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Abstract

This paper studied a structured model by age of tuberculosis. A population divided
into two parts was considered for the study. Each subpopulation is submitted to a
program of vaccination. It was allowed the migration of vaccinated people only be-
tween the two patches. After the determination of iR(l//) and R, the local and
global stability of the disease-free equilibrium was studied. It showed the existence of
three endemic equilibrium points. The theoretical results were illustrated by a nu-
meric simulation.
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1. Introduction

Tuberculosis (TB) (short for tubercle bacillus) is a widespread, infectious disease caused
by various strains of mycobacteria, usually Mycobacterium tuberculosis (MTB). Tu-
berculosis typically attacks the lungs, but can also affect other parts of the body [1]. To
be infected bacilli must penetrate deep into the alveoli, but the contagiousness of the
disease is relatively low and depends on the immune system of subjects. Individuals at
highest risk are young children, adults, deficient elderly, and people living in preca-
rious socio-economic conditions, in nursing or whose immunity is deficient (AIDS,
immunosuppressive therapy ...) [2]. This is one of the most common old infectious

diseases [3] [4], with about two billion people being currently infected. There are

DOI: 10.4236/am.2016.715155 September 30, 2016



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2016.715155
http://www.scirp.org
http://dx.doi.org/10.4236/am.2016.715155
http://creativecommons.org/licenses/by/4.0/

B. K. A. Wahid, S. Bisso

about nine million new cases of infection each year and two million deaths per year
according to WHO estimations [3] [5]. For more information, many authors have
worked on the epidemiology of tuberculosis [1]-[3] [5]-[13]. In many developing
countries in general and sub-Saharan Africa particularly, TB is the leading cause of
death, accounting for about two million deaths and a quarter of avoidable adult deaths
[11].

It is well known that factors such as the emergence of drug resistance against tu-
berculosis, the growth of the incidence of HIV in recent years, as well as other dis-
eases favor the development of Koch bacillus in the body call for improved strategies
to control this deadly disease [2] [10] [14]. Last May, the World Health Assembly
approved an ambitious strategy for 20 years (2016-2035) to put an end to World TB
epidemic (World Day of fight against tuberculosis—March 24, 2015). In literature,
several articles discussed about coinfection: TB-HIV/AIDS and the most recent is [2].
Nowadays, it is not a secret for everyone that fighting against infectious diseases is
also a fight against poverty. Humans are traditionally organized into well-defined so-
cial units, such as families, tribes, villages, cities, countries or regions are good exam-
ples of patches [11] [12]. For this study, two subpopulations were considered and
each was subjected to a vaccination program. However, only the vaccinated individu-
als can migrate from one patch to another. Despite that we have neglected the relapse
rate, to avoid any risk of treated individuals’ reactivation, any migration between
patches was allowed. After proving that the problem is well defined and it has a unique
solution if the initial condition is given, we are able to calculate the reproduction of
numbers R(y ) and ‘R,. We have established the existence conditions for three en-
demic equilibrium points, and the conditions of local and global stability of the equi-
librium point without disease. Finally, numerical simulations illustrate clinical out-
comes. This paper is organized as follows: Section 2 introduces the two-patch model
structured in age to study the dynamics of TB transmission. The existence of positive
and unique solutions is demonstrated in Section 3. The point of equilibrium without
disease, reproductive numbers 9?(1// ) and ‘R, are defined in the section 4 with the
local and global stability of the disease-free equilibrium point. The existence of three
endemic equilibrium points is proven in Section 5. Some numerical simulation re-
sults are given in Section 6. In Section 7, we have a discussion, conclusion and further

work.

2. Parameters and Mathematical Model Formulation

Two-patch age structured model of tuberculosis was considered. The model is to split
the population into two subpopulations. The recruitment is only possible in the class of
susceptible and the vaccinated individuals were able to migrate between the two sub-
populations. Each subpopulation is divided into five classes based on their epidemio-
logical status: susceptible, vaccinated, latent, infectious or treated. We denote these
subgroups S;(t,a), vi(t,a), L(t,a), I;(t,a) and J;(t,a) respectively. The birth
rate of the patch iis D (a); Ui (a) and y(a) denote the mortality rate related to the
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disease relative to the patch 7and the rate of natural mortality. The time and age de-
pended of the force of infection of the subpopulation 7is 4 (t, a) and vaccination rate
is v, (a) ;B (a, a’) is the probability that an infective individual of age a' will have
contact with and successfully infect a susceptible individual of age a, (a) is the
age-specic per-capita contact/activity rate (all of these functions are assumed to be con-
tinuous and to be zero beyond some maximum age). A fraction ¢ of newly infected
individuals of the sub-population 7is assumed to undergo a fast progression directly to
the infectious class |,. Rates of migration, of susceptible passage to latent infectious
state and treatment are respectively p.; k and r,. Risk reduction rates of treatment
and vaccination are o, and &, respectively, 0<o; < (1—¢I ) , 0<6, < (1— ¢ ) , in this
paper i=12.

