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Abstract

In the paper, the approximate solution for the two-dimensional linear and nonlinear Volterra-
Fredholm integral equation (V-FIE) with singular kernel by utilizing the combined Laplace-Ado-
mian decomposition method (LADM) was studied. This technique is a convergent series from eas-
ily computable components. Four examples are exhibited, when the kernel takes Carleman and
logarithmic forms. Numerical results uncover that the method is efficient and high accurate.
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1. Introduction

The V-FIE arises from parabolic boundary value problems. In practical applications one frequently encounters
the V-FIE with singular kernel of the form

p(2.t)=c(2 )+ [ [ F(t.p)k(lz =) (n.p.6(n.p))dndp @

The functions k(|;( 77|) t p) and g(;(, ) are given and called the kernel of Fredholm integral term,
Volterra integral term and the free term respectively and A is a real parameter (may be complex and has phys-
ical meaning). Also, Q is the domain of integration with respect to position, and the time t, p |0, TJ T<o.
While ¢(;(,t) is the unknown function to be determined in the space Lp( )XC[O,TJ . In [1] Abdou et al.
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studied the existence and uniqueness of solution of V-FIE.

There are several techniques that have been utilized to handle the integral Equation (1), in [2]-[5] a few tech-
niques, for example, the projection method, time collocation method, the trapezoidal Nystrom method, and fur-
thermore analytical or numerical techniques were utilized to treated this equation, but this techniques expe-
rienced troubles as far as computational work utilized. In [6] treated Maleknejad and Hadizadeh Equation (1) by
using the ADM presented in [7]-[9].

Many authors have studied solutions of two-dimensional linear and nonlinear integral equations by utilizing
different techniques, such as Abdou et al. in [10] discussed the solution of linear and nonlinear Hammerstien
integral equations with continuous kernel and used two different methods (Adomian decomposition method and
homotopy analysis method). Abdou et al. in [11]-[13] considered the integral equation with singular kernel and
used Toeplitz matrix and product Nystrom methods to obtain the solution. In [14] El-Kalla and Al-Bugami used
ADM and degenerate kernel method for solving nonlinear VV-FIE with continuous kernel.

In this paper, we will discuss the combined (LADM) to approximate solutions with high degree of accuracy
for V-FIE with a generalized singular kernel.

2. The Adomian Decomposition Method for Solving V-FIE

Consider the integral equation

p(2.t)=c(x )+ [ [ F(t.p)k(lz=n))7 (1. p.6(n.p))dndp @)

The (ADM) introduces the following expression

$(x.t)=

Ms

> 4(xt) ©)

I
o

for the solution ¢(y,t) of Equation (2), where the components ¢ (z,t) will be determined recurrently.
Moreover, the method defines the nonlinear function 7(77,p,¢(77,p)) by an infinite series of polynomials

y(m.p.6(n.p))= 2"\1 @)

where A, are the so-called Adomian polynomials that represent the nonlinear term y(ry,p,¢(n,p)) and can
be calculated for various classes of nonlinear operators according to specific algorithms set by Adomian [8] [9].
A new algorithm for calculating these polynomials was established by Wazwaz [15] [16].

Substituting Equation (3) and Equation (4) into Equation (2) yields

S t 0
;ﬂ (z)=s(xt)+4[ [ F (t,p)k(|l_n|)§ Adidp ©
The components ¢, (z,t),i>0 are computed using the following recursive relations
¢o(z,t) = g(;(,t) ©
|+1 Zv /1J. -[ |Z 77|)Aﬁd77d,0 (7)

Relations (6,7) will enable us to determine the components ¢ (;(t) ,i>0 recurrently, and as a result, the se-
ries solution of ¢#( x,t) is readily obtained.

3. Laplace Adomian Decomposition Method Applied to V-FIE with Singular Kernel
3.1. Carleman Kernel

We assume that the kernel k(|7 —7|) of Equation (1) takes the form k(| —n|)=|x—n[" . [17] then integral
Equation (1) can be expressed as:

b2 t)=c(x )+ A[ [ F(tLo)x—n"7(mp.¢(n p))dndp ®)

Applying the Laplace transform to both sides of Equation (8) gives:
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£{p()} = e ()} + AL {F o)z =" (006 (n. p))} ©

The ADM can be used to handle Equation (9). We represent the linear term ¢(;(,t) from Equation (3) and
the nonlinear term 7(77,p,¢(77,p)) will be represented by the Adomian polynomials from Equation (4).
Substituting Equation (3) and Equation (4) into Equation (9) leads to

eS| =clsten)s e (F @bl S o)
The ADM introduces the recursive relation

L (20} = L{s (2. 1)}
Ll (10} = 2L {F (L o) {lz ="} {A}] 120 (11)

Applying the inverse Laplace transform to the first part of Equation (11) gives ¢, (z.t). Utilizing ¢,(z.t)
will empower us to evaluate ¢1(;(,t), and so on. This will prompt the complete determination of the compo-
nents of ¢,i>0 upon utilizing the second part of Equation (11). The series solution follows promptly after

utilizing Equation (3). The obtained series solution may converge to an exact solution if such a solution exists.

