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Abstract 
In this paper, verification of real-time pricing systems of electricity is considered us-
ing a probabilistic Boolean network (PBN). In real-time pricing systems, electricity 
conservation is achieved by manipulating the electricity price at each time. A PBN is 
widely used as a model of complex systems, and is appropriate as a model of real- 
time pricing systems. Using the PBN-based model, real-time pricing systems can be 
quantitatively analyzed. In this paper, we propose a verification method of real-time 
pricing systems using the PBN-based model and the probabilistic model checker 
PRISM. First, the PBN-based model is derived. Next, the reachability problem, which 
is one of the typical verification problems, is formulated, and a solution method is 
derived. Finally, the effectiveness of the proposed method is presented by a numeri-
cal example. 
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1. Introduction 

In recent years, there has been growing interest in energy and the environment. For 
problems on energy and the environment such as energy saving, several approaches 
have been studied (see, e.g., [1] [2]). In this paper, we focus on real-time pricing sys-
tems of electricity. A real-time pricing system of electricity is a system that charges dif-
ferent electricity prices for different hours of the day and for different days, and is ef-
fective for reducing the peak and flattening the load curve (see, e.g., [3]-[6]). In general, 
a real-time pricing system consists of one controller deciding the price at each time and 
multiple electric consumers such as commercial facilities and homes. If electricity con-
servation is needed, then the price is set to a high value. Since the economic load be-
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comes high, consumers conserve electricity. Thus, electricity conservation is achieved. 
In the existing methods, the price at each time is given by a simple function with respect 
to power consumptions and voltage deviations and so on (see, e.g., [6]). In order to realize 
more precisely pricing, it is necessary to use a mathematical model of consumers. 

On the other hand, in order to deal with complex systems such as power systems and 
gene regulatory networks, it is one of the appropriate methods to approximate a com-
plex system by a discrete abstract model (see, e.g., [7]). In addition, human decision 
making is also complex, and is modeled by a discrete model (see, e.g., [8]). Thus, in 
analysis and control of complex systems and those with human decision making, a dis-
crete model plays an important role. Several discrete models have been proposed so far 
(see, e.g., [9]). In this paper, we focus on a Boolean network (BN) [10]. In a BN, the 
state is given by a binary value (0 or 1), and the dynamics are expressed by a set of Boo-
lean functions. Since Boolean functions are used, it is easy to understand the interaction 
between states. In addition, the behavior of complex systems is frequently stochastic by 
the effects of noise. From this viewpoint, a probabilistic BN (PBN) has been proposed 
in [11]. In a PBN, a Boolean function is randomly decided at each time among the can-
didates of Boolean functions. 

Under the above backgrounds, the authors have proposed in [12] the PBN-based 
model of real-time pricing systems. In this model, decision making of electric consum-
ers is modeled by a PBN. That is, decisions of a consumer are modeled by Boolean 
functions, and one of decisions is selected probabilistically. Selection probabilities are 
controlled by the price at each time. In [12], an approximate algorithm for solving the 
optimal control problem has been proposed. However, analysis and verification using 
the PBN-based model have not been considered. 

In this paper, we propose a verification method of real-time pricing systems using 
the PBN-based model and the probabilistic model checker PRISM [13]. Using PRISM, 
we can verify whether this system satisfies the specification described by probabilistic 
computation tree logic (PCTL) [14] or not. The reachability problem is considered as one 
of the typical verification problems, and a numerical example is presented. The proposed 
method provides us a basic of model-based design of real-time pricing systems. 

In Section 2, the outline of real-time pricing systems studied in this paper is ex-
plained. In Section 3, the PBN-based model is explained. In Section 4, the verification 
problem is formulated. In Section 5, a solution method using PRISM is proposed. In 
Section 6, a numerical example is presented. In Section 7, we conclude this paper. 

Notation: For the n-dimensional vector [ ]1 2 nx x x x Τ=   and the index set 

{ } { }1 2, , , 1, 2, ,mi i i n= ⊆  , [ ]
1 2

:       
mi i i ii

x x x x
Τ

∈
 =  


 is defined. 

