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Abstract 
In this paper, a different method for de-noising of ECG signals using wavelets is pre-
sented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic 
algorithm tests wide range of quadrature filter banks and the best of them will be 
chosen that minimize the Signal-to-Noise Ratio (SNR). Furthermore, the wavelet 
function and scaling function related to these filters are reported as the best wavelet 
for de-noising. Simulation results for de-noising of a noisy ECG signal show that us-
ing obtained wavelet by proposed method improves the SNR of about 2.5 dB. 
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1. Introduction 

There are many methods to de-noise a signal. De-noising is so important in signal 
processing, particularly for biomedical signals. Discrete Wavelet Transform (DWT) is 
currently used in a wide variety of signal processing applications, such as audio and 
video compression, removal of noise in audio, and the simulation of wireless antenna 
distribution. The wavelet transforms have good properties such as the time-frequency 
localization, energy compaction and sub-band coding. Wavelet transform is one of the 
most powerful mathematical tools for digital signal processing [1], such as compression 
and de-noising. 

Genetic algorithm (GA) is an optimization technique based on the “survival of the 
fittest” [2]. In this method, a wide range of inputs are checked and the best one of them 
is chosen. Genetic algorithm calculates the fitness of the solution according to fitness 
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function by search approximately all of the possible inputs. Discrete wavelet transform 
is implemented by digital FIR filters. 

When the voltage of the ECG waveform is at least larger than 75% of the peak value 
of the ECG in the comparator stage (digital-comparator) [3]-[5] of the peak detector, it 
allows oscillation generator to be fed into speaker for beeping. Digitizing ECG signals 
carry out using successive approximation ADC control system [6] [7] or delta-sigma 
analog to digital converter (decimation filter) [8]-[12]. In order to generate an error 
signal, a subtractor configures to subtract the filtered ECG signal that is generated by 
the adder [13] from the ECG signal input to the inputter. After proper amplification 
and filtration of the ECG signal, it is given to a voltage controlled oscillator (VCO) [14]. 

The ECG signal is a reference signal for pulse wave delay using photoplethysmo- 
graphic signal and Laser-Doppler (LD) measurements. The basis of the registration is 
the selfmixing in the diode lasers cavities [15]-[25]. Also, the ECG signals are going to 
be transmitted into laser beam such as VCSELs [26]-[38] to stablish communication 
between the ECG and the medical center. 

In this paper, the best coefficients of filters will be obtained using genetic algorithm. 
GA searches several coefficients and thresholds to reach the best output SNR. The pa-
per is organized as follows: in Section 2, de-noising using wavelet implementation is 
presented. In Section 3, genetic algorithm is introduced and then the proposed method 
is developed. Simulation results are presented in Section 4. Finally conclusion is given 
in Section 5. 

2. Wavelet Based De-Noising 

The process of removing the noise, [ ]e n , from a signal, [ ] [ ] [ ]x̂ n x n e n= +  is called 
“de-nosing”. For example, [ ]e n  may be a Gaussian white noise process, which is sta-
tistically independent of [ ]x n . A method for de-noising is the applying a nonlinear 
operation to a representation of [ ]x̂ n , like fourier transform or wavelet transform. In 
this work, wavelet transform is chosen. The de-noising procedure is as follows: First, 
the signal [ ]x̂ n  is decomposed using a filter bank, thus performing discrete wavelet 
transform. Then, the wavelet coefficients are manipulated in order to remove the noise 
component. Two approaches known as hard and soft thresholding have been proposed 
for this purpose. In hard thresholding, coefficients that their absolute values are smaller 
than a specific threshold, are replaced with zero. The idea of thresholding is that [ ]x n  
can be represented via a number of wavelet coefficients, while the noise has wideband 
characteristics and spreads out on all coefficients. Thus, it provided the threshold 𝜀𝜀is 
chosen appropriately, the signal constructed from the manipulated wavelet coefficients 
will contain much less noise than [ ]x̂ n  does [39] [40]. On the other hand, the wave-
form of used wavelet is so important for de-noising (or compression). In [41] [42], sev-
eral de-noising methods using wavelets are compared. 

3. Wavelet Design Using Genetic Algorithm 

In this section after a brief summary of genetic algorithm, the concept of multi-resolution 
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analysis and the efficient realization of the discrete wavelet transform based on mul-
ti-rate filter banks are presented. Then, the proposed method is discussed. 

