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http://creativecommons.org/licenses/by/4.0/ This article is concerned with the oscillation and the asymptotic behavior of solutions

of the third-order neutral delay differential equations with deviating argument of the

form

(r(t)[z”(t)]“ ) +j:q(t,§)x“ (9(t,&))dé=0,t=t, (E)

where z(t)= x(t)+I:p(t,n)x(r(t,n))dn. We assume that:

(H) reC([ty,®),(0,%)); p.,zeC([ty,)x[ab],R); a,9eC([ty,)x[c.d],R),
a is a quotient of odd positive integers, 0< I:p(t,n)dn <p<l, z(tp)<t,
g(t.&)<t, lim_, z(t,p)=lim__ g(t,&)=c and q(t,&)>0.

A function X(t) e C([t,,)),t, 2t, is called a solution of (E), if it has the properties
Z(t) eC? ([tx,oo)), Z'(t) eC! ([tx,oo)), r(t)[z”(t)}a eCt ([tX,OO)) and satisfies (E) on
[t,,). We consider only those solutions X(t) of (E) which satisfy
Sup{|X(t)| it ZT} >0 forall T>t,. We assume that (E) possesses such solution. A

solution of (E) is called oscillatory if it has arbitrarily large zeros on [t,,0); otherwise,
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it is called nonoscillatory.

In the recent years, great attention in the oscillation theory has been devoted to the os-
cillatory and asymptotic properties of the third-order differential equations (see [1]-[14]).
Baculikova et al. [2] [3], Dzurina et al [4] and Mihalikova et al [11] studied the oscilla-
tion of the third-order nonlinear differential equation

!

[r(t){(x(t)+ p(t)x(,(t)))"TJ +q(t) f (x(g (t))) =0,t>t,,

under the condition

p e (s)=oo.

fo

Li et al [10] considered the oscillation of

’

{rz (t){n(t)(X(t)+ p(t)X(T(t)))'}’] +a(t)x(g(1)=0,t=t,

under the assumption

j::rl‘l(s) o and f;orz‘l(s) <o,

The aim of this paper is to discuss asymptotic behavior of solutions of class of third

order neutral delay differential Equation (E) under the condition
®© 1o
_[to r(s) <. (1)

By using Riccati transformation technique, we established sufficient conditions
which insure that solution of class of third order neutral delay differential equation is
oscillatory or tends to zero. The results of this study extend and generalize the previous

results.

2. Main Results

In this section, we will establish some new oscillation criteria for solutions of (E).
Theorem 2.1. Assume that conditions (1) and (H) are satisfied. If for some function
peC! ([to ,0),(0, OO)), for all sufficiently large t, >t, andfor t;>t, >t;, onehas

1 r(s)(p(s)”

ds = oo, 2
(a+l)a+l pa (S) S ( )

!mesupjt; [p(s)q* (s)(l_ p)a G (s) _
where

LZ(S'C)( t:r_ﬂl’(u)dquv d
G(s)= ' (s)=J a(s £)d¢, (3)

and
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1

j:j { Hq 5, & dgds} dudv = co. (4)
If
limsu -t)" - 1 ! JdS:oo (5)
fim pf[ (s)(1-p)* (9(s.c)-t) PR 5
where
5(t)=[~—ds, (6)
re(s)

then every solution X(t) of (E) is either oscillatory or converges to zero as t — oo,
Proof. Assume that x(t) is a positive solution of (E). Based on the condition (1),

there exist three possible cases
M 2(t)>0.2(1)>0.2'(t)>0,(r()[ ()]
@) 2(t)>0,7(1)<0,2'(t ,(r CECINE:
®) z(t)>o,z'<t>>o,z"<t><o,(r<t)[z"(t>]“)' <0,

for t>t, t islarge enough. We consider each of three cases separately. Suppose first
that z(t) has the property (1). We define the function @(t) by

A FE )
w(t)=p(t) (z'(t))a . (7)
()>0 we have

t, )df]

I/\

0;

I/\

Then, (t)>0 for t>t1 Usmg z
b

>7 _[ p(t,n )d?]

“p(ty
(

() (v(t.b) thﬂ
)-

a (8)
>(1-p)z(t
Since
2 (t)> ( S)[f )] ) ds>(r(t)[z"(t)]“)“ I, 31 ds,
re(s) re(s)
we have that
L U S ©)

Thus, we get

0
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(10)

It follows from (E), (7) and (8) that

o <-p(Oat ez py LT

that is

1 e

+ (a +1)a+l o° (t)

Integrating the last inequality from t,(>t,) to £ we get

oft)2 (/| p(5)a (5)a- p) 6 (5)-— r(s)(”'(s))aﬂ}ds. )

(a+1)""  p()
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which contradicts (2). Assume now that z(t) has the property (2). Using the similar
proof ([1], Lemma 2), we can get lim_, X ( )= 0 due to condition (4). Thirdly, as-

sume that 7(t) has the property (3). From (r(t)[2'(t)] ) <0, r(®)[2"(1)]" is de-
creasing. Thus we get
s)2'(s)]" <r(t)[2'(1)]" s =t =t
Dividing the above inequality by r (s) and integrating it from tto / we obtain
Z(<z'(t +r“ 2'( fr“
Letting | — o0, we get

0<z( +r“ 2'( Ir_;

that is
1

re t 1

j re(s)ds <1. (12)
Define function y by
r(t)(z" (1))