3.2. Logarithmic Kernel

We assume that the kernel k(|z —7|) of Equation (1) takes the form k(| —7])=In|z 7|, [17] then integral
Equation (1) can be expressed as:

p(2t)=c(2 )+ 2] | F(t.p)In|z=nly(n.p.6(n.p))dndp (12)
Applying the Laplace transform to both sides of Equation (12) gives:
L{o(2.0)} = £{s (20} + 2L {F (L p)H{Inlz =l {y (n. £ (1. £))} | (13)

Using the same method we shall find at the end the required solution by the inverse of Laplace transform.

4. Numerical Examples
4.1. Application for Carleman Kernel and Logarithmic Kernel

We consider two examples for the integral equation
bz )=s(z)+ [ [ k(2 -1))¢' (n.p)dndp (14)

2 =0.001, N =20, the exact solution ¢(z,t)= z’t?

We consider the linear and nonlinear cases: | =1,1 =0.5 respectively, for the Carleman kernel
k(Jz—n|)=|x—n|" and the computing results are obtained when v =0.01,0.32 where v is called Poisson’s
coefficient, 0<v <1, while the kernel in the second example takes the logarithmic kernel k(| —7|)=In|z -7|
and the results are computing, using Maple 17 at t=0.001,t=0.7 and N =20.

Example 1 [(see 1)]: Consider the V-FIE with Carleman kernel

tel —v
s(xt)=c(xt)+A[ [ P*|x—n[" ¢ (n.p)dndp (15)
2=0.001,N =20, the exact solution ¢(,t)= 7’
Using Maple 17, we obtain Table 1 and Table 2
Example 2 [(see 1)]: Consider the VV-FIE with logarithmic kernel

p(x)=s(z)+ [ [ p*In|z—n|¢ (1.p)dndp (16)

2 =0.001, N =20, the exact solution ¢(z,t)= z’t?
Using Maple 17, we obtain Table 3 and Table 4
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Table 1. Results obtained for example 1 and error (Linear case, |1=1).
t X Exact App. Error App. Error
v=0.01 v=0.32
—1.00E+00  1.000000000E—06  1.00000000E—06  0.000000000E+00  1.00000000E—06  0.000000000E+00
t=0.001 —5.00E-01 2.50000000E-07  2.500000000E—07  0.000000000E+00  2.500000000E—07  0.000000000E+00
5.00E-01 2.500000000E—07  2.500000000E—07  0.000000000E+00  2.500000000E—07  0.000000000E+00
1.00E+00 1.000000000E—06  9.999999997E—07  3.000000000E—16  9.999999997E—07  3.000000000E—16
v=0.01 v=0.32
—1.00E+00  4.900000000E-01 4.900814897E—01 8.148970000E—05 4.900840230E—01  8.402300000E—05
t=07 -5.00E-01  1.225000000E-01  1.225102564E—01  1.025640000E-05 1.225131121E-01  1.31121000E—05
5.00E-01  1.225000000E-01 1.224897398E-01  1.026020000E—05  1.224755300E-01  2.447000000E—05
1.00E+00  4.900000000E-01  4.899184905E—01  8.150950000E—05 4.898431989E-01  1.568011000E-04

Table 2. Results obtained for example 1 and error (Nonlinear case, 1=0.5).

t X Exact App. Error App. Error
v=0.01 v=0.32
—~1.00E+00  1.000000000E—06  9.999994927E—07 ~ 5.073000000E—13  9.999995310E—07  4.690000000E—13
t=0.001 —-5.00E-01  2.50000000E—07  2.499998723E—07  1.277000000E—13  2.499998536E-07  1.464000000E—13
5.00E-01  2.500000000E—07 2.499998722E—07  1.278000000E—13  2.499997268E—07  2.732000000E—13
1.00E+00  1.000000000E—-06  9.999994924E—07  5.076000000E—13  9.999991246E-07  8.754000000E—13
v=0.01 v=0.32
—1.00E+00  4.900000000E—01  4.898260141E—01  1.739859000E—-04  4.898390761E-01  1.609239000E—04
t=0.7 —-5.00E-01  1.225000000E-01  1.224562011E-01  4.379890000E—05  1.224497750E-01  5.022500000E—05
5.00E-01  1.225000000E—-01 1.224561794E—01  4.38206000E—05  1.224063394E-01  9.366060000E—05
1.00E+00  4.900000000E—01  4.898259283E—01  1.740717000E—04  4.896998594E—01  3.001406000E—04
Table 3. Results obtained for example 2 and error (Linear case, |=1).
t X Exact App. Error
—1.00E+00 1.000000000E—06 9.999999994E—07 6.000000000E—16
L —5.00E-01 2.50000000E—07 2.499999999E—07 1.000000000E—16
00 5.00E-01 2.500000000E-07 2.500000001E-07 1.000000000E—16
1.00E+00 1.000000000E—06 1.000000001E—06 1.000000000E—15
—1.00E+00 4.900000000E—-01 4.898532159E-01 1.467841000E—04
—5.00E-01 1.225000000E—-01 1.224747231E-01 2.527690000E—05
o 5.00E-01 1.225000000E—-01 1.225252799E-01 2.527990000E—05
1.00E+00 4.900000000E—-01 4.901467682E-01 1.467682000E—04

