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Abstract 
We study a Dirichlet optimal design problem for a quasi-linear monotone p-biharmonic equation 
with control and state constraints. We take the coefficient of the p-biharmonic operator as a de-
sign variable in ( )BV Ω . In this article, we discuss the relaxation of such problem. 
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1. Introduction 
The aim of this article is to analyze the following optimal design problem (OCP), which can be regarded as an 
optimal control problem, for quasi-linear partial differential equation (PDE) with mixed boundary conditions 

( ){ }2Minimize , ddI u y y y x Du
Ω Ω

= − +∫ ∫                         (1) 

subject to the quasi-linear equation 

( ) ( )2 , in ,pu y y F x y f−∆ ∆ ∆ + = Ω                            (2) 

0 on , 0 on ,D S
yy y y
ν
∂

= = Γ = ∆ = Γ
∂

                         (3) 

the pointwise state constraints 
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( ) ( )0 a.e. on ,max
S

y s
sζ

ν
∂

≤ ≤ Γ
∂

                              (4) 

and the design (control) constraints 
( ) ( ) ( ) ( )1 2and a.e. in .u BV x u x xξ ξ∈ Ω ≤ ≤ Ω                         (5) 

Here, DΓ  and SΓ  are the disjoint part of the boundary ∂Ω  ( D S∂Ω = Γ ∪Γ ), ( )BV Ω  stands for the 
control space, dy , f, and maxζ  are given distributions. Problems of this type appear for p-power-like elastic 
isotropic flat plates of uniform thickness, where the design variable u is to be chosen such that the deflection of 
the plate matches a given profile. The model extends the classical weighted biharmonic equation, where the 
weight 3u a=  involves the thickness a of the plate, see e.g. [1]-[3], or u can be regarded as a rigidity parame-
ter. The OCP (1)-(4) can be considered as a prototype of design problems for quasilinear state equations. For an 
interesting exposure to this subject we can refer to the monographs [4]-[6]. 

A particular feature of OCP (1)-(4) is the restriction by the pointwise constraints (4) in ( )p
SL Γ -space. In 

fact, the ordering cone of positive elements in pL -spaces is typically non-solid, i.e. it has an empty topological 
interior. Following the standard multiplier rule, which gives a necessary optimality condition for local solutions 
to state constrained OCPs, the constraint qualifications such as the Slater condition or the Robinson condition 
should be applied in this case. However, these conditions cannot be verified for cones such as 

( ) ( ){ }| 0 a.e. inp p
S SL v L v+ Γ = ∈ Γ ≥ Ω  due to the fact that ( )( )int p

SL+ Γ = ∅ , where ( )int A  stands for the 
topological interior of the set A. Therefore, our main intention in this article is to propose a suitable relaxation of 
the pointwise state constraints in the form of some inequality conditions involving a so-called Henig approxima-
tion ( )( ) ( )p

SL B
ε+ Γ  of the ordering cone of positive elements ( )p

SL+ Γ . Here, B is a fixed closed base of 
( )p

SL+ Γ . Due to fact that ( ) ( )( ) ( )p p
S SL L B

ε+ +Γ ⊂ Γ  for all 0ε > , we can replace the cone ( )p
SL+ Γ  by its 

approximation ( )( ) ( )p
SL B

ε+ Γ . As a result, it leads to some relaxation of the inequality constraints of the con-
sidered problem, and, hence, to the approximation of the feasible set to the original OCP. Hence, the solvability 
of a given class of OCPs can be characterized by solving the corresponding Henig relaxed problems in the limit 

0ε → . 
As was shown in the recent publication [7], the proposed approach is numerically viable for state-constrained 

optimal control problems with the state equation given by linear partial differential equations. In particular, us-
ing the finite element discretization of the Henig dilating cone of positive functions, it has been shown in [7] that 
the above approximation scheme, called conical regularization, where the regularization is done by replacing the 
ordering cone with a family of dilating cones, leads to a finite-dimensional optimization problem which can 
conveniently be treated by known numerical techniques. The non-emptiness of the feasible set for the state- 
constrained OCPs is an open question even for the simplest situation. Therefore, we consider a more flexible no-
tion of solution to the boundary value problem (2)-(3). With that in mind we discuss a variant of the penalization 
approach, called the “variational inequality (VI) method”. Following this approach we weaken the requirements 
on admissible solutions to the original OCP and consider instead the family of penalized OCPs for appropriate 
variational inequalities 

( ) ( )
( )( ) ( ) ( )( ) ( )

2
;;

, , , , ,
p p

p p

pu y y F x y y f y Kεζ ζ ζ∗
∗

−

Ω Ω
Ω Ω

∆ ∆ ∆ + − ≥ − ∀ ∈  
 

where the sets Kε  are defined in a special way. As a result, we show that each of new penalized OCP is solva-
ble for each 0ε >  and their solutions can be used for approximation of optimal pairs to the original problem. 

The outline of the paper is the following. In Section 2 we report some preliminaries and notation we need in 
the sequel. In Sections 3, we give a precise statement of the state constrained optimal control (or design) prob-
lem and describe the main assumptions on the initial data and control functions. In Section 4, we provide the re-
sults concerning solvability of the original problem with control and state constraints. We show that this prob-
lem admits at least one solution if and only if the corresponding set of feasible solutions is nonempty. In Section 
5 we show that the pointwise state constraints can be replaced by the weakened conditions coming from Henig 
relaxation of ordering cones. As a result, we give a precise definition of the relaxed optimization problems and 
show that the solvability of the original OCP can be characterized by the associated relaxed problems. In partic-
ular, we prove that the optimal solution to the original problem can be attained in the limit by the optimal solu-
tion of the relaxed problem. We consider in Section 6 the “variational inequality method” as an approximation 
of the OCPs. Following this approach, we weaken the requirements on feasible solutions to the original OCP. In 
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contrast to the Henig relaxation approach, the penalized optimal control problem for indicated variational in-
equality has a non-empty feasible set and this problem is always solvable. In conclusion, we show that some of 
the optimal solutions to the original problem can be attained in the limit by optimal solutions of the penalized 
problem. However, it is unknown whether the entire set of the optimal solutions can be attained in such way. 

2. Definitions and Basic Properties 
Let Ω  be a bounded open connected subset of N  ( 2N ≥ ). We assume that the boundary ∂Ω  is Lip- 
schitzian so that the unit outward normal ( )xν ν=  is well-defined for a.e. x∈∂Ω , where the abbreviation 
‘a.e.’ should be interpreted here with respect to the ( )1N − -dimensional Hausdorff measure. We also assume 
that the boundary ∂Ω  consists of two disjoint parts D S∂Ω = Γ ∪Γ , where the sets DΓ  and SΓ  have posi-
tive ( )1N − -dimensional measures, and SΓ  is of 2C . 

Let p be a real number such that 2 p≤ < ∞ . By ( )2, pW Ω  we denote the Sobolev space as the subspace of 
( )pL Ω  of functions y having generalized derivatives kD y  up to order 2k =  in ( )pL Ω . We note that 

thanks to interpolation theory, see ([8], Theorem 4.14), ( )2, pW Ω  is a Banach space with respect to the norm 

( ) ( )( ) ( )( )2,

11
2 2

( ) d ,p p p

ppp pp p
W L L

y y D y y D y x
Ω Ω ΩΩ
= + = +∫  

where 

( )
1 2 1 2 1 2

2 21 22 2 2 2 2

, 1
, and .

N

i i i i i i

y vD y D y D y D y D v
x x x x=

∂ ∂
= ⋅ ⋅ =

∂ ∂ ∂ ∂∑  

For any ( )1y C∈ Ω  we define the traces 

( ) ( )0 1, and .yy y yγ γ
ν∂Ω

∂Ω

∂
= =

∂
 

By ([9], Theorem 8.3), these linear operators can be extended continuously to the whole of space ( )2, pW Ω . 
We set 

( ) ( ) ( ) ( )2 1 , 2, 1 1 , 2,
0 1: , :p p p p p pW W W Wγ γ− −   ∂Ω = Ω ∂Ω = Ω     

as closed subspaces of ( )1, pW ∂Ω  and ( )pL ∂Ω , respectively. Moreover, the injections 

 ( ) ( ) ( ) ( )2 1 , 1, 1 1 ,andp p p p p pW W W L− −∂Ω ∂Ω ∂Ω ∂Ω                    (6) 

are compact. 

Let ( ) ( )0 0; : 0 and 0 onN N
D DC C ϕϕ ϕ

ν
∞ ∞ ∂ Γ = ∈ = = Γ ∂ 
  . We define the Banach space ( )2,

0 ;p
DW Ω Γ   

as the closure of ( )0 ;N
DC∞ Γ  with respect to the norm ( )2, pWy

Ω
. Let ( )2, ;q

DW − Ω Γ  be the dual space to 
( )2,

0 ;p
DW Ω Γ , where ( )1q p p= −  is the conjugate of p. We also define the space ( )1,

0
pW Ω  as the closure  

of ( )0C∞ Ω  with respect to the norm ( ) ( )1,
0

1
dp

pp
Wy y x

Ω Ω
= ∇∫ . 

Throughout this paper, we use the notation ( ) ( ) ( )2, 1,
0 0: ;p p

p DW WΩ = Ω Γ ∩ Ω . Let us notice that ( )p Ω  
equipped with the norm 

( ) ( )
1

21

2,
1

: d dp

pp
Npp

p L
i i

yy y y x x
x∆ Ω Ω Ω

=

 ∂ = ∆ = ∆ =
 ∂ 

∑∫ ∫                     (7) 

is a uniformly convex Banach space [10]. Moreover, the norm ,p ∆
⋅  is equivalent on ( )p Ω  to the usual 

norm of ( )2, pW Ω . Indeed, since the Laplace operator −∆  acts from ( )p Ω  in ( )pL Ω  and the Dirichlet 
boundary value problem 

in , 0 ony f y∆ = Ω = ∂Ω                                (8) 
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is uniquely solvable in ( )p Ω  for all ( )pf L∈ Ω , it follows that the inverse operator ( ) 1: :T −= −∆
( ) ( ) ( )2, 1,

0
p p pL W WΩ → Ω ∩ Ω  is well defined and satisfies the following elliptic regularity estimate [11] 

( )2, ( ) .p ppW LTf C f
Ω Ω
≤  

This allows us to conclude the following. If ( )pf L∈ Ω  and ( )1,
0

py W∈ Ω  are such that 0y
ν
∂

=
∂

 on DΓ   

and y is a solution of (8), then ( )py L−∆ ∈ Ω , 0y =  on the boundary ∂Ω , and, therefore, ( )py∈ Ω . 
Hence, 

( ) ( ) ( ) ( )2, 2, , ,p pp p pW L pW
y T y C y C y

Ω Ω ∆Ω
= −∆ ≤ ∆ =                      (9) 

for a suitable positive constant pC  independent of f. On the other hand, it is easy to see that 

( )2,, .pp Wy y
∆ Ω
≤  

Thus, by the Closed Graph Theorem, we can conclude that ,p ∆
⋅  is equivalent to the norm induced by 

( )2, pW Ω  (for the details we refer to [12] [13]). 
By ( )BV Ω  we denote the space of all functions in ( )1L Ω  for which the norm 

( ) ( )

( ) ( ) ( ){ }
1

1
1
0sup div d : ; , 1 for

BV L

N
L

f f Df

f f x C x xϕ ϕ ϕ

Ω Ω Ω

Ω Ω

= +

= + ∈ Ω ≤ ∈Ω

∫

∫ 
 

is finite. 
We recall that a sequence { } 1k k

f ∞

=
 converges weakly-* to f in ( )BV Ω  if and only if the two following 

conditions hold (see [14]): kf f→  strongly in ( )1L Ω  and kDf Df  weakly-* in the space of Radon 
measures ( )Ω , i.e. 

