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Abstract 
The purpose of this paper is to introduce a new pivot rule of the simplex algorithm. 
The simplex algorithm first presented by George B. Dantzig, is a widely used method 
for solving a linear programming problem (LP). One of the important steps of the 
simplex algorithm is applying an appropriate pivot rule to select the basis-entering 
variable corresponding to the maximum reduced cost. Unfortunately, this pivot rule 
not only can lead to a critical cycling (solved by Bland’s rules), but does not improve 
efficiently the objective function. Our new pivot rule 1) solves the cycling problem in 
the original Dantzig’s simplex pivot rule, and 2) leads to an optimal improvement of 
the objective function at each iteration. The new pivot rule can lead to the optimal 
solution of LP with a lower number of iterations. In a maximization problem, 
Dantzig’s pivot rule selects a basis-entering variable corresponding to the most posi-
tive reduced cost; in some problems, it is well-known that Dantzig’s pivot rule, before 
reaching the optimal solution, may visit a large number of extreme points. Our goal 
is to improve the simplex algorithm so that the number of extreme points to visit is 
reduced; we propose an optimal improvement in the objective value per unit step of 
the basis-entering variable. In this paper, we propose a pivot rule that can reduce the 
number of such iterations over the Dantzig’s pivot rule and prevent cycling in the 
simplex algorithm. The idea is to have the maximum improvement in the objective 
value function: from the set of basis-entering variables with positive reduced cost, the 
efficient basis-entering variable corresponds to an optimal improvement of the ob-
jective function. Using computational complexity arguments and some examples, we 
prove that our optimal pivot rule is very effective and solves the cycling problem in 
LP. We test and compare the efficiency of this new pivot rule with Dantzig’s original 
pivot rule and the simplex algorithm in MATLAB environment. 
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1. Introduction 
Linear programming (LP) has been one of the most dynamic areas of applied mathe-
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matics in the last sixty years. LP was solved in the late 1960s by Dantzig’s simplex me-
thod [1]. But, many variants of the simplex method were eventually proved to have ex-
ponential worst-case performance [2]. To solve efficiently a LP problem, we need to 
consider the pivot rule and the computational complexity that depend on the number 
of constraints and variables. One of the important steps of the simplex algorithm is of 
course the pivot rule that is used for selecting the basis-entering variable. An effective 
rule consists of computing the optimal solution of a LP with a small number of itera-
tions. Dantzig’s simplex method still seems to be the most efficient procedure for a 
great majority of practical problems, especially for small size problems. But Dantzig’s 
original pivot rule cannot prevent cycling in linear programming and takes a lot of it-
erations in some cases [3]. To prevent this weakness, many research studies tried to 
improve the simplex algorithm, via the pivot rule by reducing the number of iterations 
and the solution time [4]-[6]. Unfortunately, most papers concerning simplex pivot 
rules have not been receiving much attention, even among researchers in the field of 
linear programming. Moreover, a very large part of these researches was presented in 
terms of oriented matroid programming and frequently not specialized to pivot rules 
for linear programming. Also, some of the other results were obtained as a side result 
(extreme case) of some interior point methods. Due to this, a lot of results remained 
unknown to researchers only working on the simplex method. T. Terlaky and S. Zhang 
[7] discussed the various pivot rules of the simplex method and its variants that have 
been developed until 1993, starting from the appearance of Bland’s minimal index rules 
[8]. Their paper was mainly concerned with finiteness properties of simplex type pivot 
rules. Also there are rich research results concerning pivot rules for specially structured 
linear programming problems, like network linear programming, assignment prob-
lems, etc. Most recently, K. Chankong et al. [9] proposed a new pivot rule called abso-
lute change pivot rule. The idea is trying to block a basis-leaving variable that makes a 
little change in the objective function value as much as possible. Some computational 
results are reported, comparing the number of iterations from this new rule to Dantzig’s 
original pivot rule. 

In this paper, we propose an original pivot rule called optimal pivot rule. The idea is 
to have an optimal improvement of the value of the objective function for any iteration: 
from the variables with positive reduced cost, we have a set of basis-entering variables; 
the efficient basis-entering variable is chosen from this set and corresponds to an opti-
mal improvement of the objective function; this makes the objective function value to 
increase faster than when a regular Dantzig’s pivot rule is used, and therefore lead to 
fewer number of iterations. The optimal pivot rule can prevent cycling in the simplex 
algorithm. We report the computational results by testing and comparing the number 
of iterations from this new rule to Dantzig’s original pivot rule in MATLAB environment. 

