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Abstract 
In supervised learning the number of values of a response variable can be very high. 
Grouping these values in a few clusters can be useful to perform accurate supervised 
classification analyses. On the other hand selecting relevant covariates is a crucial 
step to build robust and efficient prediction models. We propose in this paper an al-
gorithm that simultaneously groups the values of a response variable into a limited 
number of clusters and selects stepwise the best covariates that discriminate this 
clustering. These objectives are achieved by alternate optimization of a user-defined 
model selection criterion. This process extends a former version of the algorithm to a 
more general framework. Moreover possible further developments are discussed in 
detail. 
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1. Introduction 

Regression and classification problems arise from various fields of application as 
medicine, social sciences, etc. The response variable can be continuous, as for instance 
blood pressure, or categorical with a potentially large number of levels, as a score of 
disease activity for example. In this article, we deal with the problem of prediction of a 
response variable, continuous or categorical, when an accurate predictive model cannot 
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be satisfactorily developed, for instance when the 2R  coefficient of a linear regression 
or the percentage of correct classification of a supervised classification model is too low. 
We propose then to group the values of the response variable into a limited number of 
clusters in order to improve the predictive performances of the model, as measured for 
instance by the 2R  coefficient or the percentage of correct classification, evaluated via 
cross-validation or bootstrap internal validation [1]. 

Consider two examples. 
First, if the response variable is a level of rainfall, say in millimeters, one can en- 

counter a situation in which no model could accurately predict precisely the value of 
precipitations to fall using the available covariates, while another model, fitted with 
exactly the same covariates, could predict the level of rainfall to lie within a particular 
interval with a very low classification error rate. 

Second, if the response variable is a disease severity score with a large number of 
ordered categories, like some scores of severity of peanut allergy [2], it might be dif- 
ficult to build a model that satisfactorily predicts each of the categories, while some 
grouping of the initial categories could be more accurately predicted. 

In addition to the clustering of the values of the response variable, the issue of 
covariate selection to include in the model has also to be solved concurrently in order 
to avoid overlearning and to improve classification given by the model describing the 
clustering. 

This problem deals both with supervised and unsupervised classification. In model 
building covariate selection is a fundamental topic which has been widely adressed and 
is still of main interest [1] [3] [4]. In the unsupervised clustering setting, variable selec- 
tion is a matter to which some authors have also already contributed [5]-[8]. In this 
context statistical units are clustered solely regarding to explaining covariates since no 
response variable has to be accounted for. However, in order to address our problem, 
we have thus to deal with an additional constraint which is the variable to predict. 

We already had to overcome these issues in a dataset we analyzed previously [9]. In 
order to clarify our objectives, recall briefly its framework. Peanut allergy is currently 
diagnosed in hospital during an open food challenge in which increasing doses of 
peanut extracts are administrated to the patient until an objective allergic reaction 
appears. The cumulative dose triggering the first clinical reaction is called eliciting dose. 
Since no effective treatment of peanut allergy is yet available, a diet adapted to the 
maximum tolerated dose of the patient is then initiated. Moreover, the open food 
challenge being a potentially harmful and costly procedure, our previous research 
aimed at discovering predictive covariates of the eliciting dose that can be measured via 
a non-invasive test, such as blood sampling, in order to further combine them within a 
discriminant analysis. However, the levels of dose investigated are fixed by the in- 
vestigator in the study protocol and the eliciting dose can therefore not be considered 
as a continuous endpoint nor analysed using a linear regression. Moreover the number 
of levels is large and in practice the number of patients reacting at a given dose can be 
very small, which renders an ordinal logistic regression disputable. In order to address 
this issue, an algorithm that simultaneously groups eliciting dose levels in a limited 
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number of clusters and selects the most discriminant covariates was implemented. This 
algorithm processes in a forward fashion based on an alternative minimization of Wilks’ 
Lambda [10]. In our previous paper, the algorithm was applied on a dataset of 74 
allergic patients in which 34 covariates were measured in order to predict their elicit- 
ing dose. Our method allowed identifying a clinically relevant cluster of levels of elicit- 
ing dose which could be predicted with encouraging performances using a small subset 
of covariates. Promising results were also achieved on simulated data [11]. 

