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Abstract 
Scour is a natural phenomenon that is created by the rivers streams or the flood 
which brings about transferring or eroding of bed materials. To have accurate and 
safe erosion control structures design, maximum scour depth in downstream of the 
structures gains specific significance. In the current study, M5 model tree as remedy 
data mining approaches is suggested to estimate the scour depth around the abut-
ments. To do this, Kayaturk laboratory data (2005), with different hydraulic condi-
tions, are used. Then, the results of M5 model were also compared with genetic pro-
gramming (GP) and pervious empirical results to investigate the applicability, ability, 
and accuracy of these procedures. To examine the accuracy of the results yielded 
from the M5 and GP procedures, two performance indicators (determination coeffi-
cient (R2) and root mean square error (RMSE)) were used. The comparison test of 
results clearly shows that the implementation of M5 technique sounds satisfactory 
regarding the performance indicators (R2 = 0.944 and RMSE = 0.126) with less devia-
tion from the numerical values. In addition, M5 tree model, by presenting relation-
ships based on liner regression, has good capability to estimate the depth of scour 
abutment for engineers in practical terms. 
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1. Introduction 

Scour is the result of water erosion that causes digging and transferring bed materials 
and rivers banks. Bridge collapse, due to the total scour in foundation (including abut-
ment and pier), makes the significance of the study about scour prediction and differ-
ent countermeasures against it completely clear. According to Melville [1], among 108 
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bridge collapse that happened between1960-1984 in Newslands, 29 of them were related 
to scour bridge abutment. Also, 70 percent of bridge collapse expenditure in Newlands 
was due to this matter. Data show that scour bridge abutment is a serious problem. 
Studies carried out on 383 bridges in the United State show that 25% of pier destruc-
tions and 72% of abutment destructions have been the cause of bridge collapse. 

Due to lack of enough information in this issue, studies related to scour pattern be-
gan from early 1980 (e.g., at Auckland University). Richardson and Richardson [2] 
showed that the presented relations estimate the scour amount in abutment more than 
the real amount. One probable reason is that obtained relations of the extracted results 
are from rectangular channels; while a natural river mostly consists of compound 
channels with main channel and flood plains. The other reason for the inaccuracy of 
the presented data is the lack of attention to scour time development. That is why in 
recent decades several studies have been conducted in this field and researchers pre-
sented some relations for scour time development, such as Gill [3], Cunha [4], Cardoso 
and Bettes [5], Kothyari and Ranga Raju [6], Ballio and Orsi [7], Radice et al. [8], Oli-
veto and Hager [9], Coleman et al. [10]. 

The exact estimation of scour depth by the help of laboratory studies is a difficult, 
costly and time-consuming task. Hence, by developing computer software and using in 
hydraulic research, the estimation of scour depth has been carried out applying these 
methods by researchers. 

Genetic Programming is one of these techniques that are being used in water engi-
neering in recent decades. Azamathulla et al. [11] [12] have used linear genetic pro-
gramming for determining pipe line scour. Also, the longitudinal dispersion coefficient 
in streams was determined by Azmathulla and Ghani [13]. 

Salmasi et al. [14] estimated friction factors in pipes (f) according to changes in Rey-
nolds number and relative roughness by the use of genetic programming and artificial 
neural networks. Guven and Gunal [15] used genetic algorithm to determine the depth 
of downstream water structure and compared the obtained results with empirical re-
sults of researchers. 

Recently a new method called M5 decision tree model is presented for solving vari-
ous problems and predicting output parameters. This model is used to solve engineer-
ing problems such as rainfall-runoff modeling [16], flood forcasting [17], water level 
discharge relationship [18], sedimentation amount measurement in river [19], sedi-
mentation modeling [20], suspended sediment load [21], evaporation aspiration mea-
surement [22], scour depth measurement around bridge piers [22], significant wave 
height prediction [23] and flow discharge prediction in compound channels [24]. In 
this method, based on the most important input variables, data are divided into differ-
ent separated groups and for each group a multivariate liner regression equation is pre-
sented in order to measure output variable. Simple measurement, accurate results and 
the generalizability of the results are the great profitable outcomes of this model. 

The purpose of this study is to estimate time development of scour around abut-
ments by the use of M5 and GP liner regression technique. The comparison of the ob-
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tained results with the empirical results shows the high capability of this software to es-
timate time development of scour depth. 

2. M5 Model Tree 

The following idea is used by this machine-learning technique: the parameter space is 
split into areas (subspaces) and in each of them a linear regression model is built. As a 
matter of fact, the resulting model would be regarded as a modular model, or a com-
mittee machine, in which the linear models being specialized on the particular subsets 
of the input space. 

