it follows that 

( ) { }T 1

1
,

n
P

i i i i
i

U Z Y Z nqλα α α−

=

= Ω − +∑                    (5) 

where qλ  is a penalty function used to penalize the coefficients of nonsignificant va-
riables, λ  is a tuning parameter. 

Among many choices of the penalty function qλ , the smoothly clipped and devia-
tions (SCAD) penalty function is adopted as 

( ) ( ) ( ) ( )
( ) ( ) ,

1
a x

q x p x I x I x
aλ λ

λ
λ λ λ+

−
′= = ≤ + >

−
             (6) 

where 0x >  and 3.7a = , which is suggested by [10]. Since the SCAD penalty is a 
spline function on an interval near zero and constant outside, it can shrink small value 
of an estimation to zero while having no impact on the large one. 

2.2. Estimators of the Variance Components 

An efficient estimation for the parameters of interest in model (5) depends on estima-
tors for the variance component, therefore a consistent estimators for them is required. 
Suppose that the variance covariance matrix for model (1) is 

2 T 21 1 ,i m m mIν εσ σΩ = +                          (7) 

where 1m  represents a 1m×  vector of ones and mI  is the m m×  identity matrix. 
Model (7) is called a variance component model and is very popular in longitudinal 
analysis. See, for example, [3] [6] [9] and so on. Furthermore, let ( )1, ,i i imε ε ε= 

 
( )1, ,i n= 

 with .ij i ijε ν ε= +  Hence, it follows that a moment estimator for variance 
component ( )2 2,ν εσ σ  of iΩ  is derived as 

( ) 1 2 1
1 1 2 1

2 2 2 2

1 1 1 1

1 1ˆ ˆ ˆˆ ˆ ˆ, .
1

n m n m

ij ij ij
i j j j i jnm nm nmν ν νσ ε ε σ ε σ
= = ≠ = =

= = −
− ∑∑ ∑ ∑∑           (8) 

where by the estimator β  and ( )uθ  obtained from (3) without the weight iΩ , the 
residual îjε  is defined as 

( )T Tˆ ,ij ij ij ij ijY X Z Uε β θ= − −                        (9) 

Therefore, the estimator for iΩ  is defined as 
2 T 2ˆ ˆ ˆ1 1 .i m m mIν εσ σΩ = +                         (10) 

2.3. Asymptotic Properties about the Estimators 

In this section, we investigate the asymptotic behavior of the estimators for the para-
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metric, nonparametric and variance component as well. Throughout the article, the 
following assumptions are needed to facilitate the technical details, although they may 
not be the weakest conditions. Let 0β  and ( )0 uθ  be the true value of the corres-
ponding parameters β  and ( )uθ . 

(C1) For some 2r ≥ , ( ) , 1, 2, ,l u l pθ = 
 are rth continuously differentiable. 

(C2) The density function f(u), which genernates the sequence of design points ijU , 
is bounded away from 0 and infinity on [0, 1]. And assume that f(u) is continuously 
differentiable on (0, 1). 

(C3) The number of measurements m is bounded. 
(C4) For an 2s > , assume that 2 ,sE X < ∞ , and 2 .sE Z < ∞  
(C5) Let ( ) { } ( ) { }T 1 T 1

1 2, .G u E Z Z U u G u E X X U u− −= Ω = = Ω =  The eigenvalues 
of ( )1G u  and ( )2G u  are bounded away from infinity and zero for sufficiently large 
n. 

Firstly, we present that the estimators given by (8) are asymptotic normal. 
Theorem 1 Suppose that conditions (C1)–(C5) hold, then 

( ) ( ) ( ) ( )2 2 2 2ˆ ˆ0, , and 0, ,D Dn N V nm N Vν ν ν ε ε εσ σ σ σ− → − →       (11) 

where 

( ) ( ) ( )
2 2 2 4

2 2
1 11

4 2 2and .
1 1

V Var V Var
m m m m
ν ε ε ε

ν ν
σ σ σ σν ε= + + = +

− −  
To obtain the consistency and oracle property about the estimators, additional con-

ditions are required as follows, which are similar to that used in [10] and [15]. 
(C6) Let ( ) ( ){ }1 1, 0 0 0 0max , : 0, 0

k kn k l k l l kHb p pλ λγ β β γ′′ ′′= ≠ ≠ , then 0nb → , as 
n →∞ . 