In this paper, we propose two generalizations of the latter version of our algorithm. 
First the algorithm was extended formally to the case where any model selection 
criterion can be used with the classifier of interest in addition to Wilks’ Lambda. For 
instance the Akaike Information Criterion (AIC) [12] can be used to allow using any 
classifier whose parameters are obtained by likelihood maximization, such as logistic 
regression [12]. Second we replaced forward selection with stepwise selection to allow 
removing covariates that could have become useless during the procedure. 

The structure of the article is as follows. After the formulation of the problem and 
the definition of notations in Section 3, we present the new version of our algorithm in 
Section 4. Section 5 presents some technical discussions and future improvements of 
the algorithm. We finish by a conclusion. 

2. Formulation of the Problem  

Let { }1, ,I n=   a sample. Let y be a continuous or categorical variable observed on 
the elements of I. 

Let also 1, , px x  be p continuous or categorical covariates, all measured on I. The 
dataset consists then in the sample ( ){ }1

1, ,
, , , p

i i i i n
y x x

= 
 . 

Denote by { }1, , qu u , q n≤ , the q different values of y observed in the sample I 
and define the class { }i iI y u= = . When y is categorical, the values { }1, , qu u  are its 
q levels. If y is continuous, q may equal n and the classes { }1, , qI I  are then reduced 
to singletons. 

To address our problem, we propose in this article an algorithm to group the classes 

{ }1, , qI I  into a fixed limited number of clusters r q<  and to simultaneously select 
a subset of covariates among 1, , px x  that best discriminates this clustering by 
optimizing a model selection criterion fixed a priori. A model to fit the data is then 
defined by:   

• a clustering   of r q<  clusters to further gather the set of values { }1, , qu u  of 
y;  

• a classifier;  
• a subset of covariates of 1, , px x  which are the most relevant ones to dis- 

criminate  .  

3. Details of the Algorithm  
3.1. Principle 

Select a classifier and a model selection criterion denoted Crit. Some model selection 
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criteria are discussed in Section 3.3. Define now an algorithm of alternate optimization 
to address our problem.   

3.1.1. First Algorithm 
For every possible clustering of the classes 1 2, , , qI I I , select the subset of covariates 
among the ( )2 1p −  possible ones that optimizes the model selection criterion. Then, 
retain the clustering and the corresponding selected subset of covariates that optimizes 
the criterion among all possible clusterings. 

This first solution to address our problem could be computationally intensive when 
the numbers of possible clusterings and of covariates are too large. 

3.1.2. Second Algorithm 
In order to reduce the number of computations, we can proceed as follows. For a given 
clustering of the classes 1 2, , , qI I I , select a subset of covariates among the ( )2 1p −  
possible ones that optimizes the criterion. Determine a new clustering that optimizes 
the criterion with the selected covariates. For this new clustering, select a new subset of 
covariates that optimizes the criterion. And so on. This algorithm is convenient when 
the number of covariates is not too large.  

3.1.3. Third Algorithm 
When the number p of covariates is too large, in order to avoid exploring all subsets of 
covariates among the ( )2 1p −  possible subsets of covariates, covariates may be 
included in the model in a forward manner, by increasing at each step the number of 
discriminant covariates by one, or in a stepwise manner, by including at each step a 
new variable and by potentially removing one or more variables already included. This 
algorithm is detailed in the next subsection.  

3.2. Algorithm  

Fix the number r q<  of clusters in which the actual values of y are to be grouped. 
The choice of r is discussed in Section 4.2. Denote by Crit a given model selection 
criterion to optimize. For example, Crit can be Wilks’ Lambda when using linear 
discriminant analysis as classifier or AIC when using a model fitted by the maximum of 
likelihood method, such as logistic regression. The area under the Receiver Operating 
Characteristic (ROC) curve might also be considered [13]. More generally, Crit can be 
any measure that allows to compare the performances or the fit of two models built on 
the same dataset. 