The algorithm called the M5 algorithm is utilized for the sake of inducing a model 
tree [25]. A collection K of training examples is taken into account. Each example is 
characterized by the values of a fixed set of (input) attributes and has an associated tar-
get (output) value. The main objective is to construct a model that relates a target value 
of the training cases to the values of their input attributes. The quality of the model will 
be generally accurately estimated as if it anticipates the target values of the cases which 
are unseen.  

A divide-and-conquer method constructs Tree-based models. The set K is either re-
lated to a leaf, or some tests are chosen to split K into subsets corresponding to the test 
outcomes and a similar procedure is applied recursively to the subsets. The splitting 
criterion used for M5 model tree algorithm depends on treating the standard deviation 
of the class values that reach a node as a measure of the error at that node, and calcu-
lating the expected reduction in this error as a result of testing each attribute at that 
node. To compute the standard deviation reduction (SDR), the help of this formula 
seems necessary:  

( ) ( )SDR i
i

K
sd K sd K

K
= −∑                        (1) 

where K indicates a set of examples that reaches the node; K shows the subset of exam-
ples that have the ith outcome of the potential set; and sd stands for the standard devia-
tion. 

After examining all potential splits, M5 selects the item that enhances the expected 
error reduction fully. Splitting in M5 ceases when the class values of all the instances 
that reach a node differ just marginally, or only a few instances are left. The relentless 
division often creates over-elaborate structures that must be pruned back, namely by 
substituting a subtree with a leaf. Eventually, a smoothing process is carried out with 
the aim of compensating for the sharp discontinuities that will unavoidably take place 
between adjacent linear models at the leaves of the pruned tree, especially for some 
models constructed from a smaller number of training examples. In this process, the 
adjacent linear equations are updated in such a way that the projected outputs for the 
neighboring input vectors corresponding to the different equations are becoming close 
in terms of value. For more details of this process, Quinlan [25] and Witten & Frank 
[26] can be referred to. 
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3. Genetic Programming 

Genetic programming, a branch of the genetic algorithm, is a method for acquiring the 
most “fit” computer programs by taking the full advantage of artificial evolution [27]. 
The GP optimizes not only the coefficients but also constants in a function and the 
function type itself. A possible function is determined by given mathematical operators, 
such as +, −, ×, sin, expand so forth. Each function indirectly includes an assignment to 
a variable, which paves the way for the use of multiple program outputs in GP; never-
theless, in tree-based GP those side effects need to be integrated explicitly. The GP en-
codes a function as a tree with nodes and branches, and then optimizes functions ac-
cording to natural principles. The GP procedure bears some resemblances to a genetic 
algorithm, which generates solutions as a parent population, and then fortifies solutions 
by selection, crossover, and mutation processes [28]. 

The great merit of GP for the modeling process lies in its ability to produce models 
that construct an understandable structure, i.e., a formula or equation. Accordingly, for 
“data rich, theory poor” instances, GP benefits may outweigh other techniques inas-
much as GP can self-modify, via the genetic loop, a population of function trees so as to 
ultimately produce an “optimal” and physically interpretable model [29]. 

The following expression can analyze the fitness of GP algorithm: 

1

j N

j j
j

f X Y
=

=

= −∑                             (2) 

where Xj = value returned by a chromosome for the fitness case j and Yj = expected 
value for the fitness case j. This configuration has been tested for the proposed GP 
model and has been found adequate [11] [12]. 

4. Dimensional Analysis 

Kayatork [30] laboratory measurements, which investigated the effect of abutment 
height on scour time development, have been considered as software input data. These 
tests had been carried out in a rectangular channel with the height of 0.3 meters and the 
weight of 1.5 meters for investigating the effect of four different heights of abutment on 
scour time development. For clear-water approach flow conditions, the maximum 
scour depth at an abutment is a function of the following parameters:  

( ) { }50max
, , , , , , , , , , ,s a a s gd f L B U y S g d t Bρ ρ σ=                (3) 

where, La = abutment length, Ba = abutment width, U = mean approach flow velocity, y 
= flow depth, S = slope of the channel, g = gravitational acceleration, ρ = density of the 
fluid, ρs = density of the sediment, µ = dynamic viscosity of fluid, d50 = median particle 
grain size, σg = geometric standard deviation of sediment size distribution, t = time 
variation of scour when it starts, B = width of channel (Figure 1). In terms of dimen-
sionless parameters Equation (3) can be written as:  

50, , , , , , , , ,s a a s
g

d L B dU B Utf S
y y y y U y y ygy

ρ µ σ
ρ ρ

  =  
  

             (4) 
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Figure 1. Definition sketch of abutment arrangement. 

