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Abstract 
We study the coupled mKdV equation by the dressing method via local Riemann- 
Hilbert problem. With the help of the Lax pairs, we obtain the matrix Riemann- 
Hilbert problem with zeros. The explicit solutions for the coupled mKdV equation 
are derived with the aid of the regularization of the Riemann-Hilbert problem. 
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1. Introduction 

The coupled mKdV equation  
6 0
6 0

t xxx x

t xxx x

u u uvu
v v uvv
− + =

− + =
                         (1) 

is an important member of the AKNS hierarchy [1]. Moreover, it has various applica-
tions in mathematical and physical fields. In [2], Prof. Geng has given its quasi-periodic 
solution by using algebra-geometric methods. The equation can be solved by the me-
thod of the inverse scattering transformation, Hirota direct method, Lax pairs nonli-
nearization approach and others [3]-[6]. There are a lot of references for the topic [7]- 
[14]. 

In this paper, we study the Equation (1) with the help of the Riemann-Hilbert me-
thod following [15] [16]. The present paper is organized as follows. In section 2, we give 
the Jost solution of the spectral equation. In section 3, we discuss the analytic property 
of the Jost solution. In section 4, we give the Matrix Riemann-Hilbert Problem. In sec-
tion 5, we obtain the soliton-solution of the coupled KdV Equation (2), and we drop 
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the curve of the solutions with the aid of the Matlab. 

2. Jost Solution 

First, we consider the coupled KdV equation 
6 ,
6 .

t xxx x

t xxx x

u u uvu
v v uvv
= −

= −
                          (2) 

As is well known [2], the Equation (2) can be derived as the compatibility of the sys-
tem  

, ,x tU VΨ = Ψ Ψ = Ψ                         (3) 

where the 2 × 2 matrices U and V of the form  

3

01 ,
02
u

U ik Q Q
v

σ
 

= − + =  
 

                    (4) 

3 2 2 3
3 3

1 2
2 xx x xV ik k Q ikQ Q QQ Q Q Qσ σ= − − + + − −             (5) 

where k is an arbitrary constant spectral parameter. 
When 0, 0u v= = , we obtain the special solution of Equation (3). For convenience, 

we denote the special solution as 3
1exp
2

F ikxσ = − 
 

. Then, the spectral Equation (3) 

is transformed into  

[ ]3
1 , ,
2xH ik H QHσ= − +                        (6) 

where, 1H F −= Ψ . 
In what follows, we study the Jost solutions ( ),H x k±  of the Equation (6) satisfying 

the asymptotic conditions H I± → , at x → ±∞ . Since 0trU = , these boundary con-
ditions guarantee that det 1H± =  for all x. 

In fact, the Jost functions H±  are not mutually independent. They are intercon-
nected by the scattering matrix ( )S k :  

( ) ( ) ( )
( ) ( ) ( )1, ,det 1.

a k b k
H H FSF S k S k

b k a k
−

− +

 −
= = =  

 
            (7) 

3. Analysis Solutions 

Let us rewrite the spectral Equation (6) with the boundary conditions in the integral 
form:  

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )
11 21

21 11

, , d ,

, , exp d ,

x

x

H x k I u H k

H x k v H k ik x

ξ ξ ξ

ξ ξ ξ ξ

− −−∞

− −−∞

= +

= −  

∫

∫
           (8) 

for the first column entries of the Jost matrix H− . 
It is easy to know that the exponent in (8) decreases for 0Imk > . The first column 
[ ]1H−  of the matrix H−  is analytic in the upper half plane and continuous on the real 

axis 0Imk = . Similarly, we know that the second column [ ]2H+  of the matrix H+  is 
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analytic as well in the same domain. Then, we give a solution of Equation (6):  

( ) [ ] [ ]( )1 2, , .x k H H+ − +Ω =
 

It can see that it is analytic as a whole in the upper half plane. 
The analytic solution ( ),x k+Ω  can be expressed in terms of the Jost function. In 

view of (7), we derive  

[ ] [ ]( ) [ ] ( ) [ ] [ ]( ) [ ] [ ]( ) ( )
( )

1 2 1 2 2 1 2 0
, e , ,

e 1
ikx

ikx

a k
H H aH b k H H H H

b k+ − + + + + + +

 
Ω = = + =  

 
   (9) 

with  

( )
( )

0
.

1
a k

S
b k+

 
=  
 

                         (10) 

In the same way,  

( )
( )

1 1
, , .

0
b k

H FS F S S SS
a k

−
+ − − − + −

 
Ω = = =  

 
             (11) 

It follows from the above formal as that  

( ) ( )det , .x k a k+Ω =                         (12) 

In what follows, we define a function ( ) ( )1 , ,x k x k− +
− +Ω = Ω  . It is obvious that  

( )[ ]
( )[ ]

1
11
1
2

.
H

H

−
−

−
− −

+

 
 Ω =   
   

Then, ( )1 ,x k−
−Ω  is a solution of the adjoint spectral problem. On the real axis  

( ) ( )1 1 1 1 1, , ,x k x k FS F H FS F H− + + − − + − −
− + + + − −Ω = Ω = =

 
and ( ) ( )1det ,x k a k−

−Ω =  , ( ),x k+Ω  has an asymptotic expansion as follows:  

( ) ( ) ( )1
2

1 1, ,x k I x O
k k+ +

 Ω = + Ω +  
 

                  (13) 

and substitute it into the spectral Equation (6). Comparing with powers of k, we derive  

( )1
3 , .Q i σ +

 = Ω                            (14) 

In order to solve the coupled KdV Equation (2), we should find the analytic solution 

+Ω .  