( )0lim .kk
Df Df Cϕ ϕ ϕ

Ω Ω→∞
= ∀ ∈ Ω∫ ∫  

It is well-known also the following compactness result for BV-spaces (Helly’s selection theorem, see [15]). 
Theorem 1. If { } ( )1k k

f BV∞

=
⊂ Ω  and ( )supk k BVf∈ Ω

< +∞


, then there exists a subsequence of { } 1k k
f ∞

=
  

strongly converging in ( )1L Ω  to some ( )f BV∈ Ω  such that kDf Df
∗
  weakly-∗ in the space of Radon 

measures ( )Ω . Moreover, if { } ( )1k k
f BV∞

=
⊂ Ω  strongly converges to some f in ( )1L Ω  and satisfies  

supk kDf∈ Ω
< +∞∫ , then 

( )

( )

(i) and lim inf ;

(ii) in .

kk

k

f BV Df Df

f f BV

Ω Ω→∞

∗

∈ Ω ≤

Ω

∫ ∫


                      (10) 

3. Setting of the Optimal Control Problem 

Let 1ξ , 2ξ  be fixed elements of ( ) ( )L BV∞ Ω ∩ Ω  satisfying the conditions 

( ) ( )1 20 a.e. in ,x xα ξ ξ< ≤ ≤ Ω                             (11) 

where α  is a given positive value. 
Let :F Ω× →   be a nonlinear mapping such that F is in the space ( )Car Ω×  of Carathéodory func-

tions on Ω× , i.e. 
1) the function ( ),F x ⋅  is continuous in   for almost all x∈Ω ; 
2) the function ( ),F y⋅  is measurable for each y∈ . 
In addition, the following conditions of subcritical growth, monotonicity, and non-negativity are fulfilled: 

( ) 1
1, for a.e. and all ,rF x C xη η η−≤ ∈Ω ∈                     (12) 
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( ) ( )( ) ( ), , > 0 for a.e. and all , , ,F x F x xη η η η η η η η′ ′ ′ ′− − ∈Ω ∈ ≠              (13) 

( ), 0 for a.e. and all .F x xη η η≥ ∈Ω ∈                                     (14) 

for some ( )1,r p∗∈ , where 

( )2 , 2 ,
, 2

Np N p p N
p

p N
∗ − <
= 

+∞ ≥
 

is the critical exponent for the Sobolev imbedding  ( ) ( )2, p rW LΩ Ω , and 1 0C > . In particular, conditions 
(13) - (14) imply that ),( ⋅xF  is monotonically increasing on   and ( ), 0 0F x =  for almost all x∈Ω . 

Let ( )2, ;q
Df W −∈ Ω Γ , ( )2

dy L∈ Ω , and ( )max pLζ ∈ ∂Ω  be given distributions. The optimal control pro- 
blem we consider in this paper is to minimize the discrepancy between dy  and the solutions of the following 
state-constrained boundary valued problem 

( ) ( )2 , , in ,p u y F x y f∆ + = Ω                                 (15) 

0 on , 0 on ,D S
yy y y
ν
∂

= = Γ = ∆ = Γ
∂

                       (16) 

( ) ( )0 a.e. onmax
S

y s
sζ

ν
∂

≤ ≤ Γ
∂

                               (17) 

by choosing an appropriate function adu∈A  as control. Here, 

( ) ( )22 , : p
p u y u y y−∆ = ∆ ∆ ∆  

is the operator of fourth order called the generalized p-biharmonic operator, and the class of admissible controls 
adA  we define as follows 

( ) ( ) ( ) ( ){ }1 2| a.e. in .ad u BV x u x xξ ξ= ∈ Ω ≤ ≤ ΩA                     (18) 

It is clear that adA  is a nonempty convex subset of ( )1L Ω  with an empty topological interior. 
More precisely, we are concerned with the following optimal control problem 

( ){ }2Minimize , d

subject to the constraints (15)-(18).
dI u y y y x Du

Ω Ω
= − +∫ ∫                        (19) 

Before we will discuss the question of existence of admissible pairs to the problem (19), we note that the 
function ( )CarF ∈ Ω×  can be associated with operator ( ) ( )( ): p pF

∗
Ω → Ω   defined by the rule 

( ) ( )( ) ( ) ( ) ( );
, , d , .

p p
pF y v F x y v x v∗

Ω Ω Ω
= ∀ ∈ Ω∫ 

                   (20) 

Moreover, taking into account the growth condition (12) and the compactness of the Sobolev imbedding 
 ( ) ( )2,

0 ;p r
DW LΩ Γ Ω  for r p∗<  it is easy to show that operator ( ) ( )( ): p pF

∗
Ω → Ω   is compact. 

Definition 3.1. We say that an element ( )py∈ Ω  is the weak solution (in the sense of Minty) to the 
boundary value problem (15) - (16), for a given admissible control adu∈A , if 

( ) ( ) ( )( ) ( )

( ) ( ) ( )2,2,
0

2

;

0; ; ;

d ,

, , ; .
p p

pq
D D

p

DW W

u y x F y

f y C

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

∗

−

−

Ω ΩΩ

∞
Ω Γ Ω Γ

∆ ∆ ∆ − ∆ + −

≥ − ∀ ∈ Ω Γ

∫                     (21) 

Remark 3.1. Since the set ( )0 ;N
DC∞ Γ  is dense in ( )p Ω , it follows that the element y twϕ = +  with 

an arbitrary ( )pw∈ Ω  and 0t >  can be taken as a test function in (21). As a result, (21) implies that 

( ) ( )

( ) ( ) ( )2,2,
0

2

; ; ;

d , d

, , .pq
D D

p

pW W

u y t w y t w w x F x y tw w x

f w w−

−

Ω Ω

Ω Γ Ω Γ

∆ + ∆ ∆ + ∆ ∆ + +

≥ ∀ ∈ Ω
∫ ∫


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Passing to the limit as 0t →  (because ( )CarF ∈ Ω× ), we get 

( ) ( ) ( ) ( )2,2,
0

2
; ; ;d , d , , .pq

D D

p
pW Wu y y w x F x y w x f w w−

−

Ω Γ Ω ΓΩ Ω
∆ ∆ ∆ + ≥ ∀ ∈ Ω∫ ∫   

Hence, 

( ) ( ) ( )2,2,
0

2
; ; ;d , d , ,pq

D D

p
W Wu y y w x F x y w x f w −

−

Ω Γ Ω ΓΩ Ω
∆ ∆ ∆ + =∫ ∫                   (22) 

and we arrive at the standard definition of weak solution to the boundary value problem (15)-(16). However, in 
order to avoid some mathematical difficulties, we will mainly use the Minty inequality in our further analysis. It is  
worth to note that having applied Green’s formula twice to operator ( )2pu y y−∆ ∆ ∆  tested by ( )0 ; Dv C∞∈ Ω Γ ,  

we arrive at the identity 

( )
( )( ) ( )

( )

2

2 2 1

2 2 21 1

2 2 1
0

d

, d d

d d d

d d ; .

N

D S

S

p

p p N

p p pN N

p p N
D

u y y v x

u y y v x u y y v

v vu y y v x u y y u y y

vu y y v x u y y v C

ν

ν ν

ν

−

Ω

− − −

Ω ∂Ω

− − −− −

Ω Γ Γ

− − − ∞

Ω Γ

∆ ∆ ∆

∂
= − ∇ ∆ ∆ ∇ + ∆ ∆

∂
∂ ∂

= ∆ ∆ ∆ − ∆ ∆ − ∆ ∆
∂ ∂
∂

= ∆ ∆ ∆ − ∆ ∆ ∀ ∈ Ω Γ
∂

∫

∫ ∫

∫ ∫ ∫

∫ ∫




 



 

Hence, if y as an element of ( ) ( ) ( )2, 1,
0 0: ;p p

p DW WΩ = Ω Γ ∩ Ω  is the weak solution of the boundary value 
problem (15) - (16) in the sense of Definition 3.1, then relations (15)-(16) are fulfilled as follows (for the details, 
we refer to ([16], Section 2.4.4) and ([4], Section 2.4.2)) 

( ) ( ) ( )( )
( ) ( )
( ) ( )

( ) ( ) ( )( )

2
0

2 1 ,
0

1 ,
1

1 , 1 ,
0

, in ; ,

0 in ,

0 in ,

0 in : .

p D

p p

q p
D

p p p q
S S

u y F y f C

y W

y W

y W W

γ

γ

γ

∗∞

−

∗−

∆ + = Ω Γ 
= ∂Ω 


= Γ 


∆ = Γ = Γ 

 

In particular, taking w y=  in (22), this yields the relation 

( ) ( ) ( )2,2,
0; ; ;d , d , .pq

D D

p
W Wu y x F x y y x f y − Ω Γ Ω ΓΩ Ω

∆ + =∫ ∫                     (23) 

As a result, conditions (11), (18), and inequalities (14) and (9) lead us to the following a priori estimate 

( ) ( )( )2,

1
1

11
, ;: d .q

D

pp p
p adp Wy y x C f uα −

−−
∆ Ω ΓΩ
= ∆ ≤ ∀ ∈∫ A                   (24) 

The existence of a unique weak solution to the boundary value problem (15)-(16) in the sense of Definition 
3.1 follows from an abstract theorem on monotone operators. 

Theorem 2 ([17]) Let V be a reflexive separable Banach space. Let V* be the dual space, and let :A V V ∗→  
be a bounded, hemicontinuous, coercive and strictly monotone operator. Then the equation Ay f=  has a 
unique solution for each f V ∗∈ . 

