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Abstract 
A new covariate dependent zero-truncated bivariate Poisson model is proposed in this paper em-
ploying generalized linear model. A marginal-conditional approach is used to show the bivariate 
model. The proposed model with estimation procedure and tests for goodness-of-fit and under (or 
over) dispersion are shown and applied to road safety data. Two correlated outcome variables 
considered in this study are number of cars involved in an accident and number of casualties for 
given number of cars. 
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1. Introduction 
The count data analysis occupies an important role in applied statistics in various fields. When the observed 
outcomes are count and the desire is to estimate the covariate effects on outcomes, covariate dependent Bivariate 
Poisson (BVP) model is a tool of natural choice. It is expected that the observed outcomes on the same subject 
are be correlated. This type of data arises in many fields, for example, traffic accidents, health sciences, eco-
nomics, social sciences, environmental studies among others. A typical example of such dependence arises in 
the number of traffic accidents and the number of injuries or fatalities during a specified period. However, in 
some situations outcomes may be truncated as zero values of counts may not be observed or may be missing for 
one or both of the outcomes. For example, in a sample drawn from hospital admission records, frequencies of 
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zero accidents and length of stay are not available. Another example is the case where the data on number of 
traffic accidents and related injuries or fatalities and related risk factors are collected from records and, naturally, 
zero counts are not available. As an example, road safety data from data.gov.uk website provides detailed in-
formation about the conditions of personal injury road accidents in Great Britain including the types of vehicles 
involved and the consequential casualties on public roads along with other background information. Only those 
accidents that involve personal injury reported to the police using the accident reporting form are recorded. 
Damage-only accidents, with no human casualties or accidents on private roads or car parks, are not included 
generating zero-truncated count data. To investigate the effect of risk factors on this type of outcomes, zero- 
truncated BVP regression is the appropriate model. 

Campbell [1] introduced BVP distribution. Various assumptions have been used to develop BVP distribution. 
The most comprehensive one has been proposed by Kocherlakota and Kocherlakota [2]. Leiter and Hamdan [3] 
suggested bivariate probability models applicable to traffic accidents and fatalities. A similar problem was ad-
dressed by Cacoullos and Papageorgiou [4]. Several other attempts were made to define and study the BVP dis-
tribution [5]-[9]. Jung and Winkelmann [10] showed bivariate Poisson form using a trivariate reduction method 
allowing for correlation between the variables, which is considered as a nuisance parameter. This bivariate 
Poisson regression is used by others [11] [12]. Islam and Chowdhury [13] suggested covariate dependent BVP 
model using generalized linear modeling approach based on Leiter and Hamdan [3] bivariate probability models. 
They used marginal and conditional models to obtain BVP model. 

Studies on the covariate dependent zero-truncated BVP model are scarce. Different techniques of the parameter 
estimation of BVP distribution are presented in [14]-[16]. A unified treatment of three types of zero-truncated 
BVP discrete distribution based on probability generating function is shown elsewhere [17]. Properties of BVP 
distribution truncated from below at an arbitrary point were studied by others [18] [19]. At this backdrop, we 
proposed a zero-truncated covariate dependent BVP model based on the work of Islam and Chowdhury [13]. 
The exposition of the following sections of the paper is as follows. Firstly in Section 2, we present briefly the 
marginal, conditional and BVP distribution for two outcomes without zero truncation as shown in [13]. In Sec-
tion 3, we have shown the zero-truncated marginal and conditional Poisson distribution and obtained the joint 
model for both outcomes zero-truncated. The estimation and the related procedures are also shown. In Section 4, 
applications of the proposed models are illustrated using road safety data for both outcomes zero-truncated pub-
lished by the Department for Transport, United Kingdom. Finally, concluding remarks can be found in Section 5. 