3.1. Genetic Algorithm (GA) 

Genetic Algorithm is used to introduce computer-based problems solving systems, 
which use computational models of evolutionary processes. Different algorithms have 
been proposed in literature, such as: GAs, evolutionary programming, evolution strate-
gies, classifier systems, and genetic programming. Via processes of selection, mutation 
and reproduction, these algorithms present a common conceptual base. The genetic 
algorithms are based on reproduction, fitness, crossover and mutation. The standard 
procedure of genetic algorithms is as follow: 

1) Candidate solutions to a problem have been started with a randomly generated 
population of n 1-bit strings. 

2) Fitness function f(x) of each string in the population is calculated. 
3) Until n new strings have been created, the following steps have to repeat: 
a) From the current population, a pair of parent strings is selected where probability 

of selection being an increasing function of fitness. 
b) In order to form two new strings, cross over the pair at a random point with the 

crossover probability. 
c) With the mutation probability, the two new strings obtained from previous step 

mutate at each locus. Then they place the resulting strings in the new population. 
4) The current population has to replace with the new population. 
5) Go to step 2. 

3.2. Multi-Resolution Analysis for Design of an Appropriate Wavelet for 
De-Noising 

The main concept of wavelet transform based on multi-resolution analysis are pre-
sented in this section. This framework has been developed by Meyer, Mallat and Dau-
bechies mainly, for the orthonormal cases [43] [44]. Design procedure is generally per-
formed by designing a Quadrature Mirror filter Bank (QMFB) with Perfect Reconstruc-
tion (PR) conditions [40]. Figure 1 shows the analysis and synthesis filters. 

If the output signal be a delayed version of the input signal, perfect reconstruction is 
obtained. PR conditions for the filter bank that is shown in Figure 1 are: 

( ) ( ) ( ) ( )1 1 2 2 0H z F z H z F z− + − =                   (1) 

( ) ( ) ( ) ( )1 1 2 2 2 dH z F z H z F z z−+ =                   (2) 

Condition (1) says that the output signal contains no aliasing, but amplitude distor-
tions may be occurred. If both (1) and (2) are satisfied, the amplitude distortions are 
also vanishing. There are many proper filter’s coefficients to satisfy in (1), but condition 
(2) is only complied approximately. Proposed method is based on using Genetic Algo-
rithm (GA) to reach the best filter coefficients. In other words, best wavelet function 
that results minimum SNR after de-noising. So, some parameters are arbitrary in design 
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Figure 1. Quadrature mirror filter bank (QMFB). 
 
procedure. A proper set of conditions used vastly in wavelet design are: 

( ) ( )1
2 1 lH z z H z− −= − −                           (3) 

( ) ( )1 2F z H z= −                                (4) 

( ) ( )2 1F z H z= − −                               (5) 

Note that the ( )1H z  is analysis low-pass filter. These conditions meet the Equation 
(1). Therefore, it is enough to find the filters that can satisfy Equation (2) exactly, or 
approximately. When the number of wavelet levels is not exceeded from 3 or 4, a near- 
PR filter bank is sufficient and gives good results. In this work, we use 3-level decom-
position and reconstruction. 

One chooses the coefficients of a PR two-channel filter bank in such a way that the 
wavelets and scaling functions associated with these filters have the desired properties. 
For constructing wavelets, we use two equations called two-scale relations [40]: 

( ) [ ] ( )1 2 2
n

t f n t nφ φ= −∑                        (6) 

( ) [ ] ( )2 2 2
n

t f n t nψ φ= −∑                        (7) 

( )tφ  and ( )tψ  are called “scaling function” and “waveletfunction”, respectively. 
The starting point to constructing scaling functions is the first part of the two-scale re-
lation. In this manner, first we must select coefficients of reconstruction low pass filter, 
[ ]1f n , appropriately. To construct biorthogonal and orthonormal scaling functions 

and wavelets, the coefficients of PR two-channel filter banks are required. Since the 
scaling function, ( )tφ , is supposed to be a low-pass impulse response, generally, it in-
troduces the normalization [40]: 

( ) ( )Φ 0 d 1t tφ
+∞

−∞
= =∫                           (8) 

where, ( )Φ ω  is fourier transform of scaling function. By integrating from ( )tφ  and 
( )tψ  in Equations (6) and (7), and this fact that ( ) 0tψ

+∞

−∞
=∫  , we will obtain: 

[ ]1 2n f n =∑                              (9) 

[ ]2 0n f n =∑                              (10) 

If ( )1 1 0F − = , a low-pass behavior for ( )1F z  is achieved. Therefore: 