Here, the above mentioned properties of the strict monotonicity, hemicontinuity, and coercivity of the opera-
tor A have respectively the following meaning: 

;, 0, , ;V VAy Av y v y v V∗− − ≥ ∀ ∈                                       (25) 

;, 0 ;V VAy Av y v y v∗− − = ⇒ =                                          (26) 

( ) ;
the function , is continuous for all , , ;

V V
t A y tv w y v w V∗+ ∈              (27) 

;,
lim .
V

V V

y
V

Ay y

y
∗

→∞
= +∞                                                 (28) 
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In our case, we can define the operator ( ),A u ⋅  as a mapping ( ) ( )( )p p
∗

Ω → Ω   by 

( ) ( )( ) ( ) ( )2

;
, , : d , d .

p p

pA u y w u y y w x F x y w x∗
−

Ω Ω Ω Ω
= ∆ ∆ ∆ +∫ ∫ 

                (29) 

In view of the properties (12)-(14) and compactness of the Sobolev imbedding ( ) ( )2,
0 ;p r

DW LΩ Γ → Ω  for 
r p∗< , it is easy to show that ( ) ( ) ( )2, ,pA u y u y F y= ∆ +  and ( ),A u ⋅  satisfies all assumptions of Theorem 2 
(for the details we refer to [16] [17]). Hence, the variational problem 

( )
( ) ( )( ) ( ) ( )( ) ( ) ( );;

For a given , find such that

, , , ,
p pp p

ad p

p

u y

A u y fϕ ϕ ϕ∗∗ Ω ΩΩ Ω

∈ ∈ Ω

= ∀ ∈ Ω  





A
                 (30) 

for which ( ),A u y f=  is its operator form, has a unique solution ( ) ( )py y u= ∈ Ω . We note that the duali-
ty pairing in the right hand side of (30) makes a sense for any distribution ( )2, ;q

Df W −∈ Ω Γ  because 
( ) ( )( ) ( )( )2, 2,

0; : ;q p
D D pW W

∗ ∗− Ω Γ = Ω Γ ⊂ Ω . It remains to show that the solution y of (30) satisfies the Minty 
relation (21). Indeed, in view of the monotonicity of A, we have 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

;

; ;

by (30)

;;

0 , , ,

, , , ,

, , , .

p p

p p p p

p pp p

A u v A u y v y

A u v v y A u y v y

A u v v y f ϕ

∗

∗ ∗

∗∗

Ω Ω

Ω Ω Ω Ω

Ω ΩΩ Ω

≤ − −

= − − −

= − −

 

   

  

 

Thus, 

( ) ( )( ) ( ) ( ) ( ) ( )2,2,
0; ; ;;

, , , , ,pq
D Dp p

pW WA u v v y f vϕ∗ − Ω Γ Ω ΓΩ Ω
− ≥ ∀ ∈ Ω

 
  

and, hence, in view of Remark 3.1, the Minty relation (21) holds true. 
Taking this fact into account, we adopt the following notion. 
Definition 3.2. We say that ( ),u y  is a feasible pair to the OCP (19) if ( )adu BV∈ ⊂ ΩA , ( )py∈ Ω , 

the pair ( ),u y  is related by the Minty inequality (21), ( ),I u y < +∞ , and 

( ) ( ) ( ) ( )1 1, ,p max p
S Sy L y Lγ ζ γ+ +∈ Γ − ∈ Γ                          (31) 

where ( )p
SL+ Γ  stands for the natural ordering cone of positive elements in ( )p

SL Γ , i.e. 

( ) ( ){ }1: | 0 -a.e. on .p p N
S S SL v L v −

+ Γ = ∈ Γ ≥ Γ                       (32) 

We denote by Ξ  the set of all feasible pairs for the OCP (19). We say that a pair ( ) ( ) ( )0 0 1, pu y BV∈ Ω × Ω  
is an optimal solution to problem (19) if 

( ) ( )
( )

( )0 0 0 0

,
, and , inf , .

u y
u y I u y I u y

∈Ξ
∈Ξ =  

Remark 3.2. Before we proceed further, we need to make sure that minimization problem (19) is meaningful, 
i.e. there exists at least one pair ( ),u y  such that ( ),u y  satisfying the control and state constraints (16)-(18), 
( ),I u y < +∞ , and ( ),u y  would be a physically relevant solution to the boundary value problem (15)-(16). In 

fact, one needs the feasible set Ξ  to be nonempty. But even if we are aware that Ξ ≠ ∅ , this set must be suf- 
ficiently rich in some sense, otherwise the OCP (19) becomes trivial. From a mathematical point of view, to deal 
directly with the control and especially state constraints is typically very difficult [18]-[20]. Thus, the non- 
emptiness of feasible set for OCPs with control and state constraints is an open question even for the simplest 
situation. 

It is reasonably now to make use of the following Hypothesis. 
(H1) There exists at least one pair ( ) ( ) ( ), pu y BV∈ Ω × Ω  such that ( ),u y ∈Ξ . 

4. Existence of Optimal Solutions 
In this section we focus on the solvability of optimal control problem (15)-(19). Hereinafter, we suppose that the  
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space ( ) ( )pBV Ω × Ω  is endowed with the norm ( ) ( ) ( ) ( ) ,, :
p BV pBV

u y u y
Ω ∆Ω × Ω

= +


. Let τ  be the to-  

pology on the set ( ) ( )pBVΞ ⊂ Ω × Ω  which we define as the product of the weak-∗ topology of ( )BV Ω  
and the weak topology of ( )2,

0 ;p
DW Ω Γ . 

We begin with a couple of auxiliary results. 
Lemma 1. Let ( ){ },k k k

u y
∈

∈Ξ


 be a sequence such that ( ) ( ), ,k ku y u yτ→  in ( ) ( )pBV Ω × Ω . Then 
we have 

( )0lim d d ; .k k Dk
u y x u y x Cϕ ϕ ϕ ∞

Ω Ω→∞
∆ ∆ = ∆ ∆ ∀ ∈ Ω Γ∫ ∫                     (33) 

Proof. Since ku u→  in L1(Ω) and { }k k
u

∈  is bounded in ( )L∞ Ω , we get that ku u→  strongly in Lr(Ω) 
for every 1 r≤ < +∞ . In particular, we have that ku u→  in ( )qL Ω  and ky yϕ ϕ∆ ∆ ∆ ∆  in ( )pL Ω . 
Hence, it is immediate to pass to the limit and to deduce (33). 

As a consequence, we have the following property. 
Corollary 1. Let ( ){ },k k k

u y
∈

∈Ξ


 and ( ){ }2,
0 ;q

k D k
Wζ

∈
∈ Ω Γ



 be sequences such that ( ) ( ), ,k ku y u yτ→   

in ( ) ( )pBV Ω × Ω  and kζ ζ→  in ( )2,
0 ;q

DW Ω Γ . Then 

lim d d .k k kk
u y x u y xζ ζ

Ω Ω→∞
∆ ∆ = ∆ ∆∫ ∫  

Our next step concerns the study of topological properties of the feasible set Ξ  to problem (19). 
The following result is crucial for our further analysis. 
Theorem 3. Let ( ){ },k k k

u y
∈

⊂ Ξ


 be a bounded sequence in ( ) ( )pBV Ω × Ω . Then there is a pair  
( ) ( ) ( ), pu y BV∈ Ω × Ω  such that, up to a subsequence, ( ) ( ), ,k ku y u yτ→  and ( ),u y ∈Ξ . 

Proof. By Theorem 1 and compactness properties of the space ( )p Ω , there exists a subsequence of 
( ){ },k k k
u y

∈
∈Ξ


, still denoted by the same indices, and functions ( )u BV∈ Ω  and ( )py∈ Ω  such that 

( ) ( ) ( )1 2, 1,
0 0in , in ; , and, therefore, in .p p

k k D ku u L y y W y y W→ Ω Ω Γ Ω             (34) 

Then by Lemma 1, we have 

( )0lim d d , ; .k k Dk
u y x u y x Cϕ ϕ ϕ ∞

Ω Ω→∞
∆ ∆ = ∆ ∆ ∀ ∈ Ω Γ∫ ∫  

It remains to show that the limit pair ( ),u y  is related by inequality (21) and satisfies the state constraints 
(31). With that in mind we write down the Minty relation for ( ),k ku y : 

( ) ( )( )

( ) ( ) ( )2,2,
0

2

0; ; ;

d , d

, , ; .pq
D D

p
k k k

k DW W

u y x F x y x

f y C

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ−

−

Ω Ω

∞
Ω Γ Ω Γ

∆ ∆ ∆ −∆ + −

≥ − ∀ ∈ Ω Γ

∫ ∫                     (35) 

In view of (34) and Lemma 1, we have 

lim d d ,p p
kk

u x u xϕ ϕ
Ω Ω→∞
∆ = ∆∫ ∫  

2 2lim d d .p p
k kk

u y x u y xϕ ϕ ϕ ϕ− −

Ω Ω→∞
∆ ∆ ∆ = ∆ ∆ ∆∫ ∫  

Moreover, due to the compactness of the Sobolev imbedding  ( ) ( )2,
0 ;p r

DW LΩ Γ Ω  for r p∗< , we have 

( )( ) ( )( ), d , d ,k kF x y x F x y x Jϕ ϕ ϕ ϕ
Ω Ω

− = − +∫ ∫  

where Hölder’s inequality yields 

( )( ) ( ) ( )

1by (12)

1: , d d 0 as .r

r
r r

k k k LJ F x y y x C x y y kϕ ϕ
−

ΩΩ Ω
= − ≤ − → →∞∫ ∫  

We, thus, can pass to the limit in relation (35) as k →∞  and arrive at the inequality (21), which means that 
( )py∈ Ω  is a weak solution to the boundary value problem (15)-(16). Since the injections (6) are compact  

and the cone ( )p
SL+ Γ  is closed with respect to the strong convergence in ( )p

SL Γ , it follows that ky y
ν ν

∂ ∂
→

∂ ∂
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strongly in ( )p
SL Γ  and, hence, 

( ) ( ) ( ) ( ) ( )1 1 1lim and .p max p
k S Sk

y y L y Lγ γ γ ζ+ +→∞
= ∈ Γ ∈ − Γ  

This fact together with adu∈A  leads us to the conclusion: ( ),u y ∈Ξ , i.e. the limit pair ( ),u y  is feasible 
to optimal control problem (19). The proof is complete.   