We denote by Crit ( )1; , , liix x  the criterion computed only with the covariates 
1 , , liix x  when the classes { }1, , qI I  are clustered in the partition   of r clusters, 

and where 1, , li i  are the indexes of the l p≤  covariates chosen to optimize Crit. 
Moreover we assume that a test statistic T is available to compare the criterion 

computed with two different models fitted with the same classifier and the same 
clustering but with two different subsets of covariates. This statistic will be used first to 
assess if adding a new covariate can improve significantly the discriminant power of the 
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current model at level 10 1α< <  (T-to-enter) and second if every covariate previously 
entered still significantly contributes to its discriminant power at level 20 1α< <  
(T-to-remove). 

The algorithm processes as follows: 
• Step 1: 

1. determine the clustering ,1∗  that optimizes Crit ( )1; , , px x  relatively to 
 ;  

2. select the covariate ,1x∗  in { }1, , px x  that optimizes Crit ( ),1; x∗  relatively 
to x  if its T-to-enter p-value is lower than 1α ;  

• Step 2: 
1. determine the clustering ,2∗  that optimizes Crit ( ),1; x∗  relatively to  ;  
2. select the covariate ,2x∗  in { } { }1 ,1, , px x x∗−  such that Crit ( ),2 ,1 2; ,x x∗ ∗  is 

optimized relatively to 2x , if its T-to-enter p-value is lower than 1α ;  
3. compute the T-to-remove of ,1x∗  and ,2x∗  and remove from the model the 

covariate with the highest p-value above 2α , if any. The algorithm stops if ,2x∗  
is the variable to be removed.  

• ...  
• Step k: 

1. determine the clustering ,k∗  that optimizes Crit ( ),1 , 1; , , kx x∗ ∗ −
  relatively to 

 ;  
2. select the covariate kx ,∗  in { } { }1 ,1 , 1, , , ,p kx x x x∗ ∗ −−   such that  

Crit ( ), ,1 , 1; , , ,k k kx x x∗ ∗ ∗ −
  is optimized relatively to kx , if its T-to-enter 

p-value is lower than 1α ;  
3. compute the T-to-remove of all previously entered covariates ,1 ,, , kx x∗ ∗

  and 
remove from the model the covariate with the highest p-value above 2α , if any.  

• and so on... 
• procedure stops if either no remaining covariate can improve the discriminant 

power of the model, i.e., if their T-to-enter p-value is greater than 1α , or if the model 
obtained after Step k.3 is identical to a preceding one, or if every covariate is already 
entered.  

Remark 1. Clustering inducing clusters with low frequencies can be ignored by 
setting an appropriate parameter if needed. Indeed a cluster containing too few obser- 
vations would be meaningless for further inference and results would be likely due to 
overfitting. 

Remark 2. Note that when y is continuous or ordinal, its values can only be grouped 
into intervals, i.e. only consecutive values can be gathered together. These intervals are 
then built by selecting their upper bound. The number of possible clusterings at each  

step of the algorithm is thus 
1
1

q
r
− 

 − 
. In the case of a continuous variable, the number  

of possible clusterings may be very large. It could be reduced by choosing an optimal 
clustering among a limited subset of candidate clusterings, defined for example using 
quantiles of the empirical distribution of y in I. 
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Remark 3. As in any regression or classification model, a categorical covariate would 
have to be replaced by dummy indicators if the number of levels is greater than two. 

Remark 4. Note that removing part 3 in every step of the stepwise version of the 
algorithm gives the forward algorithm as studied in [9]. 

Remark 5. The algorithm could be easily modified to allow the choices of two 
different test statistics when entering or removing a covariate. 