2 Real-Time Pricing Systems 

In this section, we explain the outline of real-time pricing systems studied in this paper. 
Figure 1 shows an illustration of real-time pricing systems studied in this paper. This 

system consists of one controller and multiple electric consumers such as commercial 
facilities and homes. For an electric consumer, we suppose that each consumer can 
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Figure 1. Illustration of real-time pricing systems. 

 
monitor the status of electricity conservation of other consumers. In other words, the 
status of some consumer affects that of other consumers. For example, in commercial 
facilities, we suppose that the status of rival commercial facilities can be checked by 
lighting, Blog, Twitter, and so on. Depending on power consumption, i.e., the status of 
electricity conservation, the controller determines the price at each time. If electricity 
conservation is needed, then the price is set to a high value. Since the economic load 
becomes high, consumers conserve electricity. Thus, electricity conservation is achieved. 
The price does not depend on each consumer, and is uniquely determined. 

In this paper, decision making of electric consumers is modeled by a probabilistic 
Boolean network (PBN). Here, we suppose that each electric consumer has candidates 
of a decision in electricity conservation, and one of candidates is selected probabilisti-
cally depending on the electricity price at the current time. In such a case, it is appro-
priate to adopt the PBN-based model. In this paper, the property of real-time pricing 
systems can be verified using the PBN-based model. 

3. Modeling Using Probabilistic Boolean Networks 

In this section, first, we explain the outline of PBNs. Next, each consumer in real-time 
pricing systems is modeled by a PBN. 

3.1. Probabilistic Boolean Networks 

First, we explain a (deterministic) Boolean network (BN). A BN is defined by  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

2

1
1

2
2

1 ),

1 ,

1 ,n

j j

j j

n
n j j

x k f x k

x k f x k

x k f x k

∈

∈

∈

  + =  


 + =  


  + =  









                    (1) 

where [ ] { }1 2:        0,1 n
nx x x x Τ= ∈  is the state, and 0,1, 2,k =   is the discrete time. 

The set ( ) { }1,2, ,i n⊆   is a given index set, and the function  
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{ }
( )

{ }1: 0,1 0,1
i

if →  is a given Boolean function consisting of logical operators such 
as AND ( ∧ ), OR (∨ ), and NOT (¬ ). If ( )i = ∅  holds, then ( )1ix k +  is uniquely 
determined as 0 or 1. 

Next, we explain a probabilistic Boolean network (PBN) (see [11] for further details). 
In a PBN, the candidates of ( )if  are given, and for each ix , selecting one Boolean 
function is probabilistically independent at each time. Let  

( ) ( ) ( )( ) ( ),  1, 2, ,i
l

i
l j j

f x k l q i
∈

  =  

  
denote the candidates of ( )if . The probability that ( )i

lf  is selected is defined by  
( ) ( ) ( )( ): Prob .i i i
l lc f f= =

 
Then, the following relation  

( )
( )

1
1

q i
i

l
l

c
=

=∑                              (2) 

must be satisfied. Probabilistic distributions are derived from experimental results. Fi-
nally, i , 1,2, ,i n=   are defined by  

( )
( )

1
: .

q i
i

i l
l=

=


 
 

We show a simple example. 
Example 1. Consider the PBN in which Boolean functions and probabilities are giv-

en by  

( )
( ) ( ) ( )

( ) ( ) ( )

1 1
1 3 11

1 1
2 3 2

,  0.8,

,  0.2,

f x k c
f

f x k c

 = == 
= ¬ =  

( ) ( ) ( ) ( ) ( )2 2 2
1 1 3 1,  1.0,f f x k x k c= = ∧ ¬ =  

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

3 3
1 1 2 13

3 3
2 2 2

,  0.7,

,  0.3,

f x k x k c
f

f x k c

 = ∧ ¬ == 
= =  

where ( )1 2q = , ( )2 1q =  and ( )3 2q =  hold, { }1 3= , { }2 1,3= , and 
{ }3 1, 2=  hold, and we see that the relation (2) is satisfied. Next, consider the state 

trajectory. Then, for ( ) [ ]0 0  0  0x Τ= , we can obtain  

( ) [ ] ( ) [ ]( )Prob 1 0  0  0  | 0 0  0  0 0.8,x xΤ Τ= = =
 

( ) [ ] ( ) [ ]( )Prob 1 1  0  0  | 0 0  0  0 0.2.x xΤ Τ= = =
 

In this example, the cardinality of the finite state set { }30,1  is given by 32 8= , and 
we obtain the state transition diagram of Figure 2 by computing the transition from 
each state. In Figure 2, the number assigned to each node denotes 1x , 2x , 3x  (ele-
ments of the state), and the number assigned to each arc denotes the transition proba-
bility from some state to other state. Note here that for simplicity, the state transition 
from only ( ) [ ] [ ] [ ] [ ]0  0  0 , 0  0  1 , 0  1  0 , 1  1  0x k Τ Τ Τ Τ=  is illustrated in Figure 2.      
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Figure 2. State transition diagram. 