W(t):M,tzg. (13)

(z'(t)

Then w(t)<0 for t>t. Hence, by (12) and (13), we obtain

1

-S5(t)w* (t)<1. (14)

Differentiating (13), we get
ORI NECI
(z () ()™

Using z'(t)>0, we have (8). From (E) and (8), we have

y'(t)=

v'(t)<-[ q(t.&)dé (1~ p)° M ()(i,ét)r- (15)

In view of (3), we see that

z(t) = z'(t)(t-t,). (16)
Hence,
2(t) ) .
((t—mj“)
which implies that
2(9(t0)) . (9(t)-t)
(0 () o

1784

0‘ , Scientific Research Publishing



E. M. Elabbasy et al.

By (13) and (15)-(17), we get
1 a+l

t)<-[‘a(t.£)ds (- p) (g(tc)-t) —ar « (t)y « (1).

Multiplying the last inequality by &(t) and integrating from t,(>t,) to £ we ob-

tain
02y (1)5(t)-w ()8 (t,)+ ] 5(s)a"(s) (- p)" (9 (s.¢)-t,)" s
. tat//%ﬂ(s)5(s) . tw s
Itz é d .[tz I’(S) ds,
re(s)
which follows that
t « a 1 1
+ 2 ,) 2 s)q (s)(1- s,C)— - = ~ ds,
Lo (1)o(t) L{&( I €0 504
which contradicts (5). This completes the proof. ]

3. Examples

The following examples illustrate applications of our result in this paper.
Example 3.1. For t>1 and A>0, consider the third-order differential equation

Ltg [x(t)+ I:plx(%jdn]" J + J‘:%gx(t ~&)dé=0. (18)

t3

~

Let p(t)=1 a=1, a=0, b=1 c¢=0, d=1 r(t)=t3, p(t,n)=p, such

that osj;pldng p<1, T(t,n)=%, q(t,&)= 2/15/t3 g(t,&)=t—¢. Note that,

1 4 1
I:rfg (s)ds= J'lwsfgds =3<o0,5(t)=3t ¢,

and

J'lw.[fuig J.:OJ': 2/155 dé&dsdudv = .
53

Furthermore

limsu s)(1-p)* G(s)- s
t—>oo p.[ ( )( p) ( ) (a+l)a+1 pa (S)
5 2
= 3
= limsup (1 p S 3 w ds = oo,
t—wo S,E ti,g

2

1
such that q'(S), G(s) are definedasin (3)and S =6t, °t, —9t3,
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(e (3(s)r ()
_ IimsupLZ(M(l— p)sz(s—tl)—isl]ds —

Ilmsupj' [ q'(s)(1-p)* (g (t.c)-t,) - ! L st

t—0 12
Using our result, every solution of (18) is either oscillatory or converges to zero as
t—>ow if 1>1/36(1-p).
Example 3.2. For t>1 and u>0, consider the third-order differential equation

t° {[x(tﬁf%x(%)dnj ] +J.;2?ﬂt’2§x3 (t—g)dfzo. (19)

Let p(t)=1 a=3, a=1 b=2 ¢=0, d=1 r(t):t5, p(t,n):tn—1 such
+

that Osj.lz(n/(t+1))d77£%<l, r(ty)=(t+n)/2, q(t,f):%ut_zf,
g(t,;‘)z(t—gj. Note that,

> 3 3.2
s)ds=Ls 3dS=E<oo,5(t)=—t 3

fo

and

1 [ 2 s s

Furthermore

N * . 1 () (s)”
!Lrgsupftg[p@)q ()=p) 6 ()~ ey st

1 2 3
L t u - 955—3'[1_§S+ﬁ
R Tl e

S —

2 1

such that q"(s), G(s) are defined asin (3)and A =3t 3t, - 9t,

!Lrgsup_[ [ q’(s)(1-p)" (9 (t’c)_ti)a - (a +11)a+1 (5(5)1(5))01 ]ds

2 1
— I _ 3 = —13 d —
tl—m SUpI (128 (S tl) 864 5=

Using our result, every solution of (19) is either oscillatory or converges to zero as

t—>ow if A1>0 forsome HE(O,%).

Example 3.3. For t>1 and y >0, consider the third-order differential equation

1786
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t4(x(t)+J'12%X(t—77)d77J +J':3—;/§X(t)d§=0. (20)
te

5

Let p(t)=1 a=1 a=1, b=2 ¢=0, d=1, r(t)ztz, p(t,n):% such that

7
Off;%d’?%d' (tn)=t-n, q(t,§)=3y§/t1, g(t,&)=t. Note that,

1 5 1
r e (s)ds = jlwsjds =4<o0,5(t)=4t 4,

fo
and
NN X (2275 dedsdudy = e,
254

Furthermore

limsup [ p(s)a (s)(L- p)* G(s)-

(a+l)a+l o° (S)

1

7 4_73t 4

= limsup [/ %s 4 w ds = oo,
3

too

s 4 —'[17
3

1
such that q'(s), G(s) aredefinedasin (3)and A =3t “t, —4t,

timsup ! | 5(5)a (5)(1- p)" (9(t,6) 1) —— = |os

(@+1)" (3(s)r(s))"

i Y ays?(s—t ) Est |ds =
_!Lngsupjlz(@s (s-t) T jds_oo.
Using our result, every solution of (20) is either oscillatory or converges to zero as

t > oo if /1>i.
64
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