2. Poisson Distribution without Zero Truncation 
In this section bivariate Poisson model without zero truncation is shown. For simplicity, we shall follow the no-
tations used in [13]. Let Y1 be the number of accidents at a specific location in a given interval that has a Poisson 
distribution with density 

( ) ( )
1 1

1
1 1 1 1 1

1

e , 0,1,
!

y

g y P Y y y
y

λ λ−

= = = =                            (1) 

and the corresponding link function is 
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If 2iY ’s are assumed to be mutually independent, then the conditional distribution of 
12 21 2 ,yY Y Y= + +

 the 
total number of fatalities recorded among the Y1 accidents occurring in the jt-h time interval is Poisson with pa-
rameter 2 1yλ . Then we can show that 
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and the corresponding link function is 

( ) ( )2 2 1 2 20 21 2ln , where 1, , , , , , , .p px x x xλ β β β β β′ ′ ′= = =   

Then following [13] the joint distribution of number of accidents and number of fatalities can be shown as 

( ) ( ) ( ) ( ) ( )21 1 2 1
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3. Zero-Truncated Poisson Distribution 
The probability of 1 0Y =  is 1e λ− , using Equation (1). Hence Y1 is observed conditional on Y1 > 0. Thus, we 
have the conditional probability mass function 
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Now, using Equation (1) the zero-truncated Poisson probability mass function for 1 1| 0Y Y >  is 
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Then the exponential form of the mass function is 

( ) ( ) ( )* 1
1 1 1 1 1exp ln ln ! ln e 1 .g y y y λλ = − − −                                 (6) 

The mean and variance can be shown as 
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Similarly, the zero-truncated conditional distribution of 2 1 2| , 0Y y Y >  is 
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Then the zero-truncated conditional Poisson distribution is 
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The exponential form of Equation (9) can be shown as 

( ) ( ) ( ) ( )2 1*
2 2 2 1 2 2 2 2 1 2| , 0 exp ln ln ln ! ln e 1 .yg Y y y Y y y y y λλ = > = + − − −                    (10) 

Then the mean and variance are 
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3.1. Zero Truncated Bivariate Poisson (ZTBVP) Model 
Now using the marginal and conditional distribution for zero truncation derived above the joint distribution of 
ZTBVP can be obtained as follows 
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The ZTBVP expression in Equation (12) can be expressed in bivariate exponential form as 
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where the link functions are 1 1ln Xλ β′=  and 2 2ln .Xλ β′=  
The log-likelihood function is 
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The estimating equations are 
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Then the score vector is 
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The second derivatives are: 
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The observed information matrix is 
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and the approximate variance-covariance matrix for ( )1 2
ˆ ˆ ˆ,β β β′ ′ ′=  is  ( ) ( )1ˆ .o jjVar Iβ β−

′=  The estimates of the 
regression parameters vectors 1β  and 2β  can be obtained iteratively by using Newton-Raphson method as 
follows 

( ) ( )1
1 0 1 1

ˆ ˆ ˆ ˆ ,t t t tI Uβ β β β−
− − −= +                                  (21) 

where ˆ
tβ  denotes the estimate at t-th iteration. 

3.2. Test for Significance of Parameters 
We can use the likelihood ratio tests for testing 0 1: 0H β =  and 2 0β =  model fit using full model and re-
duced model. The test statistic is asymptotically chi-square as follows 

( ) ( )2
2 2 log likelihood reduced model log likelihood full model .pχ = − −             (22) 

For independence, we can test the equality of zero-truncated bivariate models under independence. The inde-
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pendence model can be shown as ( ) ( ) ( )** * *
1 2 1 1 2 2,g y y g y g y= × . 

3.3. Deviance and Goodness of Fit 
The deviance measures the difference in log-likelihood based on observed and fitted values. Let 

1
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2 1|i iY Yµ  under the model of interest as shown before (Section 3.1) and 1iy  
and 2iy  are the observed values under the saturated model. The deviance for zero-truncated bivariate Poisson,  
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After some algebra we get the deviance as 
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We can use following test for goodness-of-fit proposed by Islam and Chowdhury (2015). 
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where, 
1 2 1
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|Y Yσ  as de-

fined in Equations (7) and (11), respectively. 1T  is distributed asymptotically as 2
2gχ  where g is the number of 

groups of observed values, 1 1, , gy y . 