The rest of the paper is organized as follows: Section 2 describes the preliminaries of 
linear programming, simplex algorithm and pivot rule. Section 3 explains the main idea 
of our optimal pivot rule; we show that the new pivot rule prevents cycling in simplex 
algorithm. We use simple computational complexity facts to prove that the new opti-
mal pivot rule is efficient. Section 4 deals with the computational results by testing and 
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comparing the speed and the number of iterations from this new pivot rule to classical 
simplex rule and conclusions drawn. 

2. Preliminaries: Dantzig’s Pivot Rule 

In this paper, we consider the linear programming (LP) problem in the standard form: 
TMaximize

subject to
0,
=

 ≥

c x
Ax b
x

                          (1) 

where ( ) , ,×∈ < ∈ ∈  m n m nA m n b c  and ( ) =rank A m . 
After possibly rearranging the column of A, let [ ] =A A B  where B is an m × m in-

vertible matrix and N is m × (n − m) matrix. Here, B is called the basic matrix and N the 
associated non basic matrix. Basic and non basic index set are represented by BJ  and  

NJ  respectively. Consider the equation Ax = b, and let 
 

=  
 

B

N

x
x

x
 be the solution where  

1−=Bx B b  and 0=Nx  is called a basic solution of the system. The constraints 

0
=

 ≥

Ax b
x

 

can be rewrite as 

0, 0.
+ =

 ≥ ≥

B N

B N

Bx Nx b
x x

                           (2) 

If 0≥Bx , x is called a basic feasible solution of the system. Suppose that a basic feasi-  

ble solution of the system (1) is 
1

0

− 
 
 

B b
 whose objective value z0 is given by 

T 1
0

−= Bz c B b . 

Then  

∈

= − ∑
N

B j j
j J

x b Y x  

where 1−=b B b  and 1−=j jY B A . We denote the thj  column of A by jA  and the thj  
column of 1−B N  by jY . 

Let z be the objective function value, we get 

0
∈

= − ∑
N

j j
j J

z z c x  

where = −j j jc c z  represents the reduced cost, with 
T 1 T−= =j B j B jz c B A c Y . 

The main result exhibits that the optimal solution is achieved if the index set  

{ }/ 0= ∈ >N jJ j J c  

is empty. If the index set J is not empty, let  

{ }arg max /= ∈je c j J . 
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If the index set 

{ } ( ){ },1, 2, , / 0∈ > i ei m Y  

is empty, then the LP (1) is not bounded, and it has no solution. 
Let  

( )
( ),

,

arg min , 0
  = > 
  

i
i e

i e

bs Y
Y

. 

By Dantzig’s rules, the index of the basis-entering variable is e and the index of ba-
sis-leaving variable is s. The pivot operation uses ( ),s eY . 

The tableau format of the simplex method follows: 
Table 1 format reports the value of the objective function T 1

0
−= Bz c B b , the basis va-

riables 1−=Bx B b , the reduced cost row, which consist of  
T 1−= − = −j j j j B jc c z c c B A  

for non basic variables. , 0∀ >jj c , the LP is at optimal solution. If ex  increases, then 
the vector 1−=e eY B A , which is stored in the tableau in row 1 through m under variable 

ex , will determine how much ex  can increase. If 0≤eY , then ex  can be increased 
indefinitely, and the optimal objective value is unbounded. Conversely, if 0≤/eY , that 
is, if eY  has at least one positive component, then the increase in ex , from a pivot rule 
on ( ), 0>s eY  results to an increase of the value of the objective function. The optimal 
pivot rule determines the non basic variable ex , and the pivot ( ),s eY  that compute the 
optimal increase of the value of the objective function. 

In Bland’s Rule, choose the basis-entering variable ex , such that e is the smallest in-
dex with ∈ Nj J . Also choose the basis-leaving variable index s with the smallest index 
(in case of ties in the ratio test). This rule solves the cycling problem. 

3. Optimal Pivot Rules 

A key factor in the performance of the simplex method is the rule used to decide which 
index j (with 0>jc ) should enter in the basis after each pivot. It is well-known that 
the time spent in checking 0>jc , for each j, is ( )O m , and if we check all possible j’s, 
the total time is at most ( )O mn . This compares with the ( )O km  time needed to com- 
plete the rest of the pivot, where k is the number m of pivots performed since we last 
computed 1−B . 