The age-structured model for the transmission of TB (see Figure 1) is described by
the following system of partial differential equations:

Jsl(t,a)zbl( IN(ta)-[4(t.a)+y, (a) + u(a)]s, (t.a)

L (0a)= At ) 4)S, (2) i3, (.2) v, (t.2)]- (k@) L (.2)

L (62) =L (68) (1 4 (2) 4 (@) (1.2)+ 4 (1.2)8, (1.2)

(2) = 11, (1) (014 (1) + (@) 3 (t2)

) =04 ()5, (L) 4 oV, (L) (0 + () 64 1,2V (1) g
S,(t.a)=b,(a)N(t,a)—[ 4, (t,a)+w,(a)+u(a)]S,(t.a)

L (68)= 2 (L) 4)5, (62) 0, (62) s (.8)] (6 + (@)L (2]
(1) = (12) (5 (@) 45 (2) 1 (£2) 2 (,2)S, (12)

3,(18) = 01, 8) (022 (1.2) +(2)) 2, (1)

N W U U U U U
=<
—~

o Plo o Plo o R Rlo o Rl P

JVZ (t.a)=y,(a)S,(t,a)+ oV, (t.a)—(p, + u(a)+ 3,4 (t.a))V, (t.a)
with initial and boundary conditions:

S, (,0)= azb. (a)N(t,a)da

L (t.0)= (t 0)=1;(t,0)=J;(
S:(0,a) =S84 (a); L (0.a) =Ly (a
1;(0.a) =14 (a);J;(0,a) = J, (a)

a, | (t,
and 4 (t,a)= 5 (a)c; (a)j : I\;((t Z )) pi(a,a’)da’, assume that assume that

pi(aa’)=g;(a)5(a) (2)

t,0)=0
);Vi(0,a2) =V, (a)

o
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v, (a)S, (t,a)
5/11(t,a)1/'](t a)
#4 (.0)S, (1.) 1 (e(a)+ ()1, (1,a) u(a)¥(r.a)
a a a A 4 a a Y
b(a)N(t, )S,(I,a (1-¢)4(t.a) S, (t.a) S kL (1, )‘[(,a) L (1, ),J\(/,a Vi (1,a)
v A 'y
4(a)s, (t,a) u(a)L,(t,a) o4 (t,a)J, (1,a) ula)s (ta)
R R I RO NS
by (a) ¥ (1.0) L () [k lea) [
—>{S, (1,a), »1L, (1.a) >, (1.a) /2 (1,a) V (.a
(1 ¢2)A2( ) 2(t>a) Y y y
(e(a)+ s, (a)) Ly (1.a) w(a)?s (ra)
#.% (1,a) S, (1,a)
82, (t,a)V, (t.a)

v2(a)S, (1.a)

Figure 1. Flow chart of the two-patch model for tuberculosis disease transmission.

(see Greenhalgh, 1988 [15] and Dietz Schenzle, 1985 [16]), and
N(t,a)=S,(t,a)+L (ta)+1,(t,a)+J;(t,.a)+V,(t,a)
+S,(t,a)+ L, (ta)+1,(t,a)+J, (t,a)+V, (t,a)

By summing equations of system (1) and (2), we obtain the following equations for
the total population N (t, a) :

(Lo 2N = (0@) - u(@IN (8)- ()L () (2] (1)
N(t,0)= :b(a)N(t,a)da
where b(a)=b(a)+h,(a); a and a, are respectively the minimum and maximum

age of procreation and a, is the maximum age of an individual, with a, <+o.
Let

3)

S (t,a). (t.a)
st =N N (e
| (ta)—rlta

(t,a

a)
Nt ) N

~—
I

~—

(4)

~—

;.Z

\_/

ii(ta)=1

The system (1) can be normalized as the following system:
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+

s,(t,a)=h(a)-[ 4 (t,a)+y,(a)+b(a)- 4 (a)i(t.a)- u, (a)i,(t.a)]s (t.a)

+

L(t.a)=24(ta)[(1-¢)s (t.a)+o ) (t.a)+6v (t.a)|-(k +b(a) - (a)i (t.a) - 1, (a)i, (1, @) (t,a)

J’_

b (ta)=—(r+sm(a)+b(a)- s (a)is(t.a) - ()i, (t.2))i(t.a) + 44 (ta)s (t.a) +kik (t.2)

+

j(ta)=ri(t.a)- (o4 (t,a)+b(a)- s (a)i (t.a)- 1, (a)i, (t.a)) j; (. )

+

~(b(a)+p, + 04 (t.a) - (a)iy (t,a)— 1, (8)i, (t.2))V, (t,2) +y; (@) s, (t,a) + oV, (t@)

<
—
:—P
QD
~
Il

(5)

J’_

s,(t,a)=b,(a)—[ 4 (t.a)+w,(a)+b(a)-x(a)i (t.a)- u,(a)i,(t,a)]s, (t.a)

+

L (ta) = 4 (L) (125, () + 0, (1.2) + 6,3, (1,2)] (K, +b(@) 15 (@) (.2) 11 (2)iy (12)) 1, (,2)

+

i, (t,a)=—(r,+ 11, (a) +b(a)— 1 (a)i (t.a) - 11, ()i, (t,2) )i, (t, @) + 4,4, (t.2)s, (t.2) + k1, (t,a)

+

+
3o 2o 2lo 3o o ®lo Blo 3o o 8o

L W W S S W e R U

7~ N /7 N /77 N /7N /77N /7N TN NN
Qo o o o o 6o o o o o

v, (t' a) = _(b(a) + Py + 0,4, (t' a) —H (a) Iy (t' a) —H (a) I, (t' a))vz (t’ a) TV, (a) S, (t’ a) + oV (t' a)
with boundary conditions
5 (1,0)=A;;v (1,0)=1,(t,0) =i, (t,0) = j; (,0) =0
with A; +A, =1. The problem is well-posedness, the methode of proof is the same
used in [8].
3. Existence of Positive Solutions

In this section we will prove that the system (5) has a unique positive solution, and to
achieve this we will write the system (5) in compact form (abstract Cauchy problem).
10
Consider the Banach space X defined by X =(L1(0, a, )) , endowed with the

norm
2 5
||9”|| = ZZH%‘ “ (6)
i=1j=1
where
2(2)=(9.(2),0,(2),05(2). 0, (2),25(2). 2, (). 0, (3), 0 (2), 2, (2) .05 ()" € X
and "" is the norm of L* (0, a, ) . Let