3.4. Test for Over or Underdispersion 
The presence of overdispersion or underdispersion may influence the standard error of parameter estimates, 
hence, the significance level of the estimates. Test for the goodness of fit as shown in Equation (26) is modified 
to test the overdispersion or underdispersion. The method of moments estimator suggested by [20] is used to es-
timate the dispersion parameter, rφ , as shown below 
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Using the mean, variance and correction factor as shown in [21] for truncated marginal and conditional Pois-
son models for 1 1, 1, ,ri r ry k k= +   we can define ˆ ˆˆri ri riµ λ δ= +  and ( ) ( )ˆ ˆˆ ˆ ˆ 1ri ri ri riV µ λ δ µ= − −  where  
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( )ˆ ˆ ˆ ˆˆˆ 1,ri ri ri ri r rikδ µ λ λ α λ= − = ⋅ − , ( ) ( )
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and then using these values we can estimate rφ . 
Then the test for dispersion 2T  for zero-truncated bivariate Poisson regression model is: 
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where, 
1 1 2 12 1

2 2
|ˆ ˆ ˆ ˆ, , andy Y Y Yy yµ µ σ σ  are estimates of expected values and variances as defined in Equations (7) and 

(11) and 1φ  and 2φ  are dispersion parameters for Y1 and Y2, respectively. T2, is also, distributed asymptotically 
as 2

2gχ  where g is the number of groups of observed values, 1 1, , gy y . 

4. Application 
The models proposed in the paper are illustrated using the road safety data published by Department for Trans-
port, United Kingdom. This data set is publicly available for download from UK givernment website 
(http://data.gov.uk/dataset/road-accidents-safety-data). The data set includes information about the conditions of 
personal injury road accidents in Great Britain and the consequential casualties on public roads. Background in-
formation about vehicle types, location, road conditions, drivers demographics are also available among others. 
A total of 1,494,275 accident records were in the data set spanning from 2005 to 2013. We have selected a ran-
dom sample 14005 accident records approximately 1 percent of all accident records. The outcome variables 
considered are total number of vehicles involved in the accident (Y1) and the number of casualties (Y2). Due to 
small frequencies, values five or more were coded as five for both outcomes. Risk factors are sex of the driver (0 
= female; 1 = male), area (0 = urban; 1 = rural), two dummy variables for accident severity (fatal severity = 1, 
else 0; serious severity = 1, else = 0; slight severity is the reference category), light condition (daylight = 1; oth-
ers = 0) and eight dummy variables for year 2006 to year 2013, where year 2005 is considered as reference cat-
egory. 

The average number of vehicles involved in accident and casualties are 1.83 and 1.37, with standard devia-
tions 0.75 and 0.92, respectively. Table 1 displays the bivariate distribution of the number of vehicles and num-
ber of casualties. It is evident that 59 percent of the accidents involved two cars, 30 percent single car, and eight 
percent three cars. The number of casualties was one in three-fourth of the cases and two in one out of six cases. 
Descriptive statistics of the number of vehicles involved in accidents and number of casualties by risk factors are 
presented in Table 2. The mean number of vehicles with fatal injuries was 1.94 compared to 1.70 and 1.85 with 
serious and slight injuries. The mean number of casualties was 2.15 for fatal cases which appears to be much 
higher than that of serious and slight injuries. There is not much variation in mean number of vehicles and ca-
sualties by sex of driver and area. Although the number of vehicles involved in the accident is higher during 
daylight, number of casualties appear to be higher during other times. The number of vehicles involved in acci-
dents decreased steadily during the study period, but mean number of cars involved in accidents and casualties 
remained almost similar. 