However, the selection of a pivot rule not only will affect the performance of each  
 
Table 1. The simplex tableau format. 

c Bc  Nc    

 Bx  Nx  -  

Bc  mI  1−= NY B A  1−=b B b  Rows 1 trough m 

z  0 T
B jc Y  T 1

0
−= Bz c B b  Row m + 1 

jc  0 −j jc z  -  
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pivot, but also the total number of pivots needed to reach the optimum (if it exists). For 
each j (with 0>jc ), the time spent in checking a pivot  

( )
( ),

,

arg min , 0
  = > 
  

i
i j

i j

bt y
y

 

is ( )O m . For all possible j’s, the total time to check a most ( )−n m  pivots is ( )O mn . 
At each step in a simplex algorithm, pivoting requires the most important computing 
time; it consists to compute 1−B . This requires a ( )3O m  time, which is greater than 
the total number of time to check all possible j’s pivots. Reducing the number of pivots 
(number of iterations in the simplex algorithm) accelerate the speed of the simplex al-
gorithm to compute an optimal solution when exists. One may argue that this optimal 
pivot rule needs even more computation. The efficiency of the optimal pivot rule results 
from this simple computational complexity fact. 

Let  

( )
( )

,
,

= t
t j

t j

b
y

θ . 

The simplex algorithm with optimal pivot rule follows. 
Step 1. Let { }arg max ,= ∈j Ne c j J . Stop the algorithm if: 
1) 0≤ec , or all ∈ Nj J , then ,  k kB Nx x  is anoptimal solution. 
2) if / 0∃ ∈ >N jj J c  and ( ), 0≤i jy  for all 1, 2, ,= i m , the LP is not bounded. 

Stop the algorithm. 
Step 2. Determine the basis-entering and the basis-leaving variables by using optimal 

change pivot rule: 
For all ∈ Nj J  (with 0>jc ), let 0 ⊆N NJ J  such as 0∈ Nj J  if 

( )
( ),

,

arg min , 0
  = > 
  

i
i j

i j

bt y
y

 

exists. 
Let  

( ) ( )
( )

( )0, , ,
,

max : and arg min , 0
    = ∈ = >  
    

i
j Ns e t j i j

i j

bc j J t y
y

θ θ . 

The index of the basis-entering variable is e and the index of basis-leaving variable is s. 
Step 3. Perform the pivot operation using the basis-entering and the basis-leaving 

variable, and go to Step 1. 
Definition: A pivot is degenerate if the objective function value does not change 

from 2 consecutives pivots. A cycle is a sequence of pivots that returns to the dictionary 
from which the cycle began. 

Note: Every pivot in a cycle must be degenerate. 
Theorem 1 (termination with optimal pivot rule) If the simplex method uses optimal 

pivot rule, it terminates in finite time with optimal solution, and more over there is no 
cycling. 
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Proof: Suppose the simplex method is implemented with optimal pivot rule and con-
sider two consecutive bases kB  and 1, 1+ ≥kB k . Let { }/ 0= ∈ >

kN N jJ j J c  be the set 
of variables with positive reduced cost. Any ( ) , ∈

kNx j j J  can improve the value of  

the objective function. Let 
( )

( ),
,

arg min , 0
  = > 
  

i
i j

i j

bt y
y

 and ( )
( )

,
,

= t
t j

t j

b
y

θ . The im-  

provement of the objective function is ( ),j t jc θ . If the solution is degenerate, we have 

( ), 0=t jθ  for some ∈
kNj J , in particular if { }arg max /= ∈

kj Nj c j J  (Dantzig’s rule); 
what causes cycling. 

Now, let ( ) ( )
( )

( ), , ,
,

max : and arg min , 0
    = ∈ = >  
    

k
i

j Ns e t j i j
i j

bc j J t y
y

θ θ . 

If ( ), 0>es e cθ  and let 
k kB Bc x  and 

1 1+ +k kB Bc x  the values of the objective function and 
the corresponding solutions 

kBx  and 
1+kBx . We have ( )1 1 ,k k k kB B B B es ec x c x cθ

+ +
= +  ⇒  

1 1+ +
<

k k k kB B B Bc x c x . The solutions from two consecutive bases kB  and 1, 1+ ≥kB k  
cannot remain the same and there is no possible cycle. 

Conjecture 1. If ( ), 0=es e cθ , necessarily ( ), 0 0= ∀ ∈ ⇒ =
kj N tt j c j J bθ  and the cur-

rent solution can never be improved by the simplex algorithm. Hence the LP does not 
have a solution. 