Q ={(sy,lyiy, Ji Vi, Sp0 ol B Vp ) € X NO S + b+ + Jp, vy +8, + 1+, + J, +v, <1} (7)

10
The state space of system (5), where X, = (Ll+ (0,a, )) ,and L (0,a,) denotes the
positive cone of L (O, a, ) . Let A be a linear operator defined by

(A2)(2) = (A Az Ass A A Ay, Ay A Ay Asg)' - (8)

To determine the components A;, we neglect terms of order two and those which

K2
1886 0:52: Scientific Research Publishing



B. K. A. Wahid, S. Bisso

are not multiplied by s;, I, i, J or v, insystem (5) (see [17]), we obtain:

%il (t,a):—a—iil (t.2)~ (1 + 24 (2)+b(2))i (t.2) + ki (t.2)
0

2t ):_%jl(t,a)+r1i1(t,a)—b(a) i(ta)

vl(t,a)z—%vl(t,a)—(b( )+ o)V (ta)+y, (a)s, (ta)+ pyv, (t,a)

9, (ta) :‘a%sz (t.a)-[w,(a)+b(a)]s, (t.)
0

—l,(ta)= _Elz (t, a)_(kz + b(a))lz (t.a)

ot

s (. a):—%iz (t.)~ (1, + 4 (a) +b())i, (t.a) + Kyl (t,2)

aﬁj (t, a)——%jz (ta)+ i, (t.a)-b(a) j, (t.a)

%vz (t,a)=—a%v2 (t.a)—(b(a)+ 2, )v, (t.2) +1, ()5, (t.a) + oy (t.2).

After replacing s, L, i, j» Vi» S L, iy, j, and v, by ¢,(a), ¢,(a),
2:(2), pu(a), ps(a).en(a), 0n(a), Pu(a), @u(a), @s(a) in the system
(a) respectively, the coordinates of A; are obtained from straight expressions (note
that each
A; :(f ((011)' f ((/’12)' f ((P13)’ f (¢’14)' f ((/’15)! f (‘/’21)1 f ((Pzz)v f ((023)’ f (("24)' f ((st)))

with respect to ¢ are given by:

A, :(0’_ d

agolz—(b(a)+kl)golz,o,o,o,o,o,o,o,oj

q4,
As = ‘/’1( )(plllooo da (p1+b( ))(01510’0’010«/32(/’25j
A, = o,o,o,o,o,—;—a(pﬂ—(V/z(a)+b(a))¢21,o,o,o,oj : ©)

0,0,0,0,0,0,—£¢22—(b(a)+ kz)(pzz,0,0,0)
d
0,0,0,0,0,0,K,¢,,,— 0= -(r, +,u2(a)+b(a))(p23,0,0j

d
0,0,0,0,0,0,0,r,¢,5,— 15 P —b(a)(p24,0j

d
0,0,0,0, o051, (2 )4021,0,0,0,—54025 —(p2 +b(a))(pzsj

(o
(
(
(
( d
-
-
-

With

gD(a) = ((/’11 (a)'("lz (3)74013 (a),(014 (a)v%s (a)vfl’zl (a), 2] (a),(/723 (a),§024 (a),g025 (a))T IS D(A)
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where D(A) is the domain given by:
D(A)={pe X\, €AC[0,3,),0(0)=(4,,0,0,0,0,0,A,,0,0,0,0)'}.

And AC [0, a+) denotes the set of absolutely continuous functions on [O,a+ ) We
also define a nonlinear operator F: X — X by:

b, (a) _((Q1§013)(a))(/’11 + (ﬂl (a) Pt iy (a)(Pza)("n
((Q1(/’13 )(a))((l_ (91)%1 +0Py + 0,05 ) + (/‘1 (a)%s + 4, (a) ¢23)¢12
2] ((Q1¢713 )(a)) Pyt (:ul (a)(”la + i (a)%a)(/’ls
((;11((&)) Pzt My Ea; (023; -0 ((((Q1(/’13 ))((a)))‘Pu
H(8) P+ 1y (8) Py Qei)(a)) s
(F¢)(a) - b, (a) _((Qz%a,)( ))?’21 (ﬂl( )(013 +H ( )%3)?’21 1o
((sz/’zs)(a )((1 (2 )‘/’21 0,0, + 52@25) ( (a) Pz T 1y ( )(/’23)%2
?, ((Qz%s)( ))(021 (ﬂl( )¢13 + i, (a)(/’ )%3
(ﬂl(a)("m +/12( )(023) ( QP (a))("m
(/“1( )¢13 + /Uz (023) Qz%s a)) P2

where Q isabounded linear operator on L' (0,a,) givenby
e

(Qf)(a)=ci(a) 4 (a)g (a)[; () f (') (n
Let
u(t)=(s,(- 1)1 (1), (1), G (1), v (1), 8, (1) hy ()1, (1), Jo (1), v, (1))
thus, we can rewrite the system (5) as an abstract Cauchy problem:
Su(t) = Au(t)+F (u(t)

u(0)=u,

(12)

where

uO (a) = (SOl (a)’ IOl (a)’ iOl (a) ’ jOl (a) ’ vOl (a)’ SOZ (a) ’ I02 (a) ' i02 (a) ’ j02 (a) ' v02 (a))T )

According to these results we have the following results (see [17]-[19]):

Lemma 1. The operator F is continuously Fréchet differentiable on X.

Lemma 2. The operator A generates a C, -semigroup of the bounded linear opera-
tors €* and the space Q is positively invariant by e*.