(C7) ( )2

1
2

0
liminf liminf 0,

l
l

l ln
pλ

β
λ β

+

−

→∞ →
′ >  and ( )1

1
1

0
liminf liminf 0,

k
k H

k k Hn
pλ

γ
λ β

+

−

→∞ →
′ >  where 

1, , ,l s q= +   1, , .k d p= +   
Theorem 2 Under the conditions (C1)-(C7) and the number of knots  

( )( )1 2 1 .r
n pk O n +=  Then,  

i)                        2 1
0

ˆ ,
r

r
nO n aβ β

−
+

 
− = +  

 
                      (12) 

ii)                     ( ) ( ) 2 1
0

ˆ ,
r

r
l l nO n aθ θ

−
+

 
⋅ − ⋅ = +  

 
                   (13) 

where ( ) ( ){ }1 1, 0 0 0 0max , : 0, 0
k kn k l k l l kHa p pλ λγ β β γ′ ′= ≠ ≠ , and r is defined in (C1). 

Theorem 2 ensures the convergence rate of the weighted estimators for not only the 
parametric component, but also the nonparametric component. Furthermore, the fol-
lowing two theorems provide us with the oracle property of the consistent estimators. 

Theorem 3 Under the conditions (C1)-(C7) and the number of knots  
( )( )1 2 1 .r

n pk O n +=  
Let { }max , 1, 2,max ,k l k lλ λ λ= , and { }min , 1 2max ,k l k lλ λ λ= .If max 0λ → , and  

2 1
min ,

r
rn λ+ → ∞  
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as n →∞ . Then, with probability tending to 1, β̂  and ( )θ̂ ⋅  satisfy 

i)                         ˆ 0, 1, , ,l l s qβ = = +                          (14) 

ii)                       ( )ˆ 0, 1, , ,l k d pθ ⋅ = = +                        (15) 

According to Remark 1 in [10], the variable selection procedure can specify the mod-
el correctly and efficiently. Next theorem further shows us that under some conditions, 
the nonzero coefficient estimators of the parametric component have the same asymp-
totic distribution as that based on true model. 

Let ( ) ( )T T* *
1 1, , , , ,s sβ β β θ θ θ= =  , and *

0β  and *
0θ  be the true values of β ∗  

and θ ∗ , respectively. Therefore, the following theorem about the asymptotic distribu-
tion of the estimator β̂ ∗  is established. 

Theorem 4 Under the conditions (C1)-(C7) and the number of knots  
( )( )1 2 1 .r

n pk O n +=  Then  

( ) ( )* * * 1ˆ 0, ,n Nβ β −− → Σ                      (16) 

where *Σ  is defined by (A.10) in Appendix. 

3. Practical Computational Issues 

Denote that iΩ  and ˆ
iΩ  are the true and estimated covariance matrix within the ith 

subject. With a given initial value ( ) ( ) ( )( )T0 T 0 T 0ˆˆ ˆ ,α γ β= , we can refine the regularized 
estimators α̂  according to the following iterative algorithms. 

Step 1. Calculate the estimator iΩ  by the formula (10) with the given value 0α̂ . 
Step 2. Solve the penalized estimators α̂  for the parametric and nonparametric 

component by the Equation (5) with the within-subject covariance matrix interpolated 
by the covariance matrix estimated in Step 1. 

Step 3. Replace the estimator 0α̂  in Step 1 with the one α̂  in Step 2 and iterate 
between Step 1 and Step 2 until the convergence criterion is met. Consequently, the re-
quired estimator can be solved with this iterative procedure.  

Remark 1. This modified penalized estimation procedure inherits the computational 
efficiency and sparsity of Lasso type solutions. And the computational details can be 
referred to [13]. 

Although our theoretical results give technical conditions on nk  and λ , in prac-
tice, these parameters is always chosen based on data to enhance the adaptive property. 
It follows that the cross validation method is used to choose the optimal nk  and λ . 
However, in the real application, the parameter nk  and 1 2,k lλ λ  is chosen by mini-
mizing the following cross-validation score 

( ) ( ){ } ( ){ }T 1 T
11 1 21 2

1

ˆ ˆ, , , , , , ,
n

i iT
n p q i i i i i

i
CV k Y Z Y Zλ λ λ λ α α− −−

=

= − Ω −∑  

       (17) 

where ( )ˆ iα −  is the solution to the function (3) with the ith subject being deleted. Con-
sidering the character of the turning parameter, in practice, the turning parameter λ  
is used as ( )0

1 ˆk k H
λ λ γ=  and ( )0

2
ˆ ,l lλ λ β=  where ( )0ˆkγ  and ( )0ˆ

lβ  are the estima-
tors of (3). 
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4. Empirical Study 

We now use two examples to illustrate the superiority of the proposed weighted shrin-
kage estimation to that one without considering within-subject correlation. 