An illustration of the Optimal Pivot Rule 
The proposed pivot rule is shown with two examples. 
Example 1. Beale’s cycling problem 
Consider the following linear programming problem: 

1 2 3 4
3 1maximize 150 6
4 50

= − + −z x x x x  

1 2 3 4

1 2 3 4

3

1 2 3 4

1 160 9 0
4 25
1 190 3 0subject to 2 50

1
0, 0, 0, 0

 − − + ≤

 − − + ≤


≤
 ≥ ≥ ≥ ≥

x x x x

x x x x

x
x x x x

 

Here, in Table 2, 1
3max
4

= =jc c ; but ( ) ( )1 11,1 2,1 0= =c cθ θ . 

 
Table 2. The initial simplex tableau (example 1). 

 x 1x  2x  3x  4x  
1

x  
2

x  
3

x  
b  

Bx  Bc  3/4 −150 1/50 -6 0 0 0 

1
x  0 1/4 −60 −1/25 9 1 0 0 0 

2
x  0 1/2 −90 −1/50 3 0 1 0 0 

3
x  0 0 0 1  0 0 0 1 1 

jz  0 0 0 0 0 0 0 0 

= −j j jc c z  3/4 −150 1/50 -6 0 0 0  
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The optimal pivot rule: ( )
( )

( ),33,3
,3

min , 0
  = > 
  

i
i

i

b Y
Y

θ  and ( )3 3,3 1 50 0= >c θ . The ba- 

sis-entering variable is 3x  and the basis-leaving variable is 3x . 

From Table 3, we have only 2 0>c . ( )
( )

( ),22,2
,2

min , 0
  = > 
  

i
i

i

b Y
Y

θ . The basis-ente-  

ring variable is 2x  and the basis-leaving variable is 2x . 
After only 3 iterations, we have the optimal solution on Table 4 with no cycling. 7 

iterations are required to solve this problem with Bland’s pivot rules. 
Example 2. Consider the following LP program 

1 2 3maximize 4 5 3= + +z x x x  

1 4

2 5

3 6

1 2 3 7

1000
500

subject to 1500
3 6 2 6700

0, 1, 2,3, 4.

+ =
 + = + =
 + + + =
 ≥ = i

x x
x x
x x
x x x x

x i

 

We solve this LP using optimal pivot rule. 

Here, 2max 5= =jc c ; ( )
( )

( )5,2 ,2
,2

min , 0 500
  = > = 
  

i
i

i

b Y
Y

θ  and ( )2 5,2 2500=c θ . 

The optimal pivot rule on Table 5: 
 

Table 3. The second simplex tableau (example 1). 

 x 1x  2x  3x  4x  
1

x  
2

x  
3

x  
b  

Bx  Bc  3/4 −150 1/50 −6 0 0 0 

1
x  0 1/4 −60 0 9 1 0 1/25 1/25 

2
x  0 1 2  −90 0 3 0 1 1/50 1/50 

3x  1/50 0 0 1 0 0 0 0 1 

jz  0 0 1/50 0 0 0 0 1/50 

= −j j jc c z  3/4 −150 0 −6 0 0 0  

 
Table 4. The optimal simplex tableau (example 1). 

 x 1x  2x  3x  4x  
1

x  
2

x  
3

x  
b  

Bx  Bc  3/4 −150 1/50 −6 0 0 0 

1
x  0 0 −15 0 15/2 1 −1/2 3/100 3/100 

1x  3/4 1 −180 0 6 0 2 1/25 1/25 

3x  1/50 0 0 1 0 0 0 0 1 

jz  3/4 −135 1/50 9/2 0 3/2 3/100 1/20 

= −j j jc c z  0 −15 0 −21/2 0 −3/2 −3/100  
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( )
( )

( )1 4,1 ,1
,1

4; min , 0 1000
  = = > = 
  

i
i

i

bc Y
Y

θ  and ( )1 4,1 4000=cθ . 

( )
( )

( )3 6,3 ,3
,3

3; min , 0 1500
  = = > = 
  

i
i

i

bc Y
Y

θ  and ( )3 6,3 4500=c θ . 

( ) ( ) ( ) ( ){ }3 1 2 36,3 4,1 5,2 6,3max , , 4500= =c c c cθ θ θ θ  
The basis-entering variable is 3x  and the basis-leaving variable is 6x  (the basis-ente- 

ring variable corresponds here to the minimal reduced cost, but with an optimal growth 
of the value of the objective function). 

Using the classical simplex pivot rule, the basis-entering variable is 3x  (corresponding 
to the maximal reduced cost) and the basis-leaving variable is 5x . The increase of the 
objective function is 2500. 