Theorem 1. For each U, € X, there are a maximal interval of existence [0,t,,, )

and a unique continuous mild solution U (t,u0 ) eX,, te [0 t ) for (12) such that

u(t) =ue™ + j;eA("é)F (u(&))de

Proof. The proof of this theorem can be found in [18]-[20]. O

4. The Disease-Free Steady State

4.1. Determination of the Disease-Free Equilibrium

A steady state (s, (a).l,(a).ii(a), i(a). v (a).s,(a).l,(a).i,(a). . (a) v, (a)) of sys-

1888 0‘ , Scientific Research Publishing
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d
da
d
d—s ,(a)=h,
d,
da

d

d

Fi = IomﬂAi

ajl(a):rlil(a)_(o-lﬂl(a)cl(a)gl(a)rl+b(a)_
91 (2)= s ()5, (2)+ %, (2)~ (3,5, (a)c (2) 8, ()T, +b(a) -

L (a)= £, (a)c, ()0 (a)

~(b(a) +K, ~ 4 (2)i, (a)~ 4 (a)ir (@)1 (2)
S (@) =kl (2) 5 (), (2) 9, ()T, (2) -
(@)= 5 ()~ (251 (2)ca (2) 92 (2)T +b()-
L, (@)= (2)5: ()+ 2 ()~ (95 (a)ca (2) 5 (&), b ()~
(a)i (a)da

tem (5) must satisfy the following time-independent system of ordinary differential eq-

uations:
5. (3)=b.(2)-[ A (2)e: (2)0.(2) T, +va (a) +b(a) - s () (2) - () (), (a)
j—al() Ai(2)e.(2)au (@)1 [(L-4)s. (2) + o (2)+ 3 (2)]
~(b(a)+k ~ 44 ()i (3)- 4 (2)1 (3)) L a)
;_ail(a):klll(a)+¢lﬁl( a)c,(a)g, (a)Tys (a)—[n +b(a)+m(a) - (a)i(a) -1 (a)iy(a) ]i (a)

()i (a)- s, (a)i, (a)) J.(a)

(13)
m(a)iy(a)-u, (a)iy(a)+p,)v (a)
,ul(a)il(a)—,uz(a)iz(a)]sz(a)

T, [(1-¢,)s,(a)+5,, (a)+0,),(a)]

a)-[f,(a)c,(a)g, (a)l, +y,(a)+b(a)-

[r,+b(a

)+, (a)— 4 (2)is (2) - 2, (a)iy (@) Ji, (a)
m(a)iy(a)-p,(a)i, (a)) i (a)
()i (a) =, ()i, (8) + o, )V, (a)

with initial value conditions
5,(0)=A;1(0)=i(0) = ji (0)=v (0) =0.
Therefore, we obtain the disease-free steady state
s (a)=Ae 0t ”’+je Y (n)dn

2 (a) = A, —5) ()i 17 () =17 () = (a) =0

(14)

4.2. Calculation of the Reproduction Numbers 9%(;//) -R,

To study the stability of the disease-free steady state, we denote the perturbations of
system by

)+17(a)
)+il(a) . (15)
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The perturbations satisfy the following equations:

%*Q a)=—[7(1)A(2)a(a) g (a) - m(a)T(ta) - (@) (ta)]s! (a)

S i) = (o(a) k)T (te)
+7.(t) B (a)c, (a) gl(a)[(1_¢1)sf (a)+51v1°(a)J
%*%)W a)=kl(t.a)+44 (a)c (a) 9, (a) 4 (t)s) (a)
(1 () +b(a) () "
%%)m a)=ri(t:2)-b(a); (t.2)
S L) @5 ) 2T (1a) (b)) (1e)
(8,8 (a)c,(a) g, (a) 7 (t) - 4 (a) T (t.a) - 1, (a) T, (t.@))¥/ ()
%?) a)=-[7(t) ()9 (2) - (2)E(t.2)- 1 (2)E (t.2)]s5 (2)
(<> ())szaa)
DR OB

+7:(1) £ (2)e, (2) 8, (a)[ (1=, )53 (2) + 6,v; (a)
§+ 6aji_2 (t, a) = |(2|_2 (t, a)+¢2ﬂ2 (a)cz (a) 92 (3)772 (t)Sg (a)
(5 e (2) () (1)

+%)L(t a)=r,j,(t,a)-b(a)],(t.a)

J5200) v, (205 (12) 2 (1)~ (o, + (@) (1)

~(5,8,(a)c, (a) 9, (a)7, (1) - (a) i (t.2) - 1, (a); (t.2))V2 (a)
7 =5 (a)T(t.a)da

with boundary conditions:
(L0)=1(,0)=T(t0)= 1.(1.0)=7,(1.0) =0
we consider the exponential solutions of system (16) of the form:
5 (ta)=5(a)e”; L (t,a)=1(a)e"
v, (t,a)=v (a)e* . (17)
i(ta)=i(a)e”; g (t.a) =T (a)e"

The system (16) becomes:

1890
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—T(2) =4 (2)c ()9, (a)T, +kk(2) (5 + 4 (2) +b(a) + )i (2)
S T(2)=5i(2)-(bo(2)+ 2) T (a)
1 (8) (1 +b(a)+ ) (2)~ (5T, (2)6 (2)0, (2)- s (A)T() - ()T (@) (@) s ()5 @) 7 (2)
(f—agz(a)?(b(a)“//z(a)”)gz(a)—[fzﬁz(a)cz(a)gz(a)—#l(a)?(a)—ﬂz(a)E(a)]Sg(a)
() =(b(a) +k, + A) T (@) + T () ()9, (2) (1) s () + 5.0 (3)]
(;j—ai_z(a)—¢2ﬂz(a)c2(a)gz(a)l"2+k2I_2(a) (r,+m(a)+b(a)+2)i,(a)
5 (a)-ni(a)-(b(a)+ 2) 2 (a)
(@)= ~(2 +b(a)+ )7, (a) - (5774 ()¢, (2) 8 (2) s (2)E(2) s (A (&) (), (a)5, (2)+ £ )
r, - [ (a)7 (a)ca
with boundary conditions:
5(0)-T(0)=7(0)=1(0)-7(0)-0
Let
N, (a)=(1-¢)s’(a)+5v’ (a)- (19)
From Equation (18), we obtain:
I(a)=T, j e *“”“ﬂi(n)ci(n)gi(n)ww (n)dn (20)
Je‘f T (G )+ T e (g (n)an. @