In conclusion of this section, we give the existence result for optimal pairs to problem (19). 
Theorem 4. Assume that, for given distributions ( )2, ;q

Df W −∈ Ω Γ , ( )2
dy L∈ Ω , and ( )max pLζ ∈ ∂Ω , the 

Hypothesis (H1) is valid. Then optimal control problem (19) admits at least one solution  
( ) ( ) ( ),opt opt

pu y BV∈ Ω × Ω . 
Proof. Since the set Ξ  is nonempty and the cost functional is bounded from below on Ξ , it follows that 

there exists a minimizing sequence ( ){ },k k k
u y

∈
∈Ξ



 to problem (19). Then the inequality 

( )
( ) ( ) ( ) 2

,
inf , lim d ,k d ku y k

I u y y x y x x Du
Ω Ω∈Ξ →∞

 = − + < +∞  ∫ ∫  

implies the existence of a constant 0C >  such that 

.sup k
k

Du C
Ω∈

≤∫


 

Hence, in view of the definition of the class of admissible controls adA  and a priori estimate (24), the se-  
quence ( ){ },k k k

u y
∈

∈Ξ


 is bounded in ( ) ( )pBV Ω × Ω . Therefore, by Theorem 3, there exist functions  
*

adu ∈A  and ( )*
py ∈ Ω  such that ( )* *,u y ∈Ξ  and, up to a subsequence, *

ku u→  weakly-∗ in BV(Ω) 
and *

ky y  weakly in ( )2,
0 ;p

DW Ω Γ . To conclude the proof, it is enough to show that the cost functional I is 
lower semicontinuous with respect to the τ-convergence. Since *

ky y→  strongly in ( )pL Ω  by Sobolev em-
bedding theorem, it follows that 

( ) ( ) ( ) ( )
22 *

*

lim d d and,

lim inf by (10).

k d dk

kk

y x y x x y x y x x

Du Du
Ω Ω→∞

Ω Ω→∞

− = −

≥

∫ ∫
∫ ∫

 

Thus, 

( ) ( )
( )

( )* *

,
, lim inf , inf , .k kk u y

I u y I u y I u y
→∞ ∈Ξ

≤ =  

Hence, ( )* *,u y  is an optimal pair, and we arrive at the required conclusion.   

5. Henig Relaxation of State-Constrainted OCP (19) 
The main goal of this section is to provide a regularization of the pointwise state constraints by replacing the 
ordering cone ( ): p

SL+Λ = Γ  (see (32)) by its solid Henig approximation ( )εΛ  (see [21]-[24]) and show that 
the conical regularization approach leads to a family of optimization problems such that their solutions can be 
obtained by solving the corresponding optimality system and the regularized solution τ-converge in the limit as 

0ε →  to a solution of the original problem. 
We begin with some formal descriptions and abstract results. Let Z be a real normed space, and let ZΛ ⊂  

be a closed ordering cone in Z. 
Definition 5.1. A nonempty convex subset B of a nontrivial ordering cone ZΛ ⊂  (i.e. { }0ZΛ ≠ , where 

0Z  is the zero element in Z) is called base of Λ  if for each element { }\ 0Zz∈Λ  there is a unique repre- 
sentation z bµ=  where 0µ >  and b B∈ . 

In what follows, we always assume that the ordering cone Λ  has a closed base B ⊂ Λ . We note that, in 
general, bases are not unique. We denote the norm of Z by ,Z⋅  and for arbitrary elements 1 2,z z Z∈  we de-
fine 

{ }1 2 2 1 1 2 2 1as well as \ 0 .Zz z z z z z zΛ Λ≤ ⇔ − ∈Λ < ⇔ − ∈Λ  

In order to introduce a representation for a base of Λ , let *Z  be the topological dual space of Z, and let 
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*,, Z Z⋅ ⋅  be the dual pairing. Moreover, by 

{ }*
* * * *

,
: | , 0

Z Z
z Z z z zΛ = ∈ ≥ ∀ ∈Λ  

and 

{ }{ }*
# * * *

,
: | , 0 \ 0ZZ Z

z Z z z zΛ = ∈ > ∀ ∈Λ  

we define the dual cone and the quasi-interior of the dual cone of Λ , respectively. Using the definition of the 
dual cone, the ordering cone Λ  can be characterized as follows (see [25], Lemma 3.21): 

{ }*
* * *

,
| , 0

Z Z
z Z z z zΛ = ∈ ≥ ∀ ∈Λ  

Due to Lemma 1.28 in [25], we can give the following result. 
Lemma 2. Let ZΛ ⊂  be a nontrivial ordering cone in a Banach space Z. Then the set 

{ }*
*

,
: | , 1

Z Z
B z z z= ∈Λ =  is a base of Λ  for every * #z ∈Λ . Moreover, if Λ  is reproducing in Z, i.e. if 

ZΛ − Λ = , and if B is a base of Λ , then there is an element * #z ∈Λ  satisfying { }*
*

,
: | , 1

Z Z
B z z z= ∈Λ = . 

Remark 5.3. As follows from Lemma 2, the set 

( ){ }1: | d 1
S

p N
SB Lξ ξ −

+ Γ
= ∈ Γ =∫                              (36) 

is a closed base of ordering cone ( ): p
SL+Λ = Γ . 

Now, we are prepared to introduce the definition of a so-called Henig dilating cone (see Zhuang, [24]) which 
is based on the existence of a closed base of ordering cone Λ . 

Definition 5.2. Let Z be a normed space, and let ZΛ ⊂  be a closed ordering cone with a closed base B. 
Choosing 0ε >  arbitrarily, the corresponding Henig dilating cone is defined by 

( ) ( )( )( ) ( ){ }( ): cl cone 0 : cl | 0, 0 ,
Z ZZ ZB B B z z B Bε ε εµ µ⋅ ⋅Λ = + = ≥ ∈ +  

where ( ) { }1 0 : | 1Z ZB v Z vεε
= ∈ ≤  is the closed unit ball in Z centered at the origin. 

It is clear that ( )BεΛ  depends on the particular choice of B. As follows from this definition, ( ) ( )int BεΛ ≠ ∅  
for every 0ε > , i.e. Henig dilating cone is proper solid. Moreover, we have the following properties of such 
cones (see [24] [26]). 

Proposition 5. Let Z be a normed space, and let ZΛ ⊂  be a closed ordering cone with a closed base B. 
Choosing ( )0,ε δ∈ , where 

{ }: inf | 0,Zb b Bδ = ∈ >                               (37) 

the following statements hold true. 
1) ( )BεΛ  is pointed, i.e. ( ) ( )( ) { }0ZB Bε εΛ ∩ −Λ = ; 
2) ( ) ( ) 0B Bε ε γ γ+Λ ⊂ Λ ∀ > ; 

3) ( ) ( )( )( )cone cl 0
Z ZB B Bε ε⋅Λ = + ; 

4) ( )
0

Bε
ε δ< <

Λ = Λ


; 

5) the implication 

( ) ( ) ( ) ,ZB
ε

εξ ξ ξ
κ ε

∈ Λ ⇒ + ∈ −Λ/
+

                          (38) 

. . Zi e εξ ξ
κ εΛ −
+

  

holds true with { }sup :Z Bκ ξ ζ= ∈ . 
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In the context of constraint qualifications problem, the following result plays an important role. 
Proposition 6. Let Z be a normed space, and let ZΛ ⊂  be a closed ordering cone with a closed base B. 

Choosing ( )0,ε δ∈  arbitrarily, where δ  is defined by (37), the inclusion 

{ } ( )( )0 intZ BεΛ ⊂ ∪ Λ                                (39) 

holds true. 
Proof. Let { }\ 0Zz∈Λ  be chosen arbitrarily. By the definition of a base there is a unique representation 

z bλ=  with 0λ >  and b B∈ . Obviously, 

{ } ( )( ) ( )( )int 0 intZz b B B bλε λελ λ∈ + =  

holds true. Let’s assume for a moment that 

( ) { } ( )( )cone 0 .ZB b b Bλε ελ ⊆ +                             (40) 

Then we obtain 

{ } ( )( )( ) ( )( )( ) ( )( )int cone 0 int cone 0 int ,Z Zz b B B B Bε ε ε∈ + ⊆ + = Λ  

which completes the proof. In order to show (40), let ( )x B bλε λ∈  be chosen arbitrarily, i.e. 

.Zx bλ λε− ≤  

Then 

1
Z

Z

x b x b λελ ε
λ λ λ
− = − ≤ =  

yields 

{ } { } ( )( )| , 0 cone 0 .ZZx y y b b Bεµ ε µ∈ − ≤ ≥ = +  

As a result, (40) is satisfied.   
Remark 5.2. The following property, coming from Proposition 6, turns out rather useful: in order to prove 

( )( )intz Bε∈ Λ , it is sufficient to check whether { }\ 0Zz∈Λ . 
The following result shows that Henig dilating cones ( )BεΛ  possess good approximation properties. 
Proposition 7. Let Λ  be a closed ordering cone in a normed space Z, and let B be an arbitrary closed base 

of Λ . Let parameter δ  be defined as in (37), and let ( ) ( )0,k k
ε δ

∈
⊂



 be a monotonically decreasing sequ-  
ence such that lim 0kk

ε
→∞

= . Then the sequence of cones ( ){ }k k
Bε ∈

Λ


 converges to Λ  in Kuratowski sense  

with respect to the norm topology of Z as k tends to infinity, that is 

( ) ( )lim inf lim sup ,
k kk k

K B K Bε ε→∞ →∞
− Λ = Λ = − Λ  

where 

( ) {

( ) }0 0

liminf : | for all neighborhoods of there is

such that ,

k

k

k
K B z Z N z a

k N B k k

ε

ε

→∞
− Λ = ∈

∈ ∩Λ ≠∅ ∀ ≥

 

( ) {

( ) }
0

0

lim sup : | for all neighborhoods of and every

there is such that .

k

k

k
K B z Z N z k

a k k N B

ε

ε

→∞
− Λ = ∈ ∈

≥ ∩Λ ≠ ∅



 

Proof. Let z∈Λ  be chosen arbitrarily. Then N ∩Λ ≠ ∅  holds true for every neighborhood N of z, and 
due to the inclusions 

kε
Λ ⊂ Λ  k∀ ∈ , we see that 

k
N ε∩ Λ ≠ ∅  for all k ∈ . Hence, 

( )lim inf .
kk

K Bε→∞
Λ ⊆ − Λ                                (41) 

Taking into account the inclusion (41) and the fact that 
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( ) ( )liminf limsup ,
k kk k

K B K Bε ε→∞ →∞
− Λ ⊆ − Λ  

we get 
( ) ( )liminf limsup .

k kk k
K B K Bε ε→∞ →∞

Λ ⊆ − Λ ⊆ − Λ                        (42) 

To show that the sequence ( ){ }k k
Bε ∈

Λ


 converges to Λ  in Kuratowski sense, it remains to show 

( )limsup .
k

k
K Bε

→∞
− Λ ⊆ Λ                                (43) 

However, the inclusion (43) is equivalent to 

( ) ( )\ \ lim sup .
k

k
Z Z K Bε

→∞

 Λ ⊆ − Λ 
 

                          (44) 

Let \z Z∈ Λ  be an arbitrarily element. Since Λ  is closed, there is an open neighborhood N  of z  with 
respect to the norm topology of Z such that N ∩Λ = ∅ . By Proposition 5 (see item (4)), there is a sufficiently 
large index 0k ∈  such that 

( ) 0.
k

N B k kε∩ Λ = ∅ ∀ ≥  

This implies 

( )\ lim sup .
k

k
z Z Bε

→∞
∈ Λ  

Combining (42), (43), and (44), we arrive at the relation 

( ) ( )lim inf lim sup .
k kk k

K B K Bε ε→∞ →∞
Λ ⊆ − Λ ⊆ − Λ ⊆ Λ  

Thus, ( )lim
kk

K Bε→∞
Λ = − Λ  and the proof is complete. 