4. Matrix RH Problem  

Through tedious calculation, we obtain RH problem  

( ) ( ) ( )1 1
0 0

1
, , , ,

1
b

x k x k F k F S S
a

− −
− + + +

 
Ω Ω = Λ Λ = =  

 
†          (15) 

with 2 2 1a b+ = , 0Imk = . 
It is easy to know that ( ) ( )1 , ,x k x k−

− +Ω Ω  only depends on k, the x-dependence 
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being given by the simple exponential function F. Moreover, it is obvious that  
( ),x k F+Ω →  for k →∞ , in view of (12). 

In order to obtain the soliton solution of the coupled KdV equation, we suppose that 
the zeros of ( )a k  and ( )a k  are simple and finite number. We know that determi-
nants of the matrices +Ω  and 1−

−Ω  are given by ( )a k  and ( )a k . We assume that  

( )det 0, 0, 1, 2, , ,j jk Imk j N+Ω = > = 

 

( )1det 0, 0, 1, 2, , .j lk Imk l N−
−Ω = < = 



 
In this case, the RH problem (15) with zeros can be solved in view of its regulation. 
To obtain the relevant regular problem, let us introduce a rational matrix function  

1 , ,j jj j
j j j

j j j

Y Yk k
I

k k Y Y
χ− −

= + ϒ ϒ =
−



 
where the eigenvector jY  solves ( ) 0j jk Y+Ω = . 

Here jϒ  is the rank 1 projector 2
j jϒ = ϒ , and j jY Y

+
= . 

In view of (11), we know that ( )( )det 0jk k k+Ω − =  near the point jk . We obtain 

( )1det 0jχ
−

+Ω ≠  at the point jk . The matrix function 1−
−Ω  will be regularized by the 

rational function  

,l l
l l

l

k kI
k k

χ −
= − ϒ

−





 
it is easy to know that the matrix 1

lχ
−
−Ω  has no zeros in lk . 

The regularization of all the other zeros is performed similarly, and eventually we 
obtain the following representation for the analytic solutions:  

1 1, ,N Nω χ χ χ± ± −Ω = Γ Γ =                      (16) 

where the rational matrix function ( ),x kΓ  accumulates all zeros of the RH problem, 
while the matrix functions ω±  solve the regular RH problem (without zeros)  

( ) ( ) ( ) ( ) ( )1 1 1
0, , , , ,x k x k x k F k F x kω ω− − −

− + = Γ Λ Γ             (17) 

with ( )0 k IΛ = , thus ( ),x k+Ω = Γ . 
The matrix Γ  will be called the dressing factor. It follows from (16) that the asymp-

totic expansion for the dressing factor is written as  

( ) ( ) ( )1
2

1 1, .x k I x O
k k

 Γ = + Γ +  
 

                   (18) 

We note that the dress matrix ( )kΓ  can be written as  

( ) 1 1
1

1

1

1 1

,

N N
N

N

N
l

l l
l

k k k kk I I
k k k k

k kI x y
k k=

   − −
Γ = − ϒ − ϒ   

− −  
−

= −
−

∑

 



 





 

( )1 1 1
1

1

N N
N

N

k k k kk I I
k k k k

−    − −
Γ = + ϒ + ϒ    − −  

 



 

              (19) 
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1
.

N
l l

l l
l l

k k
I y x

k k=

−
= +

−
∑





                       (20) 

Thus, we derived 2N  vectors jx  and jy  instead of N vectors jY . It is ob-
vious that ( ) ( )1k k I−Γ Γ =  at the point jk k= . To avoid divergence at jk k→ , we 
should pose ( ) 0j j jk y xΓ = , that is  

0.l l
l l j j

j l

k k
I y x y x

k k

 −
− =  − 





                   (21) 

We note that the matrix ( )kΓ  can be decomposed into the following form:  

( ) ( )1

, 1

1 , ,
N

ljjlj l l j l

l j
k I j l

k k k k
−

=

Γ = − =
− −

∑
 

               (22) 

where 1
lj l j

j l

y y
k k

= =
− 

  . Similarly,  

( ) ( )1

, 1

1 ,
N

jlj l j

k I j l
k k

−

=

Γ = −
−∑                    (23) 

where jj y≡ . In what follows, we rewrite (13) as  
( ) ( )1

3 , .Q i xσ = Γ                           (24) 

Let us differentiate the equation ( ) 0jk j+Ω =  in x, and in view of (6), we derive  

( ) ( ) ( ) ( ), , , , 0,
2

j
x j j j jx x

k
x k j x k j i x k j x k j+ + + +∂ Ω + Ω = Ω +Ω =

 
thus, we have  

3
1 .
2 jxj ik jσ= −                         (25) 

In the same way, we obtain the evolutionary equation  

2
3

1 .
2 jtj ik jσ=                          (26) 

In this end, we establish explicitly the vector j  as  

2
3 0

1 1exp ,
2 2j jj i k x i k t jσ  = − +    

                 (27) 

where 0j  is a vector integration constant. 
Similarly, according to ( )1 0jj k−

−Ω =

 , we obtain the solution  

2
3 0

1 1exp ,
2 2j jj i k x i k t jσ  = − +    
 

                   (28) 

where 0j  is a vector integration constant.  