 
Table 1. Number of vehicles involved in the accident (Y1) and number of casualties (Y2). 

Number of Vehicles (Y1) Number of Casualties (Y2). 

 1 2 3 4 5+ Total 

1 3721 379 3 39 11 4225 

2 6091 1561 75 122 89 8304 

3 681 286 441 44 37 1182 

4 93 64 134 22 13 225 

5+ 31 12 33 8 8 69 

Total 10617 2302 693 235 158 14005 

http://data.gov.uk/dataset/road-accidents-safety-data
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We observe that both numbers of vehicles involved in accidents and number of casualties are heavily under- 
dispersed as displayed in Table 4. In Table 3, the estimates of the parameters are displayed along with standard 
errors and p-values for both original models as well as for adjustments made for underdispersion. Summary 
measures of goodness of fit for all the models are summarized in Table 4. The proposed full model of ZTBVP 
(Table 3) shows a negative association between fatal and serious severity and number of cars involved in acci-
dents, while there is a positive association (p-value < 0.01) between the number of cars involved in an accident 
and light condition (daytime driving). The number of cars involved in accidents appears to be negatively asso-
ciated in years 2008-2010 and 2012 as compared to that of 2005. However, the conditional model for the num-
ber of casualties given the number of cars involved in an accidents reveals that male drivers compared to fe-
males, rural areas compared to urban and daytime compared to night have lower risks. On the other hand, fatal 
severity and serious severity are positively associated with the number of casualties for given number of acci-
dents compared to light severity. It is also evident that compared to the reference year, 2005, the number of ca-
sualties is negatively associated with the years 2012 and 2013. This indicates a significant reduction in the 
number of casualties for given number of accidents in recent years as compared to that of 2005. 
 
Table 2. Descriptive statistics of the number of vehicles involved in the accident and the number of casualties by risk factors. 

 N Number of Vehicles Number of Casualties 

Variables  Mean SD Mean SD 

Sex of Driver      

Male 9948 1.83 0.78 1.37 0.98 

Female 4057 1.85 0.66 1.38 0.76 

Accident Severity      

Fatal 173 1.94 2.63 2.15 4.01 

Serious 1913 1.70 0.74 1.45 0.92 

Slight 11919 1.85 0.68 1.35 0.79 

Area      

Urban 5213 1.85 0.90 1.49 1.17 

Rural 8792 1.82 0.64 1.30 0.72 

Light Condition      

Daylight 10347 1.87 0.75 1.35 0.90 

Others 3658 1.73 0.73 1.42 0.96 

Years      

2005 1855 1.86 0.73 1.39 0.79 

2006 1768 1.86 0.72 1.37 0.81 

2007 1727 1.84 0.70 1.38 0.99 

2008 1608 1.80 0.73 1.37 0.83 

2009 1567 1.83 0.71 1.39 0.82 

2010 1489 1.81 0.63 1.38 0.78 

2011 1368 1.86 1.10 1.40 1.57 

2012 1357 1.82 0.68 1.32 0.73 

2013 1266 1.83 0.67 1.31 0.75 
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Table 3. Parameter estimates of zero truncated BVP model. 