Remark 6. In Step k.3, the last entered covariate cannot be removed unless 2 1α α< , 
or if the test statistics used to enter or remove a covariate are different. 

Remark 7. In Step k.3, the algorithm could be modified in order to remove not only 
the less relevant covariate but all covariates not meeting the criterion to stay in the 
model, i.e. with T-to-remove p-value greater than 2α . 

3.3. Model Selection Criteria and Associated Test Statistic  

We recall now some model selection criteria and the corresponding test statistics used 
in the algorithm. 

3.3.1. Wilks’ Lambda 

Wilks’ Lambda is defined as the ratio ( ) ( )
( )

1
1

1

det ; , ,
; , ,

det ; , ,

p
p

p

W x x
x x

T x x
Λ =











, where 

( )1; , , pW x x  and ( )1; , , pT x x  are respectively the within-class and the total  

covariance matrices computed using the covariates 1, , px x  and the clustering   of 
classes of I. A lower value of Λ  indicates a better discrimination between the clusters. 

In order to evaluate the change in Wilks’ Lambda when the covariate lx  is added to 
the set of covariates 1 1, , lx x −

 , the T statistic is defined for a given clustering   in r  

clusters as the ratio ( )11
1

l

l

n l r
r

θ
θ

− − −−
−

, where 
( )
( )

1

1 1

; , ,

; , ,

l

l l

x x

x x
θ

−

Λ
=
Λ








. Under 

multinormality and homoscedasticity assumptions, the random variable T follows a 
Fisher distribution with ( )( )1, 1r n l r− − − −  degrees of freedom [10]. 

The use of Wilks’ Lambda is thus best suitable in case of homoscedasticity and 
normality of the response variable in the classes induced by its categories, even if the 
test above seems to be quite robust to small departures to those assumptions. In our 
framework these hypotheses are difficult to test in practice since the clustering might 
change at every step of the algorithm and thus the conditional distributions of the 
response variable as well. As such, homoscedasticity could hold for a given clustering 
but not for another. 

3.3.2. Akaike Information Criterion 
The Akaike Information Criterion (AIC) is used for a model whose parameters were 
estimated using the maximum of likelihood method, like for instance the logistic 
regression of   by 1, , px x . If we denote by L the likelihood of a given model, the 
AIC ( )1; , , px x  is defined as ( )12 ln ; , , 2pL x x d− +  where d is the number of 
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estimated parameters. A lower AIC indicates a better model fit. 
In order to evaluate the change in AIC when the covariate lx  is added to the set of 

covariates 1 1, , lx x −
 , the T statistic of the likelihood ratio test is defined as 

( )
( )

1 1

1

; , ,
2 ln

; , ,

l

l

L x x

L x x

−

−







, which follows asymptotically a Chi-square distribution with one 

degree of freedom 2
1χ . 

3.3.3. Other Criteria 
The algorithm can actually be used with any model selection criterion for which a 
statistical test of comparison between two models fitting the same response variable 
using different sets of covariates is available. For example, the area under the ROC 
curve (AUC), which is widely used in many diagnosis and prognosis studies, might be 
considered in the case of a binary response variable y. The ROC curve is defined by the 
set of the points with coordinates (1 − specificity, sensitivity) obtained from the 
classifier when the cut-off varies. A test on the difference between two AUC is given by 
DeLong in [13]. 

4. Further Possible Developments of the Algorithm  
4.1. Variable Selection  
4.1.1. Backward Variable Selection 
The algorithm was aimed at building parsimonious models. This is particularly relevant 
when the task of interest is prediction, for example when diagnosing a disease. This 
explains why the selection scheme was designed at first to process forward. In a 
framework where covariate elimination would be less essential, the algorithm could 
easily be converted to a backward selection mode. In some epidemiological studies for 
instance one is often interested in modelling the effects of risk factors on a disease 
rather than building a very sparse model for predictive purposes. In this context, we 
could thus adapt the algorithm in eliminating at each step the less informative covariate 
instead of adding the one optimizing the criterion. 