Taking these results into account, we associate with OCP (19) the following family of Henig relaxed pro- 
blems 

( ){ }2Minimize , ddI u y y y x Du
Ω Ω

= − +∫ ∫                         (45) 

subject to the constraints 

( ) ( ) ( )( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

2
0

2 1 ,
0

1 ,
1

1 ,
0

1

1

, in ; ,

0 in ,

0 in ,

0 in ,

,

,

p D

p p

q p
D

p p
S

p
S

max p
S

ad

u y F y f C

y W

y W

y W

y L B

y L B

u

ε

ε

γ

γ

γ

γ

ζ γ

∗∞

−

−

+

+

∆ + = Ω Γ 
= ∂Ω 
= Γ
∆ = Γ 


∈ Γ 


− ∈ Γ 


∈ A

                         (46) 

or in a more compact form each of these problems can be stated as follows 

( )
( ) ( )

,
inf , , 0, ,

u y
I u y

ε
ε δ

∈Ξ
∀ ∈                                (47) 

where 

( ){ }inf : ,p
SL Bδ ξ ξ

Γ
= ∈                                 (48) 

the base B takes the form (36), and the feasible set ( ) ( )pBVεΞ ⊂ Ω × Ω  we define as follows: ( ),u y ε∈Ξ  
if and only if adu∈A , ( ),I u y < +∞ , ( )py∈ Ω , the pair ( ),u y  is related by the Minty inequality (21), 
and 
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( ) ( )( ) ( ) ( ) ( )( ) ( )1 1, .p max p
S Sy L B y L B

ε ε
γ ζ γ+ +∈ Γ − ∈ Γ                   (49) 

Here, ( )( ) ( )p
SL B

ε+ Γ  stands for the corresponding Henig dilating cone. 
Since, by Proposition 6, the inclusion εΞ ⊆ Ξ  holds true for all ε > 0, it is reasonable to call the OCP (47) a 

Henig relaxation of OCP (19). Moreover, as obviously follows from Proposition 7, the convergence 
0ε

ε
→Ξ →Ξ  in Kuratowski sense holds true with respect to the τ-topology on ( ) ( )pBV Ω × Ω . 

We are now in a position to show that using the relaxation approach we can reduce the main suppositions of 
Theorem 4. In particular, we can characterize Hypothesis ( 1H ) by the non-emptiness properties of feasible sets 

εΞ  for the corresponding Henig relaxed problems. 
Theorem 8. Let { } ( )0,k k

ε δ
∈

⊂


 be a monotonically decreasing sequence converging to 0 as k →∞ . Then,  
for given distributions ( )2, ;q

Df W −∈ Ω Γ , ( )2
dy L∈ Ω , and ( )max pLζ ∈ ∂Ω , the Hypothesis (H1) implies that  

the Henig relaxed problem (47) has a nonempty set of feasible solutions εΞ  for all kε ε= , k ∈ . And vice 
versa, if there exists a sequence ( ){ },k k

k
u y

∈
 satisfying conditions 

( ) ( ), for all , and sup , ,
k

k k k k

k
u y k I u yε

∈
∈Ξ ∈ < +∞



                    (50) 

then the sequence s ( ){ },k k

k
u y

∈
 is τ-compact and each of its τ-cluster pairs is a feasible solution to the original 

OCP (19). 
Proof. Since the implication ( ) ( )for all 0ε εΞ ≠ ∅ ⇒ Ξ ≠ ∅ >  is obvious by Proposition 7, we concentrate 

on the proof of the inverse statement—property (50) implies the existence of at least one pair ( ),u y  such that 
( ),u y ∈Ξ . 

Let ( ){ },k k

k
u y

∈
 be an arbitrary sequence with property: ( ),

k

k ku y ε∈Ξ  for all k ∈ . Since the set adA  
and a priory estimate (24) do not depend on parameter kε  and the condition (50)2 implies supk kDu∈ Ω

≤ ∞∫ ,  
it follows by compactness arguments (see the proof of Theorem 4) that there exist a subsequence of ( ){ },k k

k
u y

∈
  

(still denoted by the same index) and a pair ( ) ( ), ad pu y∗ ∗ ∈ × ΩA  such that 

( ) ( ), , as .k ku y u y kτ ∗ ∗→ →∞  

Closely following the proof of Theorem 3, it can be shown that the limit pair ( ),u y∗ ∗  is such that adu∗ ∈A , 
( ),J u y∗ ∗ < +∞ , and function ( )py∗ ∈ Ω  is a weak solution to the boundary value problem (15) - (16). 

Moreover, in view of the compactness properties of injections (6), we may suppose that 

( ) ( ) ( )1 1 strongly in as .k p
Sy y L kγ γ→ Γ →∞                       (51) 

It remains to establish the inclusions 

( ) ( ) ( ) ( )1 1, ,p max p
S Sy L y Lγ ζ γ∗ ∗

+ +∈ Γ − ∈ Γ                         (52) 

By contraposition, let us assume that ( ) ( ) ( )1: \max p p
S Sy L Lξ ζ γ∗ ∗

+= − ∈ Γ Γ . Since the cone ( )p
SL+ Γ  is 

closed, it follows that there is a neighborhood ( )ξ ∗  of ξ ∗  in ( )p
SL Γ  such that ( ) ( )p

SLξ ∗
+∩ Γ = ∅ . 

Using the fact that 

( ) ( )( ) ( ) ( )( ) ( ) , ,
k l

p p p
S S SL L B L B k l

ε ε+ + +Γ ⊂ Γ ⊆ Γ ∀ ≥  

by Proposition 7 and definition of the Kuratowski limit, it is easy to conclude the existence of an index 0k ∈  
such that 

( ) ( ) ( ) 0( ) , .
k

p
SL B k k

ε
ξ ∗

+∩ Γ = ∅ ∀ ≥                          (53) 

However, in view of the strong convergence property (51), there is an index 1k ∈  satisfying 

( ) 1, .k k kξ ξ ∗∈ ∀ ≥                                (54) 

Combining (53) and (54), we finally obtain 

( ) ( ) ( )( ) ( ) { }1 0 1\ , max , .
k

k max k p p
S Sy L L B k k k

ε
ξ ζ γ += − ∈ Γ Γ ∀ ≥  
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This, however, is a contradiction to 

( ) ( )( ) ( )1 , .
k

max k p
Sy L B k

ε
ζ γ +− ∈ Γ ∀ ∈  

Thus, ( ) ( )1
max p

Sy Lζ γ ∗
+− ∈ Γ . In the same manner it can be shown that ( ) ( )1

p
Sy Lγ ∗

+∈ Γ . Hence, the pair 
( ),u y∗ ∗  is feasible for OCP (19).   

As an obvious consequence of this Theorem and Theorem 4, we have the following noteworthy property of 
the Henig relaxed problems (47). 

Corollary 2. Let ( )2, ;q
Df W −∈ Ω Γ , ( )2

dy L∈ Ω , and ( )max pLζ ∈ ∂Ω  be given distribution. Then the 
Henig relaxed problem (47) is solvable for each ( )0,ε δ∈  provided Hypothesis ( 1H ) is satisfied. 

The next result is crucial in this section. We show that some optimal solutions for the original OCP (19) can 
be attained by solving the corresponding Henig relaxed problems (45)-(46). However, we do not claim that the 
entire set of the solutions to OCP (19) can be restored in such way. 

Theorem 9. Let ( )2, ;q
Df W −∈ Ω Γ , ( )2

dy L∈ Ω , and ( )max pLζ ∈ ∂Ω  be given distributions. Let 
{ } ( )0,k k
ε δ

∈
⊂  be a monotonically decreasing sequence such that 0kε →  as k →∞ , where 0δ >  is de- 

fined by (48). Let ( ){ },0 ,0,
k

k k

k
u y ε

∈
∈Ξ


 be a sequence of optimal solutions to the Henig relaxed problems (45)- 

(46) such that 

( )
,0 .sup k

BVk
u

Ω∈
< +∞


                             (55) 

Then there is a subsequence ( ){ },0 ,0,i ik k

i
u y

∈
 of ( ){ },0 ,0,k k

k
u y

∈
 and a pair ( )0 0,u y  such that 

( ) ( ),0 ,0 0 0, , as ,i ik ku y u y iτ→ →∞                           (56) 

( ) ( )
( )

( )0 0 0 0

,
, , and , inf , .

u y
u y I u y I u y

∈Ξ
∈Ξ =                    (57) 

Proof. In view of a priory estimate (24), the uniform boundedness of optimal controls with respect to 
BV-norm (55) implies the fulfilment of condition (50)2. Hence, the compactness property (56) and the inclusion 
( )0 0,u y ∈Ξ  are a direct consequence of Theorem 8. It remains to show that the limit pair ( )0 0,u y  is a solu-
tion to OCP (19). Indeed, the condition ( )0 0,u y ∈Ξ  implies the fulfilment of Hypothesis ( 1H ). Hence, by 
Theorem 4, the original OCP (19) has a nonempty set of solutions. Let ( ),u y∗ ∗  be one of them. Then the fol-
lowing inequality is obvious 

( ) ( )0 0, , .I u y I u y∗ ∗ ≤                               (58) 

On the other hand, by Proposition 5 (see property (4)), we have ( ),
ki

u y ε
∗ ∗ ∈Ξ  for every i∈ . Since 

( ){ },0 ,0,i ik k

i
u y

∈
 are the solutions to the corresponding relaxed problems (47), it follows that 

( )
( ) ( ) ( ),0 ,0

,
inf , , , , .i i

ki

k k

u y
I u y I u y I u y i

ε

∗ ∗

∈Ξ
= ≤ ∀ ∈                      (59) 