Variables Estimate S.E. p-value ( )ˆ
rVϕ β  p-value 

Y1:Constant 0.280 0.034 0.000 0.017 0.000 

Sex of Driver −0.017 0.019 0.355 0.009 0.066 

Area −0.030 0.018 0.091 0.009 0.001 

Fatal severity −0.101 0.082 0.218 0.041 0.014 

Serious severity −0.166 0.027 0.000 0.014 0.000 

Light Condition 0.140 0.021 0.000 0.010 0.000 

Year 2006 −0.001 0.033 0.980 0.017 0.959 

Year 2007 −0.014 0.034 0.666 0.017 0.390 

Year 2008 −0.060 0.035 0.083 0.017 0.001 

Year 2009 −0.034 0.035 0.320 0.017 0.047 

Year 2010 −0.047 0.035 0.187 0.018 0.009 

Year 2011 −0.021 0.036 0.565 0.018 0.252 

Year 2012 −0.042 0.036 0.248 0.018 0.021 

Year 2013 −0.023 0.037 0.526 0.018 0.207 

Y2:Constant −0.637 0.049 0.000 0.029 0.000 

Sex of Driver −0.058 0.029 0.049 0.018 0.001 

Area −0.375 0.027 0.000 0.016 0.000 

Fatal severity 0.654 0.080 0.000 0.048 0.000 

Serious severity 0.266 0.036 0.000 0.022 0.000 

Light Condition −0.231 0.029 0.000 0.018 0.000 

Year 2006 −0.042 0.051 0.415 0.031 0.175 

Year 2007 −0.051 0.052 0.326 0.031 0.102 

Year 2008 −0.034 0.053 0.519 0.032 0.283 

Year 2009 0.029 0.052 0.579 0.031 0.356 

Year 2010 0.017 0.054 0.748 0.032 0.593 

Year 2011 −0.030 0.055 0.590 0.033 0.370 

Year 2012 −0.151 0.058 0.009 0.035 0.000 

Year 2013 −0.186 0.060 0.002 0.036 0.000 

 
The summary results of estimation and tests of different models (proposed model based on marginal-condi- 

tional approach and both marginal models) are presented in Table 4. Both the full model and the reduced model 
under null hypothesis are considered. Both the models indicate that the full models are statistically significant. It 
is noteworthy that both the outcome variables number of vehicles involved in accidents and number of casualties 
are substantially underdispersed and adjustments were made accordingly for underdispersion in Table 3. Based 
on AIC, BIC and deviance we observe that the proposed full model using marginal-conditional approach pro-
vides the best fit. The goodness of fit test using the test statistic, T1, indicates good fit marginally (p-value = 
0.064) for the proposed model. The test for under dispersion reveals the presence of significant deviation from 
equidispersion in both the variables as observed from T2 (p-value < 0.001). Adjustments are made for under- 
dispersion and the results are shown in Table 3 (last two columns). 
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Table 4. Test statistics results for reduced and full models of ZTBVP. 

Model Statistics Reduced Model Full Model 

Marginal/Conditional   

Log likelihood −26708.6 −26453.01 

AIC 53421.1 52962.02 

BIC 53433.7 52922.61 

Deviance 10593.89 10465.07 

T1(D.F, p-value) 17.45(10, 0.065) 17.48(10, 0.064) 

T2(D.F, p-value) 68.45(10, 0.000) 69.35(10, 0.000) 

1φ  0.255 0.252 

2φ  0.377 0.361 

LR 2χ  Reduced vs. Full Model (D. F, p-value)  511.1(26, 0.000) 

Marginal/Marginal   

Log likelihood −27235.59 −26999.44 

AIC 54475.20 54054.90 

BIC 54490.28 54266.21 

Deviance 11584.13 11322.42 

  

T1(D.F, p-value) 18.48(10, 0.048) 19.01(10, 0.040) 

T2(D.F, p-value) 71.21(10, 0.000) 73.56(10, 0.000) 

1φ  0.255 0.252 

2φ  0.372 0.363 

LR 2χ  Reduced vs. Full Model (D. F, p-value)  1563.7(26, 0.000) 

5. Conclusion 
A zero-truncated bivariate generalized linear model for count data is proposed in this paper. This model is based 
on the bivariate model using marginal-conditional models proposed by Islam and Chowdhury (2015) for count 
data. Covariate dependent bivariate generalized linear model is shown, and canonical link functions are used to 
estimate the parameters of the Poisson distribution. The usefulness of the proposed model is demonstrated using 
road safety data published by Department for Transport, United Kingdom. The proposed ZTBVP model can 
easily accommodate a varying number of covariates for two outcomes. The joint distribution degenerates into a 
marginal and conditional distribution that makes estimation problem easier. 
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