 
In this study, channel bed sloop, channel width, sediment particle size, flow depth, 

and consequently Froude number assumed constant. Finally, the above dimensional 
analysis is summarized as follows: 

,s a

a

d L Utf
y B y

 
=  

 
                         (5) 

The first dimensionless relation shows the geometry of the model and represents the 
fraction of height to weight, and the second dimensionless number is time dimension-
less parameter. 

Summary 

In this study statistical parameters of correlation coefficient (R2) and root mean square 
error (RMSE) were used in order to compare the results of two regression methods. 
The lesser amount of RMSE (0.01) and the larger amount of correlation coefficient 
(0.0961) introduced GP model better in predicting scour time development in abut-
ments (Table 1). As it was aforementioned about regression model structures, the de-
pendent variable was estimated by breaking computing space into subspaces and pre-
senting liner regression for each subspace and thus computational error increase. 

Figure 2 provides the graph plotted between actual and predicted value of scour 
depth obtained by using M5 model tree. This figure suggests that about 91% of the pre-
dicted values lie inside the ±25% lines. Predicted amount versus actual results diagram 
of time scour depth related to Genetic programming model shows that 93% of data lie 
within 25% allowed error range (Figure 3). 

One major advantage of M5 model tree is the availability of three simple linear rela-
tions (Equations (9), (10) and (11)) which can be easily used to predict the scour 
around the abutments (Figure 4). 
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Figure 2. Actual vs. Predicted Scour using M5 Model. 

 

 
Figure 3. Actual vs. Predicted Scour using GP Model. 

 

 
Figure 4. The acquired tree structure from M5 to measurement the momentary scour depth in 
abutments. 

 
Table 1. Correlation coefficient and root mean square error for M5 Model Tree and Genetic 
programming. 

Modeling Approach RMSE (m) Correlation Coefficient 

M5 Model Tree 0.126 0.944 

Genetic programming 0.1 0.961 
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The temporal variation of local scour depth can be defined as a function of its inde-
pendent parameters when dimensionless abutment height (La/Ba) is less than 1.12 by 
the following expressions: 

0.0267 12.9903 28.345s a

a

d LUt
y y B

  
= + +  

   
               (6) 

On the other hand, if dimensionless abutment height is greater than 1.12, temporal 
variation of local scour depth is broken into two parts (Equations (7) and (8)) 

If time dimensionless parameter 115.5Ut
y

 
≤ 

 
: 

0.4472 13.4525 26.6258s a

a

d LUt
y y B

  
= + +  

   
              (7) 

And for 115.5Ut
y

 
> 

 
 

0.0582 33.419 24.1831s a

a

d LUt
y y B

  
= + +  

   
              (8) 

The scour development process aroundthe abutment for different heights was shows 
in Figure 5. For the cases with 0.75a aL B = , abutments have no significant effect on 
flow pattern, therefore equilibrium scour depth and time to reach the equilibrium scour 
depth decrease and this matter was presented by decision tree model in Equation (6). 
With increasing abutment height, time development of local scour depth changed ra-
pidly when the time dimensionless parameter is less than 115.5 and after the certain 
time the depth of scour gradually remains. So, M5 model shows this procedure well by 
breaking the data into two series. 

Non-liner regression relation is represented by Genetic Programming model as fol-
lows: 

( )

0.52 2 0.5

0.50.5
2

8.85 5.57

          4.41 4.41

s a a a a a

a a a a a

a

a

d L L L L LUt
y B B B B y B

LUt
y B

            = + − + −                     

    
+ − −    
     

       (9) 

In contrast with the M5 model results, Genetic Programming model trained by di-
mensionless data was complicated, thus the regression tree has adaptability and capa-
bility to predict the scour depth around the abutments.  

Figure 6 represents the comparison between the data reported by Cardoso and Bettes 
[5] and Coleman et al. [10] and those of the present work for the M5 model tree. As can 
be seen, M5 model predict the scour depth more accurately than empirical relations. 

5. Conclusion 

The potential of M5 model tree in predicting the temporal local scour depth around the 
abutments was investigated in this paper by using Kayaturk laboratory data [30]. A  
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Figure 5. Time development of scour depth for different length of abutment. 

 

 
Figure 6. Actual vs. Predicted Scour using Four Empirical Relations. 

 
major conclusion from this study is that M5 model tree works equally well to the Ge-
netic Programming model and provides improved results in comparison to all three 
empirical relations used in this study. Furthermore, M5 decision tree model, besides 
simple calculation and equations, has good capability in estimating the depth of time 
scour in abutment. 
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