Hence, by Equations ((20) and (21)) after changing order of integration, we obtain:
T(a)=T, [ " g (e ()0, (n )[qﬁ,s. )4k, () e bt ) da}dn.(zz)

Injecting (22) in the expression of T, and dividing both sides the expression by T,
(since 1:» #0), we get the characteristic equation:

1= [ A @) [ P () ) o, ) s () 4N, ) [ E e a2
Denote the right-hand side of Equation (23) by G(1) ie:

J.e,j 7)1 +2) drﬁi (U)Ci( ) ( )|:¢|S| +k N Ie—l 7)+h -k ) da}dnda (24)

||
'—a

We define the net reproductive number as ®' (y') =G, (0), ie.
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W ()= [} A (a) e P ﬂi(n)ci(n)gi(n)[ﬂS?(n)WiNm(U)I:Gﬂ(”‘(T”“*k‘)d’da}dnda-(25)

We can obtain an expression for R} in a similar way as the derivation of %' (1//)
by considering Equation (1) without vaccination; Ze., by assuming that w; (a)=0 and
neglecting the equation of vaccinated. It can be shown that R} =R’ (0) which is
called the basic reproductive number (when a purely susceptible population is consi-
dered) (see [8]).

= AJ B () e ﬂi(n)ci(n)gi(n)[¢ﬁ.+ki(1—¢.)I,fe’”("‘“)*“’k‘)‘”da}dnda (26)

Let

*J{(y/)zmgx*ﬁi (v;) and R, =mia1xiR‘0.

4.3. Local Stability of the Disease-Free Equilibrium

Theorem 2. The infection-free steady-state (5) is locally asymptotically stable (La.s.) if
iR(t//) <1 and unstable if ‘.R(l//) >1.
Proof. Noticing that

G/(4)<0; lim G;(2)=0; lim G;(4) =+,

A=+ A——0

We know that Equation (23) has a unique negative real solution A" if, and only if,
G (0) <1, hence, R (l//i ) <1 (Also, Equation (23) has a unique positive (zero) real
solution if ' (w;)>1 (R'(y;)=1). To show that A" is the dominant real part of
roots of G;(4),welet A=x+iy be an arbitrary complex solution to Equation (23).
Note that

1=G, (1) =[G (x+iy)| <G, (x)

indicating that R,(4)<A". It follows that the infection-free steady state is La.s. if
R(y) <1, and unstable if R(y)>1. O

In this corollary, we have the three cases of the unstability of the disease free equili-
brium.

Corollary 1. 1) whenever R'(y,)<1 and R*(y,)>1, the disease free is locally
asymptotically stable in the first patch and unstable in the second.

2) whenever R'(y;)>1 and R*(y,)<1, the disease free is unstable in the first
patch and locally asymptotically stable in the second.

3) whenever R* ( )>1 and R? ( )>1, the disease free is unstable in the two
patches.

4.4. Global Stability of the Disease-Free Equilibrium

Since 4 (@) and i (t,a) arebounded, there exists a positive constant R; that satisfies

0<J. Z,u,(r t a+rt, ‘r)d‘r<R *).

Corollary 2. Assume that 1, + 11, (t) < k;, then we have

1892
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(& T g ) (ot a )+ o (- )
+(1_¢|) (t a+7777) I(k+b())df-": ~[2(ri(x) df:l

SA-e’J‘;(b(T)ﬂ”l Jrr| |:¢+k 1 ¢ J'e /‘l +r| | d§:|

Theorem 3. The disease-free equilibrium of system (5) is globally asymptotically sta-
bleif Ry<1 and R, <In [iJ
iRO
Proof. The proof consist to show that
i; (t,a)—>0; Ji (t,a)—>0; I, (t,a)—>0;
s (t.a)—>s’(a) and v (t,a) >A;—s’(a), when t— +oo.
Integrating system (5) along characteristic lines we get
” ZI i a+7,7)dr+kj |dr
)= e TN g e (n) () (-4 m)
x[oji(t-a+n.n)+8v (t-n+an)+(1-4)s (t-a+n,n)]dy a<t

(27)

t a .[ e—j -2 2 i (7 )ii(t—a+r,r)+ri+yi(r))dr

<[ 48, (£) ()9, (£) A (t-a+&)+ki(t-a+£E)]d, a<t >
Injecting (27) in (28), and changing order of integration, we obtain:
L (t2)= J:ef'?zfﬂ’“(”““‘“"’)"’A (1), (1) g, (1) (t-2+)
x{e hla () ¢,s, (t—a+n,n)+k; (oi ji(t—a+n,n)+8v, (t-n+an) -(29)

+(1_¢|) (t a+n, 77) ~Jy(ki+b(z ))df-[ae [2(n+i(z) dg\ﬂ

n

Injecting (29) in 4 (t), and changing order of integration, we obtain:
a, ~ a [? i2:1 4 (7)ij (t-a+7,7)d7
=], A (@) [T e () oy () 4 (-2 )

X|:e_I:(ri+M(r)+b(r))dT¢|Si (t—a+77,77)+ki (Giji (t_a+77177)+§ivi (t_n+a,77) . (30)

+(1-4)s (t—a+mnn)e g kel ))drr () déﬂdnda

n

By using corollary 2, inequality (*) and Fatou’s lemma, we have

lim 4 (t) <efRy Ilmsupﬂ,( ).

t—>+00

Since e%®y <1, = limsup,,, 4 (t)=0 =
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Jlim i (ta)=lim_,, j (t’a):tlirﬂoli (t,a)=0 -
lims (t,a)= s (), lim v, (t,a) =4 -s’(a).
Corollary 3. The disease-free equilibrium is globally asymptotically in:
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L a . 1
1) the first sub-population if R, <1 and 0< L,ul (7)i(t-a+7,7)dr < In[?}

0
Lo 2 a . 1
2) the second sub-population if Ry <1 and 0< J' 1, (7)i,(t—a+7,7)dr <In vl
n
0
For this disease can disappear without any form of intervention, according to these
results we must ensure that there is no new infected and the infectious rate does not

reach a certain spread.

