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Abstract 
 
Recent developments in quantum information allow for a new understanding of quantum correlations. The 
aim of this paper is to physically explain why quantum mechanics obeys a stronger bond than the non-sig- 
naling requirement or alternatively why it obeys a principle of information causality. It is shown that a 
physical theory violating the quantum bond allows for correlations between settings while quantum mechan-
ics only allows for correlations between possible outcomes. In fact, correlations between settings would vio-
late the protocols used in quantum cryptography. The conclusion is that information codification is a local 
operation and quantum mechanics sets the general conditions for information exchanging in our universe 
since it satisfies and saturates the bond that is imposed by the principle of information causality, and in so 
doing it also sets specific constraints on both the possible interdependencies and the possible interactions 
(also causal interconnections) in our universe. 
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1. Introduction 
 
One of the biggest mysteries of quantum mechanics is 
represented by the concept of entanglement, originally 
proposed by Schrödinger [1] as a solution of the EPR 
paradox [2] and since then widely tested and fully ac-
cepted by the scientific community [3]. Although many 
issues have been clarified in the last years, a lot of ques-
tions are still open. 

As is well known, in 1964 Bell was able to derive an 
inequality that should be satisfied by any classical theory 
not admitting the existence of any kinds of non-local 
interdependencies between systems [4]. Often, scholars 
in this field make use of a reformulation of Bell’s ine-
quality that is known as CHSH inequality [5]:  

, , , ,a b a b a b a b       2 ,      (1) 

where  is a setting alternative to  (traditionally a 
spin direction) as well as 

a a
b  to . From a quantum- 

mechanical point of view the expression 
b

,a b  (and 
analogues) is a short-hand for the mean value  1ˆ aσ  
 2ˆ bσ
a,b

a a

 of the spin observables along the directions 
 for the particles 1 and 2 computed on a singlet state. 

Conventional partners are called Alice and Bob and we 
may think that Alice can choose to use either the setting 

 or  whilst Bob can choose between  and b b . 

It is largely proven that this inequality is violated by 
quantum systems, which therefore display some non- 
local interdependencies. It was however unknown to date 
which kind of interdependencies the quantum-mechani- 
cal ones are and whether or not quantum mechanics 
obeys some bond. 
 
2. A Quantum-Mechanical Bond 
 
In 1980 Tsirelson was able to prove that quantum me-
chanics is bonded by the value 2 2  [6]. Indeed, let 
ˆ ˆ ˆ ˆ, , ,a a b bO O O O   be arbitrary Hermitian operators on a 

Hilbert space H  satisfying the condition  
and so on for the other couples . 
Moreover, each operator has eigenvalues 1  and 

ˆ ˆ[ , ] = 0a bO O
( , ), ( , )a b a b   

1
( , ),a b

 . 
We now define the Bell operator [7], which is clearly 
related to the CHSH inequality:  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ = a b a b a b a bB O O O O O O O O      .     (2) 

Since the square of each operator is equal to the iden-
tity, this implies  
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Since the sum or difference between Hermitian opera-
tors is itself a Hermitian operator, the operator Â  is 
Hermitian and being the sum of squares of Hermitian 
operators has a non-negative expectation value  

ˆ 0A  ,               (4) 

which implies  

ˆ 2 2B  .              (5) 

This important result sets a clear bond for quan-
tum--mechanical systems but does not physically justify 
it and as a consequence does not fully resolve the prob-
lem of the kind of correlations we deal with in quantum 
mechanics. 
 
3. The Non-Locality Requirement and 

Quantum Mechanics 
 
An important step was when Popescu and Rohrlich [8] 
showed which is the bond set on any theory satisfying 
the relativistic requirement that no superluminal signals 
can be send (in short, non-signaling requirement). This 
requirement implies that the operations that one can per-
form locally are not influenced by operations that one 
performs elsewhere, which implies in particular that the 
probability to obtain a certain outcome (say 1) when 
choosing the direction  is independent from the out-
comes (either +1 or –1) when elsewhere one choses a 
direction 

a

b  or b , that is,  

, , , ,(1,1) (1, 1) = (1,1) (1, 1)a b a b a b a b       . (6) 

Similar considerations hold for any direction. All the 
four different expectation values on the LHS of inequal-
ity (1) can be formulated in terms of the above probabili-
ties:  
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, ,

, = (1,1) ( 1, 1)
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        (7) 

which corresponds to the classical case in which there is 
no correlation (bond = 2). However, the non-signaling 
requirement allows us also to build the set of probabili-
ties  
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while all other probabilities are zero and where I remark 

that only the ,a b   probabilities show anti-correlation. 
In this case, two out the four terms in the expectation 
value (7)—and similar ones—vanish. Since each of those 
mean values in Equation (1) lies now between 1  and 

1 , the natural upper bound for the entire expression is 
+4:  

, , , ,a b a b a b a b    4    ,    (9) 

Given this result, we are left with two important ques-
tions:   
· Why quantum mechanics satisfy a stricter bond 

than the non-signaling requirement? To answer this 
question we need to deal with the nature of infor-
mation transmission.  