4.1.2. Penalization Methods 
As a first attempt we developed a stepwise scheme for the covariate selection step. The 
algorithm inherits thus all drawbacks of a stepwise covariate selection procedure [1], as 
for example a propensity to keep useless covariates in the final model when candidate 
covariates are too numerous in regard to the informative ones. Penalization methods 
were suggested by several authors as a solution to sidestep these problems. In our 
context, the covariate inclusion step could be replaced by a penalized likelihood 
approach. If sparsity is needed, Tibshiranis’s LASSO is a valuable solution [14]. Note 
that several penalization functions have been defined, allowing use of different criteria: 

1 2,L L , Elastic net [15], etc. Note also that these issues do not have to be addressed 
when the number of candidate covariates is low since the algorithm could perform an 
exhaustive search by generating at each step all possible subsets of covariates. 
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4.2. Choice of the Number r of Clusters 

When analyzing real-life data, the practitioner will have to fix the number r of clusters. 
An automated procedure to find the optimal number of clusters would be helpful. As a 
first attempt, one could simply vary r over a grid of values and keep the best result 
according to a specific criterion (via a resampling procedure as crossvalidation). The 
choice of r could be a compromise between the precision of the prediction, which 
increases if clusters are more numerous and less extensive, and the predictive accuracy 
of the classifier, which is expected to decrease when r increases. For instance, one can 
indeed expect the well-classification rates to be lower when using the algorithm with 
numerous clusters than with only two, since it seems more likely to fail classifying an 
observation correctly. 

4.3. Nonlinear Covariates in Logistic Regression 

We focused here on the case where a linear relationship exists between the covariates 
and the response variable when using logistic regression. This can be extended to a 
more general framework by including restricted cubic splines [16] or fractional poly- 
nomials [3] at the first step of the algorithm, i.e. when the optimal clustering is ob- 
tained with all candidate covariates. These new covariates could then be entered or 
removed afterwards as any other covariates while the algorithm processes. However, it 
could be difficult to choose an adequate transformation of the covariates since the 
shape of the link can potentially change with the clustering at each step of the 
algorithm.  

4.4. Correlations 

The case of high correlation between covariates was not treated. To address this issue, a 
first solution could be to eliminate the covariates that are strongly correlated to other 
covariates, and to keep the ones that are the most discriminant relatively to the 
response variable. Another solution would be to apply the algorithm on uncorrelated 
factors given by an appropriate factorial analysis like Principal Component Analysis. 
Also a Partial Least Square (PLS) approach could be integrated in order to take the y 
variable into account. This could be particularly interesting since several covariate 
selection techniques have been developed for PLS [17]. 

4.5. Other Classifiers 

As stated above, the algorithm can be applied with all available supervised learning 
methods. Mention among others Support Vector Machine [18], which is a powerful 
classification method, especially in high dimension and for which penalizations tech- 
niques have already been developed [19]. For optimal use of the algorithm, other 
optimality criteria would have to be defined, like for instance the distance to the 
separating hyperplane in the case of SVM. Two different optimality criteria for cluster- 
ing and covariate selection could even be used.  
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5. Conclusion 

In this article, we extended our previous version of the algorithm [9] to a more general 
framework where any model selection criterion for which a test of significance is 
available can be used in addition to Wilks’ Lambda and where forward covariate inclu- 
sion was replaced by stepwise selection. Of note, a version of the algorithm allowing the 
use of logistic regression with AIC as optimality criterion has already been coded and 
evaluated on two small datasets. Although the procedure achieved promising results 
(data not shown), larger and high dimensional datasets are required in order to pro- 
perly illustrate the algorithm. Besides, the same type of algorithm can be performed 
using a penalization method instead of stepwise selection. In conclusion this algorithm 
could be used in any situation where the values defined by a response variable need to 
be clustered in order to obtain a better predictive accuracy of a classifier using a limited 
number of covariates. 
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