5. Existence of an Endemic State

There exists three endemic steady state of system (5) whenever R(y)>1.

5.1. The First Boundary Endemic Equilibrium

Theorem 4. A boundary endemic equilibrium of the form
£ =(5(a).1"(a). T (a). T (2).% (2),5; (2).0,0,0,%; () whenever '(yy)>1
and R? (1//2) <1. This means that the disease is endemic in the first sub-population
and dies out in the second sub-population.

Proof. The method commonly used to find an endemic steady state for age-structure

models consists of obtaining explicit expressions for a time independent solution of

system (5)

equzz f(a),?(a)ﬁ*(a),r(a»v:(a)s;(a),o,o,o,v;(a)) satisfies the following
257 (a) = by ()[4 (2).(a) 8, (a)T5 +04 (2)+b(a) - ()i (2)]5i (a)
1 (2)= A()a(2) 0 ()T [(1-4)S (2)+ 07 (2)+ o1 (a)]~(b(a) +k 4 (2)T" (2)) " (2)
1 (a) =k (2)+ A (3)6 ()9, (2) T35 (2) [ +b(a) + 44 (2) - ()T (3)]i (a)
ST (@)= (a) (o (a)es (2) o ()T +b(@) -4 ()T (2)) () 6
=0 (2) = ()5 (2) + 27 (2) - (34 (2)cs ()0 (@) +b(a) - ()T () (a)
253 (2) =b, () [ v (2)+b(a) - (2) " ()]s (2)
20 (a) = ()5 (2)+ A% (2)-(b(a) - (3)T (2)% ()
I = [ A ()T (a)da

with the initial conditions:
5 (0)=4A:1(0)=1"(0)=% (0)=],(0)=0.
Let
h(7.T])=(1-4)S (1) + 8% (7)+ 0.3, (n)- (32)

Integrating system (31), we obtain:

K
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. e—fg[fimr)q<r>gl(r)—m(r)ﬁ’<n>+b(n>+m<u)]dn

r (- i (7)+b d (33)
+Iab - Fa-)A () (e () -m(e)F (1)+b(n)+(n)] qdn

()= f;‘[kf(n)+¢1ﬂ1(n)cl(n)gl(n)fzgf(n)]e”i(ﬁ’”l"’ﬁ*“”b( “OFdy (3a)
(3) = IT () e—J:;(al/a(r)q(r)cn(r)m(r)—m(r)a"(r))dr dn (35)
v:(a)=F[%(nﬁ;<n>+pzv;<n>]e*"a("m”W‘(”ﬁ*““)*”m”)d’ 66
L (a) =T [[e M0 >ﬂ1() ()gl< )sl(n)hl(n,f;)dn 37)
§;(a)=A2e”g(“) ~l +-[Bb m()h())drdn (38)
v (@)= ["[v. (n>§;(n)mvf(n)]e*f'?(b‘”*““”“’))"’dn. (39)

By injecting (37) in (34), we obtain:

i (a)=Ti [ 4. ()i (n)0, (n)e”v(ﬁ(’)"“(’)i (o)
g a ~[2(n+sm(7) (40)
X[%i( )+khy (.17 ) [ e dg}dn

Injecting (40) in the expression of T, and dividing by T; (since T, #0)we ob-
tain:

A a [ Tﬁl(TﬁTJrﬁJr Nz
1= [* A (@) [06, (n)ey () g, (e VO em )

* 2 2+ (41)
X[¢1§1( )+khy (.17 ) [ e ale df}dnda
Let H,, the function define by:
I a 5 A Bz )= () (2)+0+14(7))dr
H(F) =7 A @A ()6 (r) (e 1)
(42)

x[czﬁsf( )+k1hl(nF ) [fe ke df}dnda

Since hl(77,0) = NW1 (77) ie. when I:I = 0,§i*(a) = SiO (a) and Vi* (a) = ViO (a) , so the
net reproductive number is given by

H,(0)= R (vy)

Le.
SR J- I - o)tu(r)+n)d 1( )Cl (77)91 (7])|:¢lsf (7])+ klN% (77)J':e’u(/ﬁ(r)ﬁrh)drda}dndal

We now see that an endemic steady state exists if Equation (41) has a positive solution.
Since H,(0)=%®,(,),hence H,(0)>1.Weknow that

5 (a)+h (a)+i (a)+% (a)+ ], (a)=A, <1.Hence
i (a)<1. (43)
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Since T >0, from (42) and (43) we obtain:

*Hl(fz):.[oa+ﬁ1 ,[ rlﬂl (77)eijs(ﬂ(r)iﬂl(T)E*(T)Hﬁﬂl(r))dT
{qﬁﬁf( )+k1n(nr)j"‘ e dé}dnda
<_[ ﬂl da B

In particular, for Ty = 4, we have H (g )<1, but H(0)>1. Since H, is con-

inous function of T, we conclude that H (T;)=1, has a positive solution I on
0; 8" —

. This solution may not be unique since A may not be monotone ( H (Fl) de-
pends on h, (7, T;) which is defined implicitly). It follows that when R () >1,
there exists an endemic steady state distribution which is given by the unique solution

of Equation (41) corresponding to lA"I . g

5.2. The Second Boundary Endemic Equilibrium

Theorem 5. A boundary endemic equilibrium of the form
E, = (_1 (a),0,0,v,"(a),5, (a),1,”(a),;," (a), T, (a),v;(a)) whenever
R (y,) <1 and R?(y,)>1. This means that the disease is dies out in the first sub-

population and is endemic in the second sub-population.