3.2. Model of Consumers 

Consider modeling the set of consumers as a PBN. The number of consumers is given 
by n. We assume that the state of consumer { }1,2, ,i n∈   is binary, and is denoted by 

ix . The state implies  

0   consumer conserves electricity,
1   consumer normally uses electricity.i

i
x

i


= 
  

The binary value of ix  is determined by power consumption of consumer i. In ad-
dition, we assume that the probability ( )i

lc  is time-varying and is changed by the price 
at each time. That is, the probability is given by  

( ) ( ) ( ) ( ) ( ) ,i i i
l l lc k a b u k= +  

where ( ) 1u k ∈ ⊂   is the price (the control input). We assume that the set   is a 
finite set, and for any u∈ , two conditions (2) and ( ) ( )0 1i

lc k≤ ≤  hold. The Boo-
lean function ( )i

lf  must be derived depending on real situations and experimental re-
sults. In this paper, as one of examples, we consider the following situation, which will 
mimic a real situation. 

Let { }1,2, ,i n⊆  , 1,2, ,i n=   denote the set of consumers, which affect to con-
sumer i. We assume that there exists one leader in the local area. The state of a leader is 
given by 1x . Then, for consumer i, we consider the following model iΣ :  

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 1 5 5 5

1,  ,

0,  ,

,  ,1

,  ( ) ,

,  ,
i

i i i i

i i i i

i i i i
ii

i i i i i
j j

i i i i

f c k a b u k

f c k a b u k

f x k c k a b u kx k

f g x k c k a b u k

f x k c k a b u k

∈

 = = +

 = = +
 = = ++ = 
  = = +  


= = +



         (3) 
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The Boolean functions ( )
1

if  and ( )
2

if  imply that consumer i forcibly conserves (or 
does not conserve) electricity. In these cases, time evolution of the state does not de-
pend on the past state. The Boolean function ( )

3
if  implies that the state is not changed. 

The Boolean function ( )
4

if  implies that the state of consumer i is changed depending 
on the other consumers. The Boolean function ( )

5
if  implies that the state of consumer 

i is changed depending on the leader. Thus, decision making of consumers can be 
modeled by a PBN. Of course, we may use other Boolean functions. 

4. Problem Formulation 

In this section, the verification problem described by probabilistic computation tree 
logic (PCTL) is formulated for the PBN-based model of consumers (see Appendix A 
for details on PCTL). 

Here, the reachability problem is formulated as one of the typical problems. For the 
system iΣ , 1,2, ,i n=   given by (3), the output  
( ) ( ) ( ) ( ) { }1 2      0,1 p

py k y k y k y k
Τ

 = ∈   is defined, where i jy x= , { }1,2, ,j n∈  . 
We remark that the output is not the measured signal. First, the reachability problem is 
given. 

Problem 1. Suppose that for the system iΣ , 1,2, ,i n=   given by (3), the initial 
state ( ) 00x x= , the control time N, and the target output fy  are given. Then, find a 
maximum probability p satisfying  

( )( )F N
p fy k y≤

≤  = 
 

by manipulating a control input sequence ( ) ( ) ( )0 , 1 , , 1u u u N − .  

Let maxP  denote the maximum probability obtained by solving this problem. In this 
problem, we find a maximum probability that ( ) fy k y=  holds within time N. In the 
conventional reachability problem, only terminal time is focused, and it is checked 
whether ( ) fy N y=  holds or not. In this paper, we focus on not only terminal time N 
but also other times 0,1, , 1N − . Since the system has the control input, we find a 
maximum probability satisfying the condition. In the case where peak demand is fo-
cused on, ( ) fy k y=  may be replaced with ( )y k γ≤ , where γ  is a given constant. 

Furthermore, by solving Problem 1 at each time, a kind of model predictive control 
(MPC) can be realized (see Section 5.3 for further details). 