Example 1. Consider a partially linear varying coefficient mixed effect model 

( )T T , 1, , ; 1, , ,ij ij ij ij i ijY X Z U i n j mβ θ ν ε= + + + = =             (18) 

where ( )1 10, ,β β β= 
 with 4 3β = , 5 1.5β = , and 6 2,β =   

( ) ( ) ( )( )1 10, ,u u uθ θ θ=   with ( ) ( )1 8 0.3exp 2 1u uθ = + −  and ( ) ( )2 2sin πu uθ =  
and other parametric and nonparametric component coefficients are zero. Moreover, it 
is further assumed that ( )0,4ijkX N , 1,2, ,10k =   and  

( )0,1.5 , 1,2, ,10.ijkZ N k = 
 Meanwhile, denote that ( )20,i N νν σ  and  

( )20,ij N εε σ ,where ( )2 2,ν εσ σ  is set to be (2,0.5) and (1,0.5). It is assumed that the 
number of observed subject and repeated measurement within each subject are n = 50 
and m = 3, 4, respectively.  

To illustrate the estimation accuracy of the proposed method, we define generalized 
mean squared errors (GMSE) and the square root of average square error (RASE) to be  

( ) ( )( )T T
0 0

ˆ ˆGMSE ,E XXβ β β β= − −  and ( ) ( )0
1 1

1 ˆRASE .
pN

k s k s
s k

u u
N

θ θ
= =

  = −   
∑∑  (19) 

And for the purpose of a intensive comparison, in addition to the proposed method 
in this article, two other estimation methods are also required, that are the “naive” ap-
proach based on the working independence method, and the “ideal” one based on the 
true within-subject covariance. And the estimator, obtained by the “naive” approach, 
the proposed method in this article and the “ideal” approach, are denoted to be β̂ , 
ˆWβ  and Wβ , respectively. During the simulations, it is assumed that “C” and “I” 

means the average number of the zero coefficients being correctly set to zero and the 
average number of the nonzero coefficients being incorrectly set to zero, respectively. 

The results about variable selection, based on 100 replications, are included in Table 1. 
Table 1 shows that the proposed method can select the true model quite well and leads 
to smaller GMSE and RASE values. Table 2 reports a satisfactory estimation for the va-
riance component. As the sample increase, the performance becomes better. 

Secondly, the variance, bias and mean square error of the estimators for the nonzero 
parameters, denoted to be “V”, “Bias” and “MSE”, are listed in Table 3. From Table 3, 
all the three methods can obtain consistent estimators with small bias. Moreover, the 
values of “V” and “MSE” also argue that the newly proposed method and the “ideal” 
method can derive a more efficient estimator than the “naive” method does. What’s 
more, the asymptotic normality of the estimators for the parametric component is 
shown with Quantile-Quantile plot in Figure 1. 

Finally, in Figure 2, all of the curves, estimated by all the three methods, fit the true 
nonparametric curve well. However, their 95% confidence intervals have different in-
terval length, with the proposed method in this article and the “ideal” method showing 
a similar and smaller length. All these scenarios indicate a great improvement of the es-
timation with the proposed method in this article. 
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Table 1. Simulation results for the variable selection. 

 ( )2 2,ν εσ σ
 

 n = 50, m = 3 n = 50, m = 4 

β    C I GMSE C I GMSE 

 (2, 0.5) β̂  7 0 0.0428 7 0 0.0313 

  ˆWβ  7 0 0.0138 7 0 0.0085 

  Wβ  7 0 0.0138 7 0 0.0083 

 (1, 0.5) β̂  7 0 0.0266 7 0 0.0188 

  ˆWβ  7 0 0.1863 7 0 0.0085 

  Wβ  7 0 0.1289 7 0 0.008 

θ    C I RASE C I RASE 

 (2, 0.5) θ̂  7.92 0 0.4471 8 0 0.3601 

  ˆWθ  8 0 0.2466 8 0 0.1916 

  Wθ  8 0 0.2419 8 0 0.1888 

 (1, 0.5) θ̂  7.92 0 0.3461 8 0 0.2792 

  ˆWθ  7.95 0 0.2477 8 0 0.1916 

  Wθ  7.98 0 0.2402 8 0 0.1867 

 
Table 2. Simulation results for the estimators of the variance components 2 2,ν εσ σ . 