Proof. (1deas of proof)
Ejz(_l (a),0,0,v," (a),5, " (a),1,” (a),f*(a),Tz"(a),\T:(a)) satisfies the following
equations:
=57 (3) =B (2)~[ 14 ()+b(a) 44 (a)1 (2) 5" (3)
0 (@) =9 ()5 ()+ 2% (3)-(b(a) - (2) 7 (2)) %" (a)
;—aﬁ*(a):bz(a)—[ﬁz( )¢, (2) 9, (a)T5 +v, (a)+b(a) -, (a)L," (a)]s; (a)
;—al_z**(a):ﬂz(a)c( )9.(a) [(1 )5, (a)+6Y, (a)+0,);" (a )]—(b(a)+k2—,uz(a)lz**(a)) ;" (a) (44)
;—a?*(a):kzg**(a)wzﬁz( )¢, (2) 9, (a)T35; (a)=[ 1, +b(a)+ s, (a) - 4, ()" (a) |5 (a)
;—a?*(a)ﬂz?*(a) (025, (a)c,(a) g, (a)T" +b(a)~ w1, (2) " (2)) T, (a)
;_avz (a)=v.(a)s;" (a)+ p.¥;" (a) (5 B, (a)c,(a)g, (a)r; +b(a)- yz(a)lz**(a))vz*(a)
I, = f: 3,(a);,” (a)da
with the initial conditions:
7 (0)=A (0= (0)=7" (0)= I (0) =0, (s)
Let
h, (7.7 ) =(1-4,)5," (n)+5,% (n)+,3," (n)- (46)
Integrating system (51), we obtain:
ﬁﬁ(a):Ale*fg(%(f) 127 ( Jab 7)-tn(r )hﬂ(T))dfdn (47)
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vl** (a) _ J:[l//z (n)gz** (77) n plvl** (77)] e*f,,(b(r)*m(f)i (r))drdn (48)

5" (a)= Aze-;g[Fzﬂz<r>c2<r>g2(r)-uz<r>fz’*<n>+b<n>+wz<n>]dn

af - (49)
+J-Oab(n)e-§”[r2 (1-02) B2 (7)c (7) 92 ()12 ()5 (r)+b(r)+y/2(r)]drd

n
T (a) = [C [k (1) + 8.8, (1), (1) 8 () ESss” () e P07 0l 5

JT; (a) _ J.ai_z** (’7)efj:(azﬂz(T)Cz(r)gz(r)li?+b(r)fy2(‘r)i72**(r))dr dn 51)
v (a)=fa[l//z(ﬂ)gz**(n)wﬁf*(77)]eff'?(aﬁcz(T)QZ(T)/}Z(TW+b(7)7”2(7)7;(r))dr (52)

L (a) =T [le MO e, () g, (S () (0T ). (53)

Hence, by the similar method using in theorem 4, we obtain the result. g

5.3. The Interior Endemic Equilibrium

Theorem 6. An interior endemic equilibrium of the form

~ (s1(a).1 (). (a). § (2).¥: (a).53 (2). 1 (a). (a). i (2).¥; (a)
whenever R' (l//l) >1 and R* (1//2) >1, which corresponds to case when the disease
persists in the two sub-populations.

Proof E" - (Sf (a).; (a).i; (a), j; (a),v; (a),s, (a),1; (a),i; (@), i5 (@), v, (a)) sa-
tisties the following equations:

95 (a)= b (2)~[ A, (a)ei () 8, ()15 +y4 (2) +b(a) - (2)i; (a) - 1, (a)i; (a) ]s; (a)

da
d

S @=A () (@) e (@ri[(1-4)s] (2)+6v; () +ou); () |=(b(a) +k — 4 (a)i; () - 1 (2)i; (2)) 1] ()

d

b (@) =kl (2)+ 4/, (2)e () 0, ()T3s; (2) [ 1 +b(a) + 4 (2) - 4 ()i (2) - 1 (a) s (2) ] (2)

d

5 1 (@)=1i (3)~ (0 (a)c(a) . (a)T +b(a) ~ 4 (a)ir () - 1 (a)is (2)) i (a)

;—an(a)=‘/'1(a)Sf(a)+PzV§( )-(8.8.(a)e.(a) 6, (a)T; +b(a) - ()i (a) - 1, (a)i; (a) + o, )V (a) (54)
dd_asz(a [ﬂz (a)g,(a )Fz+y/2(a)+b(a)—,t11(a)if(a)—y2(a)iz(a)Jsz(a)

dda (a)=£.(a)c, (a )gz(a)rz[(1_¢2)S;(a)+§2VZ(a)+sz;(a)J_(b(a)+k2_ﬁﬁ(a)il*(a)_:“z(a)i;(a))IZ(a)
d

—i; (a)=k,l; (a)+¢,5,(a)c,(a) g, (a)T3s; (a)—[r2 +b(a)+ 1, (a)—m(a)i; (a)—u, (a)i; (a)}i; (a)

da
d

4 (@)= Li; (a) = (02 (a)c, () 9, () T; +b(a) - 4 (a)i; () - 4, (a)i; (2)) J; (2)
S a) v ()5 a) ] (3) (0,5 ()¢, (2)5 (3) +b(8) e (a) (&) s ()1 ()0, 2
r; :j‘oa*,éi (a)i’ (a)da
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with the initial conditions:

$(0)=As §(0)=i (0)=; (0) =/ (0)=0 (55)

5 (a)=A, o oA () (Dar ()" +b(e)sm () () (i) Jae
+[%,(n) e*f,?[ﬂu(T)Cu(f)gu(T)r*+b(f)*ﬂl(f)i1*(7)*ﬂz(’)iz(f)]d’d77. 56)

Let

W (7.07)=(1—4)s (7)+V, (n)+0oiJ (1) (57)
(@) =T 8 (n)c ()6, ()1 (.1 Je M AR OO0, g
¢<®=L1hw0ﬂ+¢m(mq(mgmmrsmnﬂéﬂw*““”“““>” RRAETNCD
_r f (e (D)ai(ai(z )r?m(r)—m(r)il*(r)—yz(r)i;w))drdn (60)

V; (a) — J.Oa('//l (77)51* (77) n ,DQV; (77))e*f,,(éﬂl(r)%(r)%(r)n+b(r)fyl(r)l1( y-ta(7 ) dn  (61)

V; (a) _ J-Oa(l//2 (7])5* (7])+p1V: (77))e-J,i(cfzﬁz(r)Cz(r)gz(r)F +b(c)=a (0)i] (7)-412 (7)iz ) dn. (62)
By injecting (58) in (59), we obtain:

a=ﬁﬁamnmmgwkﬁ“*ﬂﬁmwm%““ﬁw

a j i+ (63)
{qﬁ,s:(n)wih(nr )j e dé}dn

By injecting (63) in the expression of T, and dividing by T’} (since T #0) we
obtain:

1=PB@MVMmcwmxméW“”““”“%““““
0 1 0 1 1 1

. (64)
x[cﬁ.s:‘(n)+kihi(n,r?)j s df}dnda
Let H,, the function define by:
H (F?) _ .[o /(a) ,[o B.(n)c, () () o Wb (O (2) Y () (7)o -
65

X|:¢|Si* (n)+kh, (7.1 ?)J,,ae_jg(w(r)_ki)drdf}dnda-

Since h (7,0)=N, (7) ie. when I} =0,5(a)=s’(a)andy; (a)=V/(a), so the

net reproductive number is given by
H,;(0)=%R"(v;), ie

:J‘Oﬁuléi (a)J':eff,?(b(r)Wi(r)Hi)drﬂi (77)Ci( ) ( )|:¢ISI +kN J'a =[7(i(7)+r-k; ) da}dnda

We now see that an endemic steady state exists if Equation (64) has a positive solu-
tion. Since
H, (0)=%R'(y;),hence H,(0)>1. Weknow that
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s;(a)+1l; (a)+i; (a)+V; (a)+ j (a)=A; <1.Hence
i (a)<1 (66)

Since T T >0, from (65) and (66) we obtain:

*

FH ()= ) A @[T (n)e () (e 11l
| ek () T 0 e
< J':,B, (a)da=g3".

In particular, for T =4, we have H,(')<1, but H;(0)>1. Since H; is con-
tinous function of T, we conclude that H (FT) =1, has a positive solution lA“I* on
o;87] - This solution may not be unique since H; may not be monotone (H (I7)
depends on h(;;,ri*) which is defined implicitly). It follows that when R'(y;)>1,
there exists an endemic steady state distribution which is given by the unique solution
of Equation (64) corresponding to fl* . O

5.4. Simulation

In this section, when ®'(y,)>1 and R*(y,)>1 we will evaluate the impact of
BCG vaccine and the birth rate of the population in the dynamics of spread of TB. As-
suming that all parameters are the same in both patches except the vaccine rate, we ob-
serve an increase in the number of infected if the vaccination rate decreases (Figure 2).
Also taking the same parameters except birth rates, we see an increased number of in-
fected if the rate increases (Figure 3).

fraction of latents individuals

0.20
0.15|
(2]
2
E
©
S 0.10}
c
S
=
-
>
()
0.05}
— L1
0.005 10 20 30 20 50 )

age

Figure 2. Evolution of the number of latents individuals with ,(a)=0.462 and w,(a)=0.365.
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Figure 3. Evolution of the number of latents individuals with b;(a)=0.0461 and b,(a)=0.0318.

—

Figure 4. Evolution of the number of infectious individuals when: ®'(,)=0.572 and
R*(,)=0435 (y,=0852 and y,=0.785).

When ®'(y,)=0572 and R’(y,)=0.435 (y,=0.852 and y, =0.785), we

have the evolution of the number of infectious individuals (Figure 4).

6. Discussion, Conclusion and Future Work

In this paper, an age structured model of two-patch for tuberculosis was analyzed and
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discussed. Each sub-population is subjected to a vaccination program. Apart from age;
the vaccinated compartment, we introduced as a class of treated in the model proposed
by Tewa J. Jules in [11] and allowed the migration of vaccinated population. The same
result was found if the most susceptible migrated too. Although some studies have
shown an ineffectiveness of BCG in the prevention of tuberculosis [21], our work
demonstrated the contribution of BCG in the process of eradicating TB. The negative
impact of the increase in the birth rate was shown. If we neglect the mortality death rate
linked to the disease, we obtain the only usual condition of global stability to the disease
free equilibrium Ze. R, <1. It remains for us many challenges such as the endemic
equilibrium points of this model and the one of [8] to deal with. For future work, in
order to study the real impact of the tuberculosis migration in the dynamic of the ex-
pansion of the disease, we will use this model and authorize the migration of all indi-

viduals (Z.e. susceptible, infected, infectious, vaccinated and treated).
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