As a result, taking into account the relations (58) and (59), and the lower semicontinuity property of the cost 
functional I with respect to the τ-convergence, we finally get 

( )
( ) ( )

( ) ( ) ( )

by (59)
,0 ,0

,

by (58)
,0 ,0 0 0

inf ( , ) , lim inf ,

lim inf , , , .

i i

i i

k k

u y i

k k

i

I u y I u y I u y

I u y I u y I u y

∗ ∗

∈Ξ →∞

∗ ∗

→∞

= ≥

≥ ≥ ≥

 

Thus, 

( )
( ) ( ) ( ),0 ,0 0 0

,
inf , lim , , ,i ik k

u y i
I u y I u y I u y

∈Ξ →∞
= =  

and we arrive at the desired property (57)2. The proof is complete.   
Remark 5.3. It is worth to note that condition (55) can be omitted if the original OCP (19) is regular, that is 

when Hypothesis ( 1H ) is valid. Indeed, let us assume that Ξ ≠ ∅  and ( )ˆ ˆ,u y ∈Ξ  is an arbitrary pair. Then 
( )ˆ ˆ,u y  is feasible to each Henig relaxed problems (45)-(46), and, hence, 
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( ) ( ) ( ),0 ,0

( , )
ˆ ˆinf , , , , .

k

k k

u y
I u y I u y I u y k

ε∈Ξ
= ≤ ∀ ∈                       (60) 

Since, by Proposition 6, the inclusion 
kε

Ξ ⊆ Ξ  holds true for all 0kε > , and the sequence { }k kε ∈
Ξ


 is 

monotone in the following sense (because of the property (2) of Proposition 5) 

1 2
,

kε ε εΞ ⊇ Ξ ⊇ ⊇ Ξ ⊇ ⊇ Ξ ≠ ∅   

it follows that 

( ) ( )
( )

( ) ( )
1( , ) ( , ) ,

ˆ ˆinf , inf , inf , , .
ku y u y u y

I u y I u y I u y I u y
ε ε∈Ξ ∈Ξ ∈Ξ

≤ ≤ ≤ ≤ ≤   

As a result, (60) leads to the estimate 

( )
( ) ( ) ( ),0 ,0

2( , )
ˆ ˆsup sup d inf , , .

k

k k
LBV u yk k

u u x I u y I u y
ε

ξ ∞ ΩΩΩ ∈Ξ∈ ∈

 ≤ + ≤ Ω + < +∞  ∫
 

 

As was mentioned at the beginning of this section, the main benefit of the relaxed optimal control problems 
(45)-(46) comes from the fact that the Henig dilating cone ( )( ) ( )p

SL B
ε+ Γ  has a nonempty topological interior. 

Hence, it gives a possibility to apply the Slater condition or the Robinson condition in order to characterize the 
optimal solutions for the state constrained OCP (19). On the other hand, this approach provides nice conver-
gence properties for the solutions of relaxed problems (45)-(46). However, as follows from Theorems 8 and 9 
(see also Remark 5.5), the most restrictive assumption deals with the regularity of the relaxed problems (45)-(46) 
for all ( )0,ε δ∈ . So, if we reject the Hypothesis ( 1H ), it becomes unclear, in general, whether the relaxed sets 
of feasible solutions εΞ  are nonempty for all 0ε  . In this case it makes sense to provide further relaxation 
for each of Henig problems (45)-(46). In particular, using the methods of variational inequalities, we show in the 
next section that original OCP (19) may admit the existence of the so-called weakened approximate solution 
which can be interpreted as an optimal solution to some optimization problem of a special form. 

6. Variational Inequality Approach to Regularization of OCP (19) 
As follows from Theorem 4, the existence of optimal solutions to the problem (19) can be obtained by using 
compactness arguments and the Hypothesis ( 1H ). However, because of the state constraints (17) the fulfilment 
of Hypothesis ( 1H ) is an open question even for the simplest situation. Nevertheless, in many applications it is 
an important task to find a feasible (or at least an approximately admissible, in a sense to be made precise) solu-
tion when both control and state constraints for the OCP are given. Thus, if the set of feasible solutions is rather 
“thin”, it is reasonable to weaken the requirements on feasible solutions to the original OCP. In particular, it 
would be reasonable to assume that we may satisfy the state equation 

( ) ( )( ) ( ) ( )( ) ( ) ( );;
, , , ,

p pp p
pA u y fϕ ϕ ϕ∗∗ Ω ΩΩ Ω

= ∀ ∈ Ω  
  

and the corresponding state constraint 

( ) ( ) ( ) ( ) ( ){ }1 1: | ,p max p
p S Sy K v v L v Lγ ζ γ+ +∈ = ∈ Ω ∈ Γ − ∈ Γ  

with some accuracy. Here, the operator ( ) ( ) ( ) ( )( ), : p pA BV
∗

⋅ ⋅ Ω × Ω → Ω   is defined by the left-hand side 
of relation (29). For this purpose, we make use of the following observation: If a pair ( ),u y  is feasible to the 
original problem, i.e. ( ),u y ∈Ξ , then this pair satisfies the relation 

( ) ( )( ) ( ) ( )( ) ( );;
, , , ,

p pp p
A u y y f y Kεζ ζ ζ∗∗ Ω ΩΩ Ω

− ≥ − ∀ ∈  
                (61) 

for each 0ε > , where Kε  is defined as follows 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ){ }1 1: | , .p max p
p S SK v v L B v L Bε ε ε

γ ζ γ+ += ∈ Ω ∈ Γ − ∈ Γ              (62) 

Here, ( )( ) ( )p
SL B

ε+ Γ  is the corresponding Henig dilating cone. 
Note that the reverse statement is not true in general. In fact, we discuss a variant of the penalization approach, 

called the “variational inequality (VI) method”. This idea was first studied in [27]. Thus, if a pair ( ), adu y K∈ ×A  
is related by variational inequality (61), then it is not necessary to suppose that ( ),u y  satisfy the operator  
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equation ( ),A u y f= . In view of this, we can use the penalized term ( ) ( )( ),
p

A u y f ∗
Ω

−


 as a deviation  

measure in an associated cost functional. As a result, we arrive at the following penalized OCP: 

( ) ( ) ( )( )
2 1ˆMinimize , d ,

p
dI u y y y x Du A u y fε ε

∗
ΩΩ Ω

 = − + + − 
 ∫ ∫ 

                (63) 

subject to the constraints 

( ) ( )( ) ( ) ( )( ) ( );;

, ,

, , , , ,
p pp p

adu y K

A u y y f y K
ε

εζ ζ ζ∗∗ Ω ΩΩ Ω

∈ ∈ 
− ≥ − ∀ ∈   

A
                  (64) 

or in a more compact form this problem can be stated as follows 

( )
( ) ( )

ˆ,
ˆinf , , 0,

u y
I u y

ε
ε ε δ

∈Ξ
∀ ∈                                (65) 

where 0δ >  is given by (48), the set Kε  is defined in (62), and the set of feasible solutions  
( ) ( )ˆ

pBVεΞ ⊂ Ω × Ω  we describe as follows: 

( ) ( ) ( ){ }ˆˆ : , : , , , , and , satisfies VI (61) .adu y u K I u y u yε ε εΞ = ∈ ∈ < +∞A  

In this section we show that penalized OCP (65) is solvable for each 0ε >  without any assumption about ful- 
filment of Hypothesis (H1). We also study the asymptotic properties of sequences of optimal pairs ( ){ }0 0

0
,u yε ε ε >

 
to problem (65) when the small parameter 0ε >  varies in a strictly decreasing sequence of positive numbers 
converging to zero. We begin with the following result. 

Lemma 3. Under assumptions (11)-(14), for every fixed u U∂∈  and ( )0,ε δ∈ , the variational inequality 
(61) admits at least one solution ( )y y u=  such that y Kε∈ . 

Proof. Let ( )0,ε δ∈  be a fixed value. As follows from definition of the set Kε  (see (62) and Remark 5.1), 
Kε  is a nonempty convex closed subset of ( )p Ω  with respect to the ,p ∆

⋅ -norm topology. Due to the as-
sumptions (11)-(14), we have the following estimates 

( ) ( )( ) ( ) ( )( ) ( )

( )

( ) ( ) ( )

( )

, , ,

, ,

, ,

, ,

;1

2

1

1 1
2 1, ,

1

1 1
2 1, , ,

1

sup , sup sup , ,

sup sup d , d

sup sup

sup sup

p p p
p p p

p p

r r

p p

p p

y y v

p

y v

p r
L p p L L

y v

p rr
L p p p p

y v

A u y A u y v

u y y v x F x y v x

y v C y v

y v C N y v

ρ ρ

ρ

ρ

ρ

ξ

ξ

∗ ∗

∆ ∆ ∆

∆ ∆

∞

∆ ∆

∞

∆ ∆

Ω Ω Ω≤ ≤ ≤

−

Ω Ω≤ ≤

− −

Ω ∆ ∆ Ω Ω
≤ ≤

− −
∗Ω ∆ ∆ ∆

≤ ≤

=

 = ∆ ∆ ∆ + 

 ≤ + 

≤ +

∫ ∫

  

( )

,

1 1
2 1 ,p r r

L C Nξ ρ ρ∞

∆

− −
∗Ω

 
 

≤ + < +∞

 

( ) ( )( ) ( ) ,;
, , d ,

p p

p p
pA u y y u y x yα∗ ∆Ω Ω Ω

≥ ∆ ≥∫ 
                          (66) 

where N∗  is the norm of the embedding operator  ( ) ( )2, p rW LΩ Ω . Hence, for every fixed adu∈A , the 
operator ( ) ( ) ( )( ), : p pA u

∗
⋅ Ω → Ω   is bounded and coercive. Moreover, it is shown in [16, Proposition 

2.42], the properties (11)-(14) ensure the following implication 

( )
( ) ( )( ) ( )

2,
0

;

in ; ,

lim sup , , 0
p p

p
k D

k k
k

y y W

A u y y y ∗
Ω Ω→∞

Ω Γ 
− ≤  


 

( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

2,
0

; ;

;
.

, , lim inf , ,
p p p p

p
D

k kk

v W

A u y y v A u y y v∗ ∗
Ω Ω Ω Ω→∞

∀ ∈ Ω Γ⇒  − ≤ −    

 

Thus, the operator ( ) ( ) ( )( ), : p pA u
∗

⋅ Ω → Ω   is pseudo-monotone for each adu∈A . Hence, following 
the well-know existence result (see, for instance, [28] [29]), there exists at least one solution ( )y y u=  of vari-



P. Kogut et al. 
 

 
1563 

ational inequality (61) such that y Kε∈ . 
As an obvious consequence of Lemma 3, we have the following noteworthy property of penalized OCP (63) - 

(64). 
Corollary 3 For each ( )0,ε δ∈  the feasible set ˆ

εΞ  is nonempty. 
To proceed further, we introduce the following notion. 