5. Solution Method Using PRISM 

In this section, we consider a solution method for Problem 1 using the probabilistic 
model checker PRISM [13]. 

5.1. Preparation: Transformation of Boolean Functions 

As a preparation, the following lemma [15] is introduced. 
Lemma 1. Consider two binary variables 1 2,δ δ . Then the following relations hold. 
i) 1δ¬  is equivalent to 11 δ− . 
ii) 1 2δ δ∨  is equivalent to 1 2 1 2δ δ δ δ+ − . 
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iii) 1 2δ δ∧  is equivalent to 1 2δ δ .  
For example, 1 2δ δ∨¬  is equivalently transformed into  
( ) ( )1 2 1 2 2 1 21 1 1δ δ δ δ δ δ δ+ − − − = − + . By using this lemma, a Boolean function can be 

transformed into a polynomial with binary variables. 

5.2. Description in PRISM 

To solve Problem 1 and the verification problem described by PCTL formulas, the 
probabilistic model checker PRISM is used. PRISM supports a discrete-time Markov 
chain (DT-MC), a continuous-time Markov chain (CT-MC), and a Markov decision 
process (MDP). PRISM consists of three parts: “Model”, “Properties”, “Simulator”. In 
the “Model” part, a given probabilistic system is described using the PRISM language. 
In the “Properties” part, the property specification language incorporates temporal log-
ic such as PCTL, and we can verify whether a given PCTL formula holds or not. In the 
“Simulator”, the state trajectories can be simulated. 

Using PRISM, consider modeling the system iΣ , 1,2, ,i n=   given by (3). To ex-
plain the PRISM-based method, consider the following model of three consumers:  

( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
1 1

1 1
2 2

1 1
1 3 1 3

1 1
4 2 3 4

1 1
5 1 5

1,  0.1,

0,  0.025 ,

1 ,  0.9 0.1 ,

,  0.05 ,

,  0.025 ,

f c k

f c k u k

x k f x k c k u k

f x k x k c k u k

f x k c k u k

 = =

 = =


+ = = = −


= ∧ =
 = =  

( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2
1 1

2 2
2 2

2 2
2 3 1 3

2 2
4 1 3 4

2 2
5 1 5

1,  0.1,

0,  0.025 ,

1 ,  0.9 0.1 ,

,  0.05 ,

,  0.025 ,

f c k

f c k u k

x k f x k c k u k

f x k x k c k u k

f x k c k u k

 = =

 = =


+ = = = −


= ∧ =
 = =  

( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 3
1 1

3 3
2 2

3 3
3 3 1 3

3 3
4 1 2 4

3 3
5 1 5

1,  0.1,

0,  0.025 ,

1 ,  0.9 0.1 ,

( ),  0.05 ,

,  0.025 .

f c k

f c k u k

x k f x k c k u k

f x k x k c k u k

f x k c k u k

 = =

 = =


+ = = = −


= ∧ =
 = =

 

In addition,   is given by { }3,4,5= . Then, the PRISM source code describing 
this system is shown as follows. 

01: mdp 
02: module RTP1 
03:  x1: [0..1] init 1; 
04:  [RTP] u=3 -> 0.1:(x1’=1) + 0.075:(x1’=0) + 0.6:(x1’=x1) + 0.15:(x1’=x2*x3) 
        + 0.075:(x1’=x1) 
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05:  [RTP] u=4 -> 0.1:(x1’=1) + 0.1:(x1’=0) + 0.5:(x1’=x1) + 0.2:(x1’=x2*x3)  
       + 0.1:(x1’=x1) 
06:  [RTP] u=5 -> 0.1:(x1’=1) + 0.125:(x1’=0) + 0.4:(x1’=x1) + 0.25:(x1’=x2*x3) 
       + 0.125:(x1’=x1) 
07: endmodule 
08: module RTP2 
09:  x2:[0..1] init 1; 
10:  [RTP] u=3 -> 0.1:(x2’=1) + 0.075:(x2’=0) + 0.6:(x2’=x2) + 0.15:(x2’=x1*x3) 