· Which kind of physical entities are correlated ac-
cording to quantum mechanics? We shall see that to 
give a specific answer to this question we need to 
consider which kind of physics would be the one 
violating the quantum-mechanical bond 2 2  but 
still satisfying the non-signaling bond 4.  

The answer to the first question was recently provided 
in [9] and turns out to be really surprising: Using all his 
local resources (which may be correlated with her re-
sources) and allowing classical communication from 
Alice to Bob, the amount of information that the latter 
can recover is bounded by the information volume of the 
communication. Namely, if Alice classically communi-
cates  bits to Bob, the total information obtainable by 
Bob cannot be greater than . This has been called the 
principle of information causality. To a certain extent, it 
could appear obvious. What is less obvious is that it is 
connected with the quantum-mechanical bond discovered 
by Tsirelson [6]. 

n
n

 
4. Eberhard’s Theorem 
 
To address the second question above I would like to 
write the operator  as a combination of correlations B̂
C jk  (where , = a, , ,j k b a b 

j k
) expressed in informa-

tional terms, that is, with . I would also like to 
express in informational term 1,0 the possible outputs of 
Alice’s and Bob’s measurements. In other words, instead 
of speaking of polarization directions a , 

, = 1,0

a , , and b
b , or of observables , I would like to 
introduce generic inputs ; moreover, 
instead of having possible results , I introduce in-
formation outputs 0, 1. With these assumptions, I rewrite 
the correlations occurring in the CHSH inequality as [10]  

ˆ ˆa aO O
a b

ˆ, , bO

, = 0,


ˆ, bO
,a
1,



=b 
1

1

00

10

01

11

C = (11| 00) (00 | 00),

C = (11|10) (00 |10),

C = (11| 01) (00 | 01),

C = (10 |11) (01|11),

 

 
 

 

       (10) 
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where the inputs follow the vertical lines and the outputs 
precede them. Therefore, it is quite natural that we inter-
pret the inputs as the chosen settings and the outputs as 
the measurement outcomes (representing the steps of 
premeasurement and measurement, respectively). Indeed, 
the above correlations allow Bob to guess which is the 
outcome of Alice (whether 0 or 1) if she communicates 
to him which is the setting she has chosen (whether 0 or 
1). In other words, quantum entanglement is a non-local 
interdependency between possible outcomes. This is a 
quantum-information resource that is commonly used in 
quantum cryptography [11,12]. However, the above con-
ditional probabilities tell us nothing about the kind of 
dependence we deal with. Abstractly speaking, they also 
allow for a sort of Bayesian inversion, that is, they allow 
Bob to guess the setting of Alice (whether 0 or 1) if she 
communicates to him her measurement outcome (whether 
0 or 1). Are these two possibilities mutually exclusive? If 
the only requirement is the non-signaling one, this is not 
the case. Then, we would have a situation in which there 
is not only correlation between possible outcomes but 
also correlation between distant settings. This is however 
not the case for quantum mechanics. 

An often forgotten result of P. Eberhard [13] can help 
us to understand this point. Let us prove this theorem in 
its full generality and let 1  and 2  be two observ-
ables on subsystems  and 2  of a system , re-
spectively, and a b  be the probability that the 
results of a measurement of 1  on 1  and 2  on 2  
yield a  and b  when certain settings of the meas-
urement apparata are  and b , respectively. Accord-
ing to Eberhard, the probability distribution of 1  (or 

), independently of the measurement operations on 

2  (or 1 ), obtained by integrating or summing the 
probabilities a b  over the possible outcomes 

 (or a ), needs to be independent of the other setting 

Ô

, )b
Ô

)

Ô

S

1S
;o a o

a

; ,o

S S

Ô

( ,

o

( ,o a b

Ô S
o

o

2Ô
Ô

bo

Ô


b  (or ), that is, the two probabilities must depend on 
local settings only:  

a

( , ; , ) ( , )a b a
ob

o a o b o a  ; ( , ; , ) ( , )a b b
oa

o a o b o b  .