( ) [ ]11 0n
n f n− =∑                           (11) 

From (3), (4), (5), [ ] ( ) [ ]2 11 nf n f n= − − . Then if ( )1 1 0F − = , Equation (10) will be 
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satisfied. A simple way to have zeros in z = −1 is to use a Type-II symmetric linear 
phase FIR filter for [ ]1f n . An suitable set of coefficients can be realized when condi-
tion (2) is satisfied. ( )tφ  and ( )tψ  should possibly have been several continuous 
derivatives. A test that can check the regularity of the product is introduced by Daube- 
chies. Assuming that ( )1F z  has N zeros in z = −1, ( )1F z  can be written as [40]: 

( ) ( ) ( )1

1

1
2

2

N

N

z
F z R z

−+
=                        (12) 

In order to achieving smooth wavelets with continuous derivatives, three zeros in z = 
−1 are considered. Then, Equation (12) can be written as: 

( ) ( )( )1 2 3
1

2 1 3 3
8

F z R z z z z− − − 
= + + +  
 

                 (13) 

As seen from Equation (9), ( )1 1R = . Therefore, ( )R z  can be considered as a po-
lynomial of 1z− , with [ ] 1n r n =∑ . If [ ]1f n  is a low-pass filter with 8 coefficients and 
three zeros in z = −1, ( )R z  is a FIR system with five coefficient where its summation 
is equal to 1. 

3.3. GA Strategy for Design Optimum Coefficients to Minimize the SNR 

In this work, a 3-level wavelet decomposition is implemented. The FIR filters have 8- 
coefficients. Then, thresholding and reconstruction are performed on sub-bands to ob-
tain the de-noised signal. The strategy is as follows: Fur coefficients of [ ]r n  is arbitrary 
chosen as first population for genetic algorithm. The 8 coefficients that constructing 
low-pass filter, ( )1F z , are made according to realization of the discrete wavelet trans-
form based on multi-rate filter banks. Figure 2 shows a 3-level thresholding and recon-
struction to attain the de-noised signal. In GA technique, thresholds also considered for 
all sub-bands to finding the best filter coefficients (used wavelet) and thresholds which 
minimize the SNR. 

4. Simulation Results 

We consider a smooth and noiseless ECG signal as a reference to calculate SNR. A 
Gaussian White Noise (GWN) is added to this pure signal to make a noisy ECG with a 
defined SNR. Then, the proposed algorithm is applied on this noisy signal and results 
are compared with other wavelets de-noising from a SNR point of view. Obtained filter 
coefficients define a wavelet function and a scaling function, which also will report. Si-
mulation results are presented in Table 1: the wavelet that introduced by the proposed 
method improve the output SNR about 2.5 dB more than other wavelets implemented 
by means of filters which have 8 coefficients. 

Figure 3 shows the noisy input signal and de-noised output signal using the pro-
posed method for two situations. For an input SNR of 36.7 dB, the output SNR is 48.7 
dB and for an input SNR of 45.2 dB, the output SNR is 59.2 dB. It’s clear that if we use 
the filters that have more coefficients, the results will be improved. Finally, Figure 4  
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Figure 2. 3-level wavelet implementation. (a) Decomposition; (b) Reconstruction. 
 

 
Figure 3. (a) The noisy and de-noised signal using proposed method (input SNR = 36.7 dB and 
output SNR = 48.7 dB) and (b) noisy and de-noised signal using proposed method (input SNR = 
45.2 dB and output SNR = 59.2 dB). 
 
Table 1. Output and input SNR for different wavelets. 

Wavelet name Input SNR (dB) Output SNR (dB) Improve (dB) 

Bior3.3 36.7 46.57 9.87 

Db. 4 36.7 46.19 9.49 

Sym. 4 36.7 46.26 9.56 

Proposed method 36.7 48.7 12 
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Figure 4. Optimized wavelet function and scaling function. 
 
shows the wavelet function and scaling function constructed from 8-coefficcient filters 
found by Genetic Algorithm, respectively. 

5. Conclusion 

A new algorithm for de-noising of ECG signals is presented. The method is based on 
making a specific wavelet function for minimizing the SNR. By using genetic algo-
rithms, the coefficients of wavelet filter bank alter smoothly until the best SNR for out-
put signal achieved. We used this method and de-noised a noisy ECG signal with 
3-level wavelet structure that used 8-coefficient-filters and the results were improved in 
comparison by typical wavelets such as Daubechies 4, Symlet4 and Bior 3.3. 
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