( )
( )

( )1 4,1 ,1
,1

4; min , 0 1000
  = = > = 
  

i
i

i

bc Y
Y

θ  and ( )1 4,1 4000=cθ . 

( )
( )

( )2 5,2 ,2
,2

5; min , 0 3700 6
  = = > = 
  

i
i

i

bc Y
Y

θ  and ( )2 5,2
18500 .

6
=c θ  

( ) ( ) ( ){ }1 1 24,1 4,1 5,2min ,=c c cθ θ θ  (see Table 6). 
The basis-entering variable is 1x  and the basis-leaving variable is 4x  (the basis-ente- 

ring variable corresponds here to the minimal reduced cost, but with an optimal growth  
 
Table 5. The initial simplex tableau (example 2). 

 x 1x  2x  3x  4x  5x  6x  7x  
b  

Bx  Bc  4 5 3 0 0 0 0 

4x  0 1 0 0 1 0 0 0 1000 

5x  0 0 1 0 0 1 0 0 500 

6x  0 0 0 1  0 0 1 0 1500 

7x  0 3 6 2 0 0 0 1 6700 

jz  0 0 0 0 0 0 0 0 

= −j j jc c z  4 5 3 0 0 0 0  

 
Table 6. The second simplex tableau (example 2). 

 x 1x  2x  3x  4x  5x  6x  7x  
b  

Bx  Bc  4 5 3 0 0 0 0 

4x  0 1  0 0 1 0 0 0 1000 

5x  0 0 1 0 0 1 0 0 500 

6x  3 0 0 1 0 0 1 0 1500 

7x  0 3 6 0 0 0 -2 1 3700 

jz  0 0 3 0 0 3 0 4500 

= −j j jc c z  4 5 0 0 0 -3 0  
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of the value of the objective function). Then, we have Table 7. 

( )
( )

( )2 7,2 ,2
,2

5 0; min , 0 700 6
  = > = > = 
  

i
i

i

bc Y
Y

θ . The basis-entering variable is 2x   

and the basis-leaving variable is 7x . 
We have an optimal solution on Table 8 after 3 iterations. 

1 2 5 6
350 11501000, , , 1500 and 27250 3.

3 3
= = = = =x x x x z  

Dantzig’s pivot rule computed the optimal solution of this LP with 6 iterations. 

4. Computational Experiments 

In this section, we present the computational results of modified simplex algorithm 
with optimal pivot rule. Optimal pivot rule was tested by solving randomly generated 
linear programming problems of various sizes using the MATLAB codes. We compare 
the number of iterations of this pivot rule with Dantzig’s pivot rule. The computer sys-
tem processor is Intel (R) Core (TM) i7 3770S CPU @ 3.1 GHz, 8.00 GB of memory, 
and 64-bit Window 8.1 Operating System. 

4.1. Problem Generation 

For LP problems considered here, data are randomly generated using MATLAB gene-
rator. We consider the LP problem whose formulation is given by 
 
Table 7. The third simplex tableau (example 2). 

 x 1x  2x  3x  4x  5x  6x  7x  
b  

Bx  Bc  4 5 3 0 0 0 0 

1x  4 1 0 0 1 0 0 0 1000 

5x  0 0 1 0 0 1 0 0 500 

6x  3 0 0 1 0 0 1 0 1500 

7x  0 0 6  0 −3 0 −2 1 700 

jz  4 0 3 4 0 3 0 8500 

= −j j jc c z  0 5 0 −4 0 −3 0  

 
Table 8. The optimal simplex tableau (example 2). 

 x 1x  2x  3x  4x  5x  6x  7x  
b  

Bx  Bc  4 5 3 0 0 0 0 

1x  4 1 0 0 1 0 0 0 1000 

5x  0 0 0 0 1/2 1 1/3 −1/6 1150/3 

6x  3 0 0 1 0 0 1 0 1500 

2x  5 0 1 0 −1/2 0 −1/3 1/6 350/3 

jz  4 5 3 3/2 0 4/3 5/6 27,250/3 

= −j j jc c z  0 0 0 −3/2 0 −4/3 −5/6  
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TMaximize c x  

subject to
0,

Ax b
x

≤
 ≥

 

where ( ) , ,×∈ < ∈ ∈  m n m nA m n b c  and ( ) =rank A m . 
We use MATLAB generator to build all data: SPRAND (m, n, density) is a random, 

m-by-n, sparse matrix with approximate density ×m n  uniformly distributed nonzero 
entries. The density used is p%. 