 (11) 

Indeed, the joint probability of obtaining the two re-
sults a  and b  given the settings a  a d b , is 
given

o
 by 

o n
 

, , ,

, , ,

( , ; , ) = ( , ) ( , | , )

ˆ ˆ ˆˆTr
                     = ( , )

( , )

ˆ ˆ ˆˆ                     = Tr ,

a b a b a

o b o a o ab a a
a

a

o b o a o ab a a

o a o b o a o b o a

P P P
o a

o a

P P P





  





 
 


  (12) 

where the density matrix ̂  describes the state of the 
compound system. Given these assumptions, by making 

use of the properties of projectors and of the cyclic prop-
erty of the trace, we can obtain the following result that 
is in accordance with Equation (11):  

, , ,

,

ˆ ˆ ˆˆ( , ; , ) = Tr

ˆ ˆ                       = Tr = ( , ),

a b o b o a o ab a a
o oa a

o b bb

o a o b P P P

P o





   

   

 

b
    (13) 

and similarly for ( , )ao a . According to Eberhard, if the 
requirement (11) were not satisfied, we would have a 
causal non-local interdependence between the two sub-
systems (violating in this way relativistic locality), be-
cause, by changing the setting  (or ), we would be 
able to act on the result of the other measurement, and 
hence, if we performed experiments on subsystems that 
are space-like separated, we would be able to transmit a 
message with superluminal or even infinite speed. Actu-
ally, Eberhard’s interpretation of his own result is not 
fully accurate. Indeed, what happens is that his result is a 
stronger requirement than that imposed by locality (non- 
signaling). This is clear if we reformulate Equation (11) 
in analogy with Equation (6) as  

a b

, ,

, ,

(1,1) (1, 1) = (1) and 

(1,1) ( 1,1) = (1),
a b a b a

a b a b a

p  

   
    (14) 

and similarly for the other outcomes. 
 
5. Discussion 
 
Eberhard’s theorem clearly shows that quantum me-
chanics requires a full independence of the settings (here 
expressed e.g. by the orientation ), which need to be 
local operations performed in complete separation from 
other operations that could be performed elsewhere. Now, 
in a world in which settings (and not only outcomes) 
were shared, this would imply that also information codi- 
fication were shared as well. Indeed, information codifi-
cation deals with the choice of a basis (the code) which 
in a measurement context is the choice of a particular 
setting. In other words, in a world showing hyper-corre- 
lations based on the sharing of settings, information 
codification would be no longer a local procedure. In 
such a case, the principle of information causality could 
be violated: communicating any strings of bit, in appro-
priate conditions, could allow somebody to guess the 
code used by the sender, and this would represent also a 
violation of the principles of quantum cryptography. In-
deed, in the Bennett and Brassard’s protocol [11], Alice 
and Bob are connected by a quantum communication 
channel which allows the transmission of quantum states. 
In addition, they may communicate via a public classical 
channel. In particular, if the quantum channel is repre-
ented by the transmission of photons (e.g. in a optical  

a

s        
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Table 1. An example of sequence transmission in the Bennett and Brassard’s protocol for quantum key distribution. 

Alice’s random bits 0 1 1 1 0 0 1 0 

Alice’s random chosen basis + +       + +   

Photon polarization sent by Alice         |   |  |  |   

Bob’s chosen basis +   +       + + 

Bob’s measurement result |  |   |  |   |   |   |  |  

Shared secret key 0 - - 1 0 - 1 - 

 
fiber or in free space), they can make use of two possible 
bases of polarization,  

= {| ,| }    and ,    (15) = {| ,| }  


representing, respectively, a vertical--horizontal polari-
zation and a  polarization states. First, Alice 
establishes a one-to-one correspondence between the 
classical bits (0, 1) that she desires to communicate with 
each state of the two bases, for instance  

45  - 135

0 ,   ,              (16a) 

1 ,   .               (16b) 

Then, she sends several bits of information by choos-
ing at random one or the other basis. Bob will measure 
the photons choosing again at random one of the two 
bases. After this exchange and measurement, they pub-
licly tell each other which basis (setting) they have used. 
They will immediately discard photon transmissions 
where the two bases do not match (on the average 50% 
of the transmitted bits). The bits for which Alice and Bob 
chose the same basis constitute the shared key. In other 
words, there are two pieces of information that are nec-
essary here in order to constitute a common code:  
· The information about the settings: This is commu-

nicated through a classical channel;  
· The information about the outcomes in order to 

correctly pair Alice’s code and Bob’s code: This is 
provided by the quantum channel, i.e. the entan-
glement between the photons.  

The situation is schematically shown in Table 1. Instead, 
hypercorrelations would allow for sharing information 
about the settings without any classical communication 
at all. 
 
6. Conclusions 
 
The fact that quantum mechanics forbids setting-sharing 
justifies quantum information as a general theory of in-
formation since   
· It satisfies and saturates the (Tsirelson) bond that is 

imposed by the principle of information causality, 
and in so doing  

· It also sets specific constraints on both the possible 
interdependencies and the possible interactions (also 

causal interconnections) in our universe.  
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