+ 0.075:(x2’=x1) 
11:  [RTP] u=4 -> 0.1:(x2’=1) + ... (omit) 
12:  [RTP] u=5 -> 0.1:(x2’=1) + ... (omit) 
13: endmodule 
14: module RTP3 
15:  x3:[0..1] init 1; 
16:  [RTP] u=3 -> 0.1:(x3’=1) + 0.075:(x3’=0) + 0.6:(x3’=x3) + 0.15:(x3’=x1*x2) 

+ 0.075:(x3’=x1) 
17:  [RTP] u=4 -> 0.1:(x3’=1) + ... (omit) 
18:  [RTP] u=5 -> 0.1:(x3’=1) + ... (omit) 
19: endmodule 
20: module input 
21:  u:[3..5] init 3; 
22:  [RTP] u=3 -> (u’=3); 
23:  [RTP] u=3 -> (u’=4); 
24:  [RTP] u=3 -> (u’=5); 
25:  [RTP] u=4 -> (u’=3); 
26:  [RTP] u=4 -> (u’=4); 
27:  [RTP] u=4 -> (u’=5); 
28:  [RTP] u=5 -> (u’=3); 
29:  [RTP] u=5 -> (u’=4); 
30:  [RTP] u=5 -> (u’=5); 
31: endmodule. 
In line 1, it is described that a given system is an MDP, i.e., the control input (in oth-

er words, the nondeterministic variable) that must decide is included. In lines 2-7, the 
dynamics for 1x  (consumer 1) are modeled. In line 3, it is described that 1x  takes a 
binary value, and the initial value of 1x  is given by ( )1 0 1x = . In line 4, if ( ) 3u k =  
holds, then the value of 1x  at the next time is given by 1 with the probability 0.1, 0 
with the probability 0.075, 1x  (i.e., the state is not changed) with the probability 0.6, 

2 3x x  (corresponding to ( ) ( )2 3x k x k∧ 1) with the probability 0.15, and 1x  with the 
probability 0.15. Similarly, in line 5, the case of ( ) 4u k =  is described. In line 6, the 
case of ( ) 5u k =  is described. In lines 8-13, the dynamics for 2x  (consumer 2) are 
modeled. In lines 14-19, the dynamics for 3x  (consumer 3) are modeled. In this sys-

 

 

1In PRISM, given Boolean functions may be directly used (see http://www.prismmodelchecker.org/ for fur-
ther details). 

http://www.prismmodelchecker.org/
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tem, a discrete probabilistic distribution is given for each ix . Hence, in PRISM, the 
dynamics for each ix  must be modeled separately. In lines 20-31, the property of the 
control input is described as a nondeterministic variable. We note here that the initial 
value of the control input must be given (see line 21). Finally, to associate with each 
module, [RTP] is described in lines 4-6, 10-12, 16-18, 22-30. 

From the above example, we see that the system iΣ , 1,2, ,i n=   given by (3) can 
be described by PRISM. Finally, we present a procedure for deriving the PRISM source 
code as follows. In the following procedure, without loss of generality, the input set   
is given by { }1,2, ,=   . 

Derivation Procedure of PRISM Source Code: 
Step 1: Transform each Boolean function into a polynomial with binary variables by 

using Lemma 1. Let ( )ˆ i
lf  denote the obtained polynomial. 

Step 2: Describe that a given system is an MDP. 
Step 3: Compute the probability ( )i

lc  for each element of  . Let ( )
,
i

l pc  denote the 
probability for p∈ . 

Step 4: Describe module RTP i, 1,2, ,i n=   as follows. 
module RTP i; 

ix : [ ]0..1  init ( )0ix ; 
[RTP] ( ) ( )( ) ( ) ( )( )1,1 1 5,1 5

ˆ ˆ1 : :i i i i
i iu c x f c x f′ ′= → = + + = ; 

  
[RTP] ( ) ( ) ( ) ( )( )( )

1 51, 5,
ˆ ˆ: :i i ii

i iu c x f c x f′ ′= → = + + =  ; 
endmodule. 
Step 5: Describe the control input u as follows. 
module input 

u: 1..    init ( )0u ; 
[RTP] ( )1 1i iu u′= → = ; 
  
[RTP] ( )1i iu u′= → =  ; 
  
[RTP] ( )1i iu u′= → = ; 
  
[RTP] ( )i iu u′= → =  ; 

endmodule. 
The above procedure is the improved version of the procedure proposed in [16]. 

5.3. Verification and Application to MPC 

Several properties described by PCTL formulas can be verified by using the obtained 
model on PRISM. We use the “Properties” part in PRISM. 

Consider solving Problem 1 (the reachability problem). Then, we use Pmax prepared 
in PRISM. Suppose [ ]T1 2  y y y=  and [ ]T0  1fy = . Then in PRISM, this problem is 
described by  

( ) ( )max 1 2? F N 0 & 1 .P y y= <= =  =  
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This implies that find a maximum probability maxP  satisfying the following condi-
tion: at time 0,1, ,k N=  , the number of times that ( ) fy k y=  holds is greater than 
or equal to 1, i.e., this code expresses the reachability problem itself. 

From the above results, we see that the verification problem can be easily imple-
mented by using PRISM. The control input sequence ( ) ( ) ( )0 , 1 , , 1u u u N −  is ob-
tained simultaneously, but in PRISM 4.0.3, the obtained control input sequence cannot 
be displayed except for the case of N = ∞ . In the case of N = ∞ , the discrete-time 
Markov chain can be obtained as the closed-loop system of a given system. The control 
input sequence can be obtained by exploratory analysis using the simulator in PRISM. 
Otherwise, this sequence can be obtained by solving the control problem such as the 
optimal control problem. In both cases, the verification result will be useful. 

On the other hand, the problem of finding maxP  and a control input sequence can 
be regarded as a kind of the control problem. Noting that the initial value of the control 
input must be given, a kind of MPC can be realized by the following procedure. 

[Procedure of MPC] 
Step 1: Set 0t = , and determine the current state ( ) tx t x=  according to power 

consumption. 
Step 2: Find the current control input ( )u t∗  maximizing maxP . That is, for each 
( )u t ∈ , solve Problem 1. 
Step 3: Apply only the control input at t, i.e., ( )u t∗ , to the plant. 
Step 4: Set : 1t t= + , determine ( ) tx t x=  according to power consumption, and go 

to Step 2. 

6. Numerical Example 

We present a numerical example. For iΣ , 1,2, ,i n=   given by (3), parameters are 
given as follows:  

8,n =  
{ }1 2, ,n=  
{ }1, 1 ,  2,3, , 1,i i i i n= − + = −  
{ }8 1, 1 ,n= −  

( ) ( )
1 10.1,  0,i ia b= =  
( ) ( )
2 20,    0.025,i ia b= =  
( ) ( )
3 30.9,  0.1,i ia b= = −  
( ) ( )
4 40,    0.05,i ia b= =  
( ) ( )
5 40,    0.025,i ia b= =  

{ }3, 4,5,6,7 .=  
We remark that for any u∈ , two conditions (2) and ( ) ( )0 1i

lc k≤ ≤  hold. The 
Boolean function ( )ig  is given by  
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( ) ( )( ) ( ) ( ) ( ) { }1 2 1 2,  , , , .
iii

i
j j j j ij

g x k x k x k x k j j j
∈

  = ∧ ∧ ∧ =   

 


 
In Problem 1, the control time N, the output, and the target output are given by  

10,N =  
( ) ( ) ,  1, 2, , ,i iy k x k i n= =   

[ ]0   0 .fy Τ=   
In this example, we consider the following cases: 

• Case 1: The initial state is given by ( )0 1ix =  (all consumers normally use electric-
ity).  
Case 1-1: The initial input is given by ( )0 3u = .  
Case 1-2: The initial input is given by ( )0 7u = .  

• Case 2: The initial state is given by ( )4 0 0x =  and ( )0 1ix = , 4i ≠  (only con-
sumer 4 conserves electricity).  
Case 2-1: The initial input is given by ( )0 3u = .  
Case 2-2: The initial input is given by ( )0 7u = .  

• Case 3: The initial state is given by ( )1 0 0x =  and ( )0 1ix = , 1i ≠  (only con-
sumer 1 (leader) conserves electricity).  
Case 3-1: The initial input is given by ( )0 3u = .  
Case 3-2: The initial input is given by ( )0 7u = .  

Next, we present the computation result. Table 1 shows maxP  for each case. By check-
ing maxP , we can verify the status of electricity conservation. If maxP  is large, then 
there is a trend that consumers conserve electricity. From Table 1, we see the following 
facts:  
1) It is desirable that the initial input (price) is given by ( )0 7u = .  
2) Even if one consumer, who is not the leader, conserves electricity, then a contribu-

tion to electricity conservation is small.  
3) If the leader conserves electricity, then a contribution to electricity conservation is large.  

Thus, using the PBN-based model, we can analyze real-time pricing systems in a 
quantitative way. 

7. Conclusions 

In this paper, using a probabilistic Boolean network (PBN), we discussed verification of 
 

Table 1. Computation result. 

Case Pmax 
Case 1-1 0.6248 
Case 1-2 0.6630 
Case 2-1 0.6455 
Case 2-2 0.6828 
Case 3-1 0.7454 
Case 3-2 0.7756 
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real-time pricing systems of electricity. The PBN-based model and PRISM enable us an 
easy and convenient verification. As one of the verification problems, the reachability 
problem was considered. In addition, application to model predictive control was also 
discussed. The proposed method provides us verification/control methods for real-time 
pricing systems. 

There are several open problems. It is significant to develop the identification me-
thod of Boolean functions and parameters ( ) ( ),i i

l la b  in (3). Once Boolean functions and 
parameters can be obtained, the proposed method enables us quantitative analysis. 
Furthermore, for large-scale systems, there is a possibility that PRISM does not work. 
In such a case, we may use the assume-guarantee verification technique [17], which is 
one of the compositional verification techniques. Details are one of the future efforts. It 
is also significant to consider extending a PBN to a probabilistic system with mul-
ti-valued logic functions (see e.g., [18]-[21] for further details about such probabilistic 
systems). Since the PBN-based model expresses human decision making in the pur-
chasing behavior, the proposed method is related to analysis of the consumer behavior 
in economics. It is important to clarify the relation between the proposed method and 
the existing method in economics. The proposed method is the first step toward ma-
thematical analysis of the consumer behavior. 
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Appendix A. Probabilistic Computation Tree Logic 

In classical propositional logic, truth-value of 0 (false) or 1 (true) is time-invariant. 
Temporal logic is an extension of propositional logic, and deals with time evolution of 
truth-value. Since a PBN is a discrete-time system, we also consider temporal logic in 
discrete-time. First, computation tree logic (CTL) is explained as a class of temporal 
logics. Next, we introduce probabilistic CTL (PCTL) (see [14] for further details). 

In CTL, logical operators and temporal operators are used. The logical operators 
usually consist of ¬ , ∧ , ∨ , → , and ↔ . The temporal operators consists of quan-
tifiers over paths A, E and path-specific quantifiers F, G, X, U. CTL formulas, state 
formulas, and path formulas are defined as follows: 
1) Propositional variables and propositional constants (true or false) are state formu-

las.  
2) If φ, ψ are state formulas, then φ¬ , φ ψ∧ , φ ψ∨ , φ ψ→ , and φ ψ↔  are also 

state formulas.  
3) If φ is path formula, then Eφ and Aφ are state formulas.  
4) If φ, ψ are state formulas, then Xφ, Fφ, Gφ, and φUψ are path formulas.  
5) All state and path formulas consist of the above formulas, and all CTL formulas 

consist of state formulas.  
Next, suppose that ,φ ψ  are given as propositional variables. Then the meaning of 

each quantifier over paths is explained as follows:  
• Aφ: φ has to hold on all paths starting from the current state (All).  
• Eφ: there exists at least one path starting from the current state where φ holds (Ex-

ists).  
Furthermore, the meaning of each path-specific quantifier is also explained as fol-

lows:  
• Fφ: φ eventually has to hold (somewhere on the subsequent path) (Finally). 
• Gφ: φ has to hold on the entire subsequent path (Globally).  
• Xφ: φ has to hold at the next state (neXt).  
• φUψ: φ has to hold until at some position ψ holds. This implies that ψ will be veri-

fied in the future.  
In PCTL, the notion of probability is added in CTL, that is, for the CTL formula φ, 

consider ( )p φ


 , { }, <, ,>∈ ≤ ≥ , [ ]0,1p∈ . For example, ( )p φ≤  implies that if φ 
is true with the probability that is less than or equal to p, then ( )p φ≤  is true, other-
wise ( )p φ≤  is false. 

Finally, the temporal operator F is improved to F≤N. For the propositional variable φ, 
F≤Nφ implies that φ eventually has to hold until time N. 
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