Definition 6.1. An operator ( ) ( )( ): ad p pA
∗

× Ω → Ω A  is said to be quasi-monotone if for any sequence  

( ){ } 1
,k k k

u y
∞

=
 such that { }k adk

u
∈

⊂ A  and ( ) ( ), ,k ku y u yτ→  in ( ) ( )2,
0 ;p

DBV WΩ × Ω Γ , the condition 

( ) ( )( ) ( );
lim sup , , 0

p p
k k k

k
A u y y y ∗

Ω Ω→∞
− ≤

 
                         (67) 

implies the relation 

( ) ( )( ) ( ) ( ) ( )( ) ( ); ;
, , lim inf , ,

p p p p
k k kk

A u y y v A u y y v∗ ∗
Ω Ω Ω Ω→∞

− ≤ −
   

               (68) 

for all ( )2,
0 ;p

Dv W∈ Ω Γ . 

Definition 6.2. We say that an operator ( ) ( )( ): ad p pA
∗

× Ω → Ω A  possesses the property ( )M , if for  

any sequence ( ){ } 1
,k k k

u y
∞

=
 such that { }k adk

u
∈

⊂ A  and ( ) ( ), ,k ku y u yτ→  in ( ) ( )2,
0 ;p

DBV WΩ × Ω Γ , the 
conditions 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( );;
, in , lim sup , , ,

p pp p
k k p k k k

k
A u y d A u y y d y ∗∗

∗

Ω ΩΩ Ω→∞
Ω ≤   

  

imply the relation ( ),d A u y= . 
Our next intention is to prove the following crucial result. 
Theorem 10. The operator ( ) ( )( ): ad p pA

∗
× Ω → Ω A , given by formula (29), is quasi-monotone pro- 

vided assumptions (11)-(14) hold true. 

Proof. Let ( ){ } 1
,k k k

u y
∞

=
 be a sequence such that { }k adk

u
∈

⊂ A  and ( ) ( ), ,k ku y u yτ→  in 

( ) ( )2,
0 ;p

DBV WΩ × Ω Γ . We assume that inequality (67) holds true. Our aim is to establish the relation (68). 
With that in mind, we set 

( ) ( )( ) ( ) ( )

( )

2

;

2,
0

, , , : d , d ,

and , , ; ,
p p

p

p
ad D

B u v y w u y y w x F x v w x

u y v w W

∗
−

Ω Ω Ω Ω
= ∆ ∆ ∆ +

∀ ∈ ∀ ∈ Ω Γ

∫ ∫ 

A
                (69) 

and divide our proof onto several steps. 
Step 1. We show that, for each ( )2,

0 ;p
Dv W∈ Ω Γ , 

( ) ( )( ) ( )

( ) ( ) ( )
;

2

lim , , ,

: lim d lim , d 0.

p p
k k kk

p
k k k kk k

B u y v y y

u v v y y x F x y y y x

∗
Ω Ω→∞

−

Ω Ω→∞ →∞

−

= ∆ ∆ ∆ − ∆ + − =∫ ∫

 
               (70) 

Indeed, since ky y  in ( )2,
0 ;p

DW Ω Γ , it follows by the Sobolev embedding theorem that ky y→  in 
( )sL Ω  for all ( )1,s p∗∈ . Hence, making use of the subcritical growth condition (12), we get 

( ) ( )

( ) ( )

1
1

1
1

, d d

sup 0 as .r r

r
k k k k

r
k kL L

k

F x y y y x C y y y x

C y y y k

−

Ω Ω

−

Ω Ω
∈

− ≤ −

≤ − → →∞

∫ ∫



              (71) 

As for the first term in (70), we note that ku u→  in ( )rL Ω  for every 1 r≤ < +∞ , because ( ), ku u L∞∈ Ω  
for all k ∈  by the initial assumptions. Hence, 

( )2,
0d 0, ;qp p

k Dv u u x v W
Ω
∆ − → ∀ ∈ Ω Γ∫                        (72) 

by the Lebesgue Dominated Theorem. Since the sequence { }2: p
k k

k
u v vζ −

∈
= ∆ ∆


 is bounded in ( )qL Ω  and 
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( )

2 d ,
q

q qp p
k k

L
u v v v u u xζ −

ΩΩ
− ∆ ∆ = ∆ −∫  

it follows from (72) that 2 2p p
ku v v u v v− −∆ ∆ → ∆ ∆  strongly in ( )qL Ω . Therefore, the first term in (70) tends 

to zero as k →∞  as the product of strongly and weakly convergent sequences. Combining this fact with (71), 
we arrive at the desired property (70). 

Step 2. Let us show that 

( ) ( )( ) ( )

( )

( )
( ) ( )( ) ( ) ( )

;

2

2

2,
0;

lim , , ,

lim d lim , d

d , d

, , , , , ; .

p p

p p

k kk

p
k kk k
p

p
D

B u y v w

u v v w x F x y w x

u v v w x F x y w x

B u y v w v w W

∗

∗

Ω Ω→∞

−

Ω Ω→∞ →∞

−

Ω Ω

Ω Ω

= ∆ ∆ ∆ +

= ∆ ∆ ∆ +

= ∀ ∈ Ω Γ

∫ ∫

∫ ∫

 

 

                    (73) 

By analogy with the previous step, we note that ku u→  in ( )rL Ω  for every 1 r≤ < +∞ . In particular, this 
yields ku uϕ ϕ→  strongly in ( )qL Ω  ( )Lϕ ∞∀ ∈ Ω . In view of this, we infer 

( ) ( )2,
0lim d d , ; .p

k Dk
u w x u w x L w Wϕ ϕ ϕ ∞

Ω Ω→∞
∆ = ∆ ∀ ∈ Ω ∀ ∈ Ω Γ∫ ∫  

This means that 

( )1in .ku w u w L∆ ∆ Ω  

But we also have that the sequence { }k k
u w

∈
∆   is bounded in ( )pL Ω . Hence, ku w u w∆ ∆  in ( )pL Ω   

for each ( )2,
0 ;p

Dw W∈ Ω Γ . Since ( )2p qv v L−∆ ∆ ∈ Ω  for any ( )2,
0 ;p

Dv W∈ Ω Γ , it follows that 
2 2lim d dp p

kk
u w v v x u w v v x− −

Ω Ω→∞
∆ ∆ ∆ = ∆ ∆ ∆∫ ∫                        (74) 

by definition of the weak convergence in ( )pL Ω . Thus, in order to conclude the equality (73), it remains to 
show that 

( ) ( ) ( )2,
0lim , d , d , ; .p

k Dk
F x y w x F x y w x w W

Ω Ω→∞
= ∀ ∈ Ω Γ∫ ∫                   (75) 

In view of the subcritical growth condition (12), we have the following estimate 

( )
( )

( ) ( ) ( )
( )

( )
( )

1

1 1 11
1

1 1
1 1 .

, : , d d

sup ,

r
r

r

rrr r r rr
k k k

L

rr r r r r
k kL p

k

F y F x y x C y x

C y C N y

−

− − −−
Ω Ω

Ω

− −
∗Ω ∆

∈

⋅ = ≤

≤ ≤

∫ ∫



 

where N∗  is the norm of the embedding operator  ( ) ( )2, p rW LΩ Ω . Hence, we may suppose that the se- 

quence ( ){ }, k k
F x y

∈
 is compact with respect to the weak convergence in ( )1

r
rL − Ω  and, therefore, there 

exists an element ( )1
r

rLψ −∈ Ω  such that, up to a subsequence, 

( ) ( )1, in as .
r

r
kF x y L kψ − Ω →∞                            (76) 

Thus, to conclude this step, we have to show that ( ),F x yψ = . By monotonicity property (13), it follows 
that for every z∈  and every positive function ( )0Cφ ∞∈ Ω , we have 

( ) ( ) ( )( ) ( ), , d 0.k kx F x y F x z y z xφ
Ω

− − ≥∫  

So, taking into account (76) and the fact that ky y→  strongly in ( )rL Ω  by Sobolev embedding theorem, 
we can pass to the limit in this inequality as k →∞ . As a result, we get 
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( ) ( )( )( ), d 0,x F x z y z x zφ ψ
Ω

− − ≥ ∀ ∈∫   

for all positive ( )0Cφ ∞∈ Ω . After localization, we have 

( )( )( ), 0, .F x z y z zψ − − ≥ ∀ ∈  

Since the function :F Ω× →   is strictly monotone, it follows that ( ),F x yψ = . Thus, the relation (75) 
is a direct consequence of the convergence (76). 

Step 3. This is the final step of our proof. As follows from (69), for every element ( )2,
0 ;p

Dv W∈ Ω Γ  and 
each index k ∈ , we have the estimate 

( ) ( ) ( )( ) ( )

( )( )

;

2 2

2

, , , , ,

: d

2 d 0, in .

p p
k k k k k k

p p
k k k k

pp
k k

B u y y B u y v y v

u y y v v y v x

y v x y vα

∗
Ω Ω

− −

Ω

−

Ω

− −

= ∆ ∆ − ∆ ∆ ∆ −∆

≥ ∆ −∆ > ∀ ≠ Ω

∫

∫

 

                     (77) 

Let ( )2,
0 ;p

Dv W∈ Ω Γ  be a fixed element. We put ( )1y y vσ σ σ= − +  for all [ ]0,1σ ∈ . Taking into account 
the monotonicity condition (77), we see that 

( ) ( ) ( )( ) ( );
, , , , , 0.

p p
k k k k k kB u y y B u y y y yσ σ ∗

Ω Ω
− − ≥

 
                  (78) 

Since ( ) ( ), , ,A u y B u y y= , it follows from (78) that 

( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

;

; ;

;

, ,

, , , , ,

, , , .

p p

p p p p

p p

k k

k k k k k k

k k

A u y y v

A u y y y B u y y y y

B u y y y v

σ

σ

σ

σ

∗

∗ ∗

∗

Ω Ω

Ω Ω Ω Ω

Ω Ω

−

≥ − − + −

+ −

 

   

 

            (79) 

Passing to the limit in (79) as k →∞ , we obtain 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

;

;

;

;

liminf , ,

limsup , ,

liminf , , ,

liminf , , , ,

p p

p p

p p

p p

k kk

k k k
k

k k kk

k kk

A u y y v

A u y y y

B u y y y y

B u y y y v

σ

σ

σ

σ

∗

∗

∗

∗

Ω Ω→∞

Ω Ω→∞

Ω Ω→∞

Ω Ω→∞

−

≥ − −

+ −

+ −

 