5. One Soliton Solution 

We consider the case 1N =  and pose 1k iξ η= + , 1k iξ η= + 

 . Then, we have  
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( )

( )

12 2

22 2

1exp
2 22

1 ,
1exp

2 22

x x i x t p
t

x x i x t p
t

η ξ ξη
ξ η

η ξ ξη
ξ η

  + + − +  −   
=  

  − − − − +  −   

           (29) 

where, 1 2,p p  are components of the constant vector 01 .  

( )

( )

12 2

22 2

1exp
2 22

1 ,
1exp

2 22

x x i x t p
t

x x i x t p
t

η ξ ξη
ξ η

η ξ ξη
ξ η

  
+ + − +  

−  
=  

  − − − − +   −   







 













 





           (30) 

where, 1 2,p p   are components of the constant vector 01 . 
The dress formula (19) reduced to  

( ) ( ) ( ) ( )1 1
12 21, .u i x v i x= Γ = − Γ                      (31) 

At the same time, we have 1 1
1

1

k kI
k k
−

Γ = − ϒ
−





, from which, we obtain  

( ) ( )1
1 1

1 1
i η ηΓ = − +







.                       (32) 

Denoting ( )2 2z x tη ξ η α= + − + , ( )2x tκ ξ η β= − + + , thus  

exp
21 exp .

2 exp
2

z i
i

z i

ϕ
α β

ϕ

+ 
 + = −    +   − 
 

                  (33) 

In the same way, defining ( )2 2z x tη ξ η α= + − +

  
 , ( )2x tϕ ξ η β= − + + 

  , thus  

exp
21 exp .

2 exp
2

z i
i

z i

ϕ
α β

ϕ

+ 
  +

= −    +   − 
 











                  (34) 

Substituting (31) and (32) into (30), we have  

exp exp
2 21 1 exp .

2 exp exp
2 2

z z i i

i i z z

ϕ ϕ
α α

ϕ ϕ

+ + 
 + = −    + +  − − 
 









 

Moreover, ( )1 1 exp exp exp
2

z zα α+ = − + − 
 



 , hence,  

( ) ( )
( )

( )
( )1

exp exp
2 sec .

exp exp
2

z z i
i z z

z zi

ϕ ϕ
η η

ϕ ϕ

+ + 
Γ = − + + 

+ − + − 
 












 
From which, we have the solutions of the coupled KdV Equation (2)  
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( ) ( ) ( ) ( )e sec , e sec .i iu z z v z zϕ ϕ ϕ ϕη η η η+ − += + + = − + + 

 
           (35) 

Here, ξ , ξ , η  and η  determine the soliton velocity and amplitude, respectively, 
while α , β , α  and β  give the initial position and phase of the soliton. In what 
follows, we plot the graph for ( ),u x t  in order to analyze the solutions (35). Figure 1 
and Figure 2 are the imaginary part and real part of ( ),u x t , respectively. From the 
two solution curves, we can see that the difference between the real and imaginary part.  

In the same way, we drop the solution curves of v for Figure 3 and Figure 4.  
 

 
Figure 1. The soliton solution curve of imaginary part of ( ),u x t  for 0.01η = , 0.5η = ,

0.05ξ = , 0.07ξ = , 0.2α = , 0.4α = , 0.6β = , 0.9β = , [ ]2,2x∈ − , [ ]6,6t∈ − . 

 

 
Figure 2. The soliton solution curve of real part of ( ),u x t  for 0.01η = , 0.5η = , 0.05ξ = , 

0.07ξ = , 0.2α = , 0.4α = , 0.6β = , 0.9β = , [ ]2,2x∈ − , [ ]6,6t∈ − . 
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Figure 3. The soliton solution curve of imaginary part of ( ),v x t  for 0.01η = , 0.5η = , 

0.05ξ = , 0.07ξ = , 0.2α = , 0.4α = , 0.6β = , 0.9β = , [ ]2,2x∈ − , [ ]6,6t∈ − . 

 

 
Figure 4. The soliton solution curve of real part of ( ),v x t  for 0.01η = , 0.5η = , 0.05ξ = , 

0.07ξ = , 0.2α = , 0.4α = , 0.6β = , 0.9β = , [ ]2,2x∈ − , [ ]6,6t∈ − . 

 
From the graphs, it is shown that u and v have the similar solution form. The differ-

ence exists between the real and imaginary part. In fact, we chose different parameters, 
and the solution curves between the real part and imaginary part had corresponding 
changes. 
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