4.2. Application for a Generalized Carleman Kernel and Logarithmic Kernel

Example 3 [(see 11, 13)]: Consider the V-FIE with generalized Carleman kernel

p(xt)=c(xt)+ AL [ o7 |2 -

-V

¢ (n.p)dndp, (0<t<T;|z|<1)

17)
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4 =0.31579,v = 0.12,N = 20, the exact solution u(X,t)=xt°

Using Maple 17, we obtain Table 5.

Example 4 [(see 11,13)]: Consider the V-FIE with generalized logarithmic kernel

p(xt)=c(rt)+ AL [ o7 In|2* ~1*|¢' (n.p)dndp

2 =0.6666666667, N = 20, the exact solution u(x,t)=xt®,

Using Maple 17, we obtain Table 6.

Table 4. Results obtained for example 2 and error (Nonlinear case, 1=0.5).

t X Exact App. Error
—1.00E+00 1.000000000E—06 1.000000750E—06 7.500000000E—13
—5.00E-01 2.50000000E—07 2.500002741E-07 2.741000000E—13
(oo 5.00E-01 2.500000000E—07 2.500002741E—07 2.741000000E—-13
1.00E+00 1.000000000E—06 1.000000750E—06 7.500000000E—13
—1.00E+00 4.900000000E—-01 4.902570318E—-01 2.2570318000E—04
—5.00E-01 1.225000000E—01 1.225939984E—-01 9.399840000E—-05
=07 5.00E-01 1.225000000E—-01 1.225940725E-01 9.407250000E—-05
1.00E+00 4.900000000E—-01 4.902573282E-01 2.573282000E—04

Table 5. Results obtained for example 3 and error.

Linear (1=1) Nonlinear (I=2)
t 4 Exact
App. Error App. Error
—1.00E+00 —4.665600000E—14 —4.665602285E—14 2.285000000E-20 —4.665600000E—14  0.000000000E+00
—5.00E-01  —1.45800000E—15 —1.458000498E—-15 4.980000000E—22  —1.45800000E—15 0.000000000E+00
(=000 5.00E-01 1.45800000E—15  1.457992071E—-15 7.929000000E—21 1.45800000E—15 0.000000000E+00
1.00E+00 4.665600000E—14 4.665563615E—14 3.638500000E—19  4.665600000E—14 0.000000000E+00
—1.00E+00 —4.096000000E—03 —4.100223060E—03 4.223060000E—06 —4.095973539E—-03 2.646100000E—08
—5.00E-01 —1.280000000E—04 —1.281230657E-04 1.230657000E—07  —1.279999820E—04 1.800000000E—11
o4 5.00E-01 1.280000000E—04 1.249760487E—04 3.023951300E—06  1.279997138E—04 2.862000000E—-10
1.00E+00 4.096000000E—03  3.958591126E—03 1.374088740E—04  4.095579754E—-03 4.202460000E-07

Table 6. Results obtained for example 4 and error.

—1.00E+00

—5.00E-01
t =0.006

5.00E-01
1.00E+00
—1.00E+00
—5.00E-01
t=04
5.00E-01

1.00E+00

Exact

—4.665600000E—-14
—1.45800000E—15
1.45800000E—-15
4.665600000E—-14
—4.096000000E—03
—1.280000000E—04
1.280000000E—-04
4.096000000E—03

Linear
App.
—4.665417105E—-14
—1.457963338E-15
1.458036663E—15
4.665782899E—-14
—3.369778189E—-03
—1.139984028E—-04
1.439401751E—-04
4.947706301E-03

Error
1.828950000E—18
3.666200000E—20
3.666300000E—20
1.828990000E—18
7.262218110E—04
1.400159720E-05
1.594017510E—-05

8.51706301E-04

Nonlinear
App.
—4.665600000E—14
—1.45800000E—15
1.45800000E—15
4.665600000E—14
—4.097965280E—-03
—1.280011799E-04
1.280011799E-04
4.097966603E—-03

Error
0.000000000E+00
0.000000000E+00
0.000000000E+00
0.000000000E+00
1.965280000E—06
1.179900000E—09
1.179900000E—09
1.966603000E—06
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5. Conclusion

In this study, we considered linear and nonlinear integral equations of type Volterra-Fredholm with singular
kernel. We have proven that the (LADM) is effective and useful technique for solving these kinds of integral
equations with singular kernel and many nonlinear problems, efficiency and accuracy of the introduced method
are illustrated by four numerical examples which showed simplicity of this method.
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