 

 

 

                      (80) 

where 

( ) ( )( ) ( );
lim inf , , ,

p p
k k kk

B u y y y yσ ∗
Ω Ω→∞

−
 

 

( ) ( )( ) ( )

by (70)

;
lim , , , 0,

p p
k k kk

B u y y y yσ ∗
Ω Ω→∞

= − =
 

 

( ) ( )( ) ( )

by (67)

;
lim sup , , 0,

p p
k k k

k
A u y y y ∗

Ω Ω→∞
− ≥

 
 

and 

( ) ( )( ) ( ) ( ) ( )( ) ( )

by (73)

; ;
lim , , , , , , .

p p p p
k kk

B u y y y v B u y y y vσ σ∗ ∗
Ω Ω Ω Ω→∞

− = −
   

 

Hence, for each [ ]0,1σ ∈ , we have the inequality 

( ) ( )( ) ( ) ( ) ( )( ) ( ); ;
lim inf , , , , , .

p p p p
k kk

A u y y v B u y y y vσ∗ ∗
Ω Ω Ω Ω→∞

− ≥ −
   

             (81) 
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Since the convergence y yσ →  is strong in ( )2,
0 ;p

DW Ω Γ , it follows that 2 2p py y y yσ σ
− −∆ ∆ → ∆ ∆  

strongly in ( )qL Ω , and therefore, 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

;

20
;

, , ,

d , d : , , .

p p

p p

p

B u y y y v

u y y y v x F x y y v x A u y y v

σ

σ

∗

∗

Ω Ω

−→

Ω ΩΩ Ω

−

→ ∆ ∆ ∆ − ∆ + − = −∫ ∫

 

 

      (82) 

As a result, we deduce from (81) and (82) that 

( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( )

;

; ;

;;

;

;

lim inf , ,

lim inf , , lim inf , ,

lim inf , , , ,

lim inf , , , , ,

lim inf , , ,

p p

p p p p

p pp p

p p

p

k k kk

k k k k kk k

k k kk

k k k k k kk

k k kk

A u y y v

A u y y y A u y y v

A u y y y A u y y v

B u y y B u y y y y

B u y y y y

∗

∗ ∗

∗∗

∗

∗

Ω Ω→∞

Ω Ω Ω Ω→∞ →∞

Ω ΩΩ Ω→∞

Ω Ω→∞

Ω→∞

−

≥ − + −

≥ − + −

≥ − −

+ −

 

   

  

 

 ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

;

by (78)

;;

by (70)

;

, ,

lim inf , , , , ,

, , ,

p pp

p pp p

p p

k k kk

A u y y v

B u y y y y A u y y v

A u y y v

∗

∗∗

∗

Ω ΩΩ

Ω ΩΩ Ω→∞

Ω Ω

+ −

≥ − + −

= −

 

  

 

 

that is, the inequality (68) is valid.   
Remark 6.1. In fact (see [19], Remark 3.13), we have the following implication: 

( )is quasi-monotone possesses the property .A A⇒ M“ ” “ ”  

Hence, in view of Theorem 10, we can claim that the operator ( ) ( )( ): ad p pA
∗

× Ω → Ω A , which is de-
fined by relation (29), possesses the property ( )M . 

We are now in a position to show that the penalized optimal control problem in the coefficient of variational 
inequality (63)-(64) is solvable for each value ( )0,ε δ∈ . 

Lemma 4 If the assumptions (11)-(14) are valid, then the OCP (63)-(64) admits at least one solution 
( )0 0 ˆ,u yε ε ε∈Ξ  for every fixed ( )0,ε δ∈  and any ( )2, ;q

Df W −∈ Ω Γ , ( )2
dy L∈ Ω , and ( )max pLζ ∈ ∂Ω . 

Proof. Let ( ){ } 1
,k k k

u y U K
∞

∂=
⊂ ×  be a minimizing sequence to problem (63)-(64). The coerciveness pro- 

perty (66) and estimate 

( ) ( )( ) ( ) ( )( ) ( )

( )2,

;;

; ,

, , ,
p pp p

q
D

k k k k

kW p

A u y y f y

f y

ζ ζ

ζ

∗∗

−

Ω ΩΩ Ω

Ω Γ ∆

− ≤ −

≤ −

  
                  (83) 

immediately imply that the sequence { } 1k k
y ∞

=
 is bounded in ( )2,

0 ;p
DW Ω Γ . Indeed, using the notations 

( )pV = Ω  and ( )( )pV
∗∗ = Ω , we have 

; ; ;, , , 1 as .
1

V V V V V V
V

VV V V V

V

Ay y Ay y Ay y
y

y y y
y

ζ ζ ζ
ζζ ζ

∗ ∗ ∗− − −
≥ = ⋅ → +∞ →∞

− +
+

 

On the other hand, from (83) it follows that 

( )2,
; ;

;

, ,
.q

D

V V V V
V W

V V

Ay y f y
f f

y y
ζ ζ

ζ ζ
∗ ∗

∗ − Ω Γ

− −
≤ ≤ =

− −
 

So, comparing these two chains of relations, we arrive at the existence of a constant 0C >  such that C is 
independent of adu∈A  and Vy C≤  as far as y Kε∈  is a solution to (63). 

Since 
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( )ˆsup sup ,k k k
k k

Du I u yεΩ∈ ∈
≤ < +∞∫

 
 

and the set ad Kε×A  is sequentially closed with respect to the τ-convergence, we may assume by Theroem 1 
that there exists a pair ( )0 0, adu y Kε ε ε∈ ×A  such that ( ) ( )0 0, ,k ku y u yτ

ε ε→ . Then passing to the limit in 

( ) ( )( ) ( ) ( )( ) ( );;
, , ,

p pp p
k k k kA u y y f yζ ζ ∗∗ Ω ΩΩ Ω

− ≥ −   
 

as k →∞ , we obtain 

( ) ( )( ) ( ) ( )( ) ( )
0

; ;
lim sup , , , , .

p p p p
k k k

k
A u y y f y Kε εζ ζ ζ∗ ∗

Ω Ω Ω Ω→∞
− ≤ − ∀ ∈

   
           (84) 

Having put here 0y Kε εζ = ∈ , we arrive at the inequality 

( )
( )( ) ( )

0
;

lim sup , , 0.
p p

k k k
k

A u y y yε ∗
Ω Ω→∞

− ≤
 

 

Hence, 

( ) ( )( ) ( ) ( )
( )( ) ( )

0 0 0
; ;

liminf , , , , , ,
p p p p

k k kk
A u y y A u y y Kε ε ε εζ ζ ζ∗ ∗Ω Ω→∞ Ω Ω

− ≥ − ∀ ∈
   

 

by the quasi-monotonicity property of the operator A. Combining this inequality with (84), we come to the re- 
lation 

( )
( )( ) ( ) ( )( ) ( )

0 0 0 0
;;

, , , .
p pp p

A u y y f y Kε ε ε ε εζ ζ ζ∗∗ Ω ΩΩ Ω
− ≥ − ∀ ∈

  
 

Thus, ( )0 0, adu y Kε ε ε∈ ×A  is a feasible pair to the problem (63)-(64). 
Let us show that ( )0 0,u yε ε  is an optimal pair to this problem. As follows from (83), the sequence 
( ){ },k k k

A u y
∈

 is bounded in ( )( )p
∗

Ω . Let d be its weak limit in ( )( )p
∗

Ω  as k →∞ . Then 

( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

;

0
;;

0 0
;;

lim sup , ,

, ,

, > , .

p p

p pp p

p pp p

k k k
k

A u y y

f y d

d y d f y K

ε

ε ε ε

ζ ζ

ζ ζ

∗

∗∗

∗∗

Ω Ω→∞

Ω ΩΩ Ω

Ω ΩΩ Ω

≤ − +

= + − − ∀ ∈

 

  

  

 

Substituting 0yε  for ζ  in the last inequality, we get 

( ) ( )( ) ( ) ( )( ) ( )
0

; ;
limsup , , , .

p p p p
k k k

k
A u y y d yε∗ ∗

Ω Ω Ω Ω→∞
≤

   
 

Since the quasi-monotone operator possesses the ( )M -property (see Remark 6.6), it follows that ( )0 0,d A u yε ε= . 
As a result, using the τ-lower semicontinuity property of the cost functional (63), we finally obtain 

( )
( ) ( ) ( ) ( )

( )( ) ( )0 0 1 0 0 0 0
ˆ,

ˆ ˆ ˆinf , lim inf , , , , .
p

k kku y
I u y I u y I u y A u y f I u y

ε
ε ε ε ε ε ε ε ε εε ∗

−

→∞∈Ξ Ω
= ≥ + − =


 

Thus, ( )0 0,u yε ε  is an optimal pair to the penalized problem (63)-(64).   
The next step of our analysis is to consider a sequence of optimal pairs ( ){ }0 0

0
, adu y Kε ε εε >

⊂ ×A  in the limit 
as ε  tends to 0. 

Theorem 11. Let ( ){ }0 0

0
,u yε ε ε >

 be a sequence of optimal pairs to penalized problems (63) - (64). In addition 
to the assumptions of Lemma 4, assume that there exists a constant 0C >  such that 

( )0 0

0

ˆsup , .I u y Cε ε ε
ε >

≤                                 (85) 

Then the sequence ( ){ }0 0

0
,u yε ε ε >

 is relatively compact with respect to the τ-convergence and each of its 
τ-cluster pair ( )0 0,u y  is such that (up to a subsequence) 

( ) ( )0 0 0 0, , as 0,u y u yτ
ε ε ε→ →                            (86) 

( ) ( )
( )

( )0 0 0 0

,
, , and , inf , ,

u y
u y I u y I u y

∈Ξ
∈Ξ =                        (87) 
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i.e. ( )0 0,u y  is an optimal pair to the original OCP (19). 
Proof. Let ( ){ }0 0

0
,u yε ε ε >

 be a given sequence of optimal pairs to penalized problems (63)-(64). Since each of 

the set ( )2,
0 ;p

DK Wε ⊂ Ω Γ  contains zero, we have 

( ) ( )
( )( ) ( )

( )( ) ( ) ( )

2,
0

2,

0 0 0 0 0
; ;

by (61)
0 0

;; ,

d , ,

, .

p
D p p

q
Dp p

pp
W

W p

y u y x A u y y

f y f y

ε ε ε ε ε

ε ε

α ∗

∗ −

Ω Γ Ω Ω Ω

Ω ΓΩ Ω ∆

≤ ∆ =

≤ ≤

∫  

 

 

Hence, the following estimate for the optimal