 ( )2 2,ν εσ σ
 

n = 50, m = 3 n = 50, m = 4 

2
νσ   M V MSE M V MSE 

 (2, 0.5) 1.6 0.27 0.418 1.64 0.42 0.54 

 (1, 0.5) 0.7 0.12 0.206 0.64 0.13 0.25 

2
εσ   M V MSE M V MSE 

 (2, 0.5) 0.5 0.02 0.025 0.53 0.02 0.022 

 (1, 0.5) 0.4 0.08 0.008 0.50 0.01 0.01 

 
Table 3. Simulation results ×100 for 4 5 6, ,β β β  with n = 50 and m = 3. 

( )2 2,ν εσ σ
 

 4β  5β  6β  

 Var Bias MSE Var Bias MSE Var Bias MSE 

(2, 0.5) β̂  0.498 7.063 0.997 0.494 6.456 0.911 0.484 6.140 0.861 

 ˆWβ  0.159 5.191 0.428 0.168 6.519 0.593 0.149 0.502 0.152 

 Wβ  0.150 5.090 0.409 0.157 6.457 0.576 0.138 0.231 0.139 

(1, 0.5) β̂  0.286 −4.931 0.529 0.304 −11.76 1.688 0.291 −5.826 0.630 

 ˆWβ  0.153 −4.128 0.323 0.152 −4.408 0.346 0.161 −5.328 0.445 

 Wβ  0.148 −4.739 0.373 0.138 −2.798 0.216 0.145 −5.386 0.435 
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Figure 1. Q-Q plot of the estimator 4 5 6
ˆ ˆ ˆ, ,W W Wβ β β . 

 
Example 2. To illustrate the effectiveness of the proposed estimation procedure, we 

shall apply it to the analysis of a longitudinal AIDS data set, which is reported by [18] 
and comprises HIV status of 283 homosexual males who were infected with HIV dur-
ing a follow-up period between 1984 and 1991. The focus in this application is to probe 
into the trend of the mean CD4 percentage depletion over time and evaluate the effects 
of cigarette smoking, preHIV infection CD4 percentage and age at infection on the 
mean CD4 percentage after infection. 

For the jth measurement of the ith subject, let ijY  be the mean CD4 percentage, ijt  
be the time in years after HIV infection, ,1iX  be the centered preCD4 percentage and  
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Figure 2. The estimated average curve for the nonparametric component ( ) ( )1 2,θ θ⋅ ⋅  and their 

95% pointwise confidence interval with three coincident curves being the estimated ones for the 
nonparametric component, and the red dotted, the coincident solid and dotted-dashed ones be-
ing the estimated confidence intervals by the “naive”, the “ideal” and the proposed method, re-
spectively. 

 
2

,2 ,1.i iX X=  ,1iZ  be the centered age at HIV infection and 2
,2 ,1.i iZ Z=  Let ,3iZ  be the 

smoking status taking a value of 1 or 0. Hence, assume the following model 

( ) ( ) ( ) T T
0 ,1 1 ,2 2 ,3 3 ,1 1 ,2 2( ) ,ij ij ij ij ij ij ij ij ij ij i ijY t Z t Z t Z t X Xθ θ θ θ β β ν ε= + + + + + + +   (20) 

where the baseline of CD4 percentage ( )0 tθ  is used to represent the mean CD4 per-
centage of t years after the infection. The random effect iν , representing the with-
in-subject correlation, is also included in the assumed model. 

By the analysis, there are two variables ( )0 tθ  and ,1iX  with nonzero estimators, 
which indicate the significant effect on the response variable ijY . Other variables’ coef-
ficients are zero and have no significant effect. Moreover, the estimated curve in Figure 3 
shows the trend of the mean CD4 percentage depletion over time. 

5. Conclusion and Discussion  

This article considered an efficient shrinkage estimation for the partially linear varying 
coefficient models with random effect. Variance component model was employed to 
take within subject correlation into consideration. Some asymptotic properties, such as 
convergence rate, consistency and oracle property, were established. Moreover, the ef-
fectiveness was further illustrated by a real data analysis. As a more ambitious goal, we 
would try to investigate the performance of variable selection issue for mixed effect  
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Figure 3. The estimators for the mean CD4 percentage ( )0 tθ , 

indicating the changing tendency with t.  
 

model under a more general within-subject covariance matrix. 
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