( )( ), , 0.5= +A round sprandn m n p  

80 when 500 an 50 when 500.= < = ≥p n p n  

The data of b are generated according to RANDN (1, m) which is a vector with ran-
dom entries. The data of c are generated according to RANDN (n, 1) which is vector 
with random entries. 

[ ] [ ]( )( )( )1: 1 1.5 1, 1b m abs round randn m− = × +  

and 

[ ]( )( )( )2 1, 1c abs round randn n= × − . 

We add an additional ones entries constraint in the matrix A, 
1=

≤∑ n
jj

x n  and  
( ) =b m n  to obtain a bounded problem. 

4.2. Comparison 

To measure the performance of our new optimal pivot rule, we compare the optimal 
pivot rule with Dantzig’s original pivot rule, written in a MATLAB environment pro-
gramming. The optimal pivot rule is also compare to the simplex method included in 
MATLAB optimset toolbox. The performance measures used for comparison are the 
number of iterations (pivots) and the CPU time. Note that DPR is simplex algorithm 
with Dantzig’s pivot rule and OPR is simplex algorithm with optimal pivot rule, SML is 
simplex in MATLAB. 

Table 9 shows the comparison between the average number of iterations and the 
CPU time from solving LP by the simplex algorithm with DPR, OPR and SML: the av-
erage number of iterations and the CPU time from OPR pivot rule is less than the one 
from DPI and SML. DPR pivot rule achieves less number of iterations when the num-
ber of constraints and variable in the problem is higher. Due to limitation of the simp-
lex software in MATLAB platform, SML could not solve the problems with 500≥n  
and 450≥m , with exit message*. But SML and DPR solved LP’s using almost the same 
number of iterations, but with a higher CPU time for SML. 

*MATLAB message: “Exiting: Maximum number of iterations exceeded; increase op-
tions. MaxIter”: MATLAB could not solve the problem asking to increase the maxi-
mum number of iterations permitted. 

5. Summary of Results and Conclusions 
We proposed a new pivot rule called the optimal pivot rule. The idea of this rule is to  
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Table 9. The average number of iterations and the average CPU. 

No. 
Problem size Optimal pivot Dantzig’s pivot Simplex in MATLAB 

m n 
Number of  
iterations 

CPU 
Number of  
iterations 

CPU 
Number of  
iterations 

CPU 

1.  30 60 28 0.031 174 0.001 169 0.11 

2.  40 80 41 0.015 275 0.032 274 0.22 

3.  50 100 80 0.068 573 0.047 570 0.48 

4.  100 150 165 0.15 4468 0.82 4412 8.73 

5.  110 175 259 0.32 7150 1.52 7153 16.33 

6.  120 190 270 0.37 7399 1.84 7368 17.73 

7.  130 200 268 0.40 7500 2.23 7497 26.16 

8.  140 250 368 0.68 9582 3.63 9580 29.95 

9.  170 300 557 1.46 17,597 11.09 17,596 89.10 

10.  200 350 621 2.03 23,541 19.58 23,546 214.5 

11.  250 400 1084 4.78 32,408 37.28 32,407 482.4 

12.  300 450 1263 7.24 60,514 94.20 * * 

13.  350 500 1576 12.9 86,002 267.51 * * 

14.  400 600 1846 23.16 113,162 666.02 * * 

 
compute an optimal improvement in the objective value per unit step of the basis-ente- 
ring variable. From our experiments, the proposed pivot rule is faster and reduces the 
number of such iteration over the Dantzig’s pivot rule the simplex algorithm. Tableau 9 
offers a summary of the average number of iterations of each method. We conclude 
that the simplex algorithm using the optimal change pivot rule is very fast for solving 
linear programming problems when the size of the problem is large. 

Using simple computational complexity facts, we proved that the new optimal pivot 
rule in the simplex algorithm is efficient. Moreover, we show that the optimal pivot rule 
solves the problem of cycling in the simplex algorithm. 

6. Recommendations 

In a future research, we will implement the optimal pivot rule to solve mathematical 
optimization problems whose algorithms are derived from simplex pivots like quadratic 
programming problem. The conjecture 1 stated in this article needs to be proven.  

To prevent the warning message “Exiting: Maximum number of iterations exceeded, 
increase options. MaxIter” from the simplex in MATLAB platform, MATLAB develop-
ers should include our optimal pivot rule in the simplex method in that software, so 
that MATLAB will then be able to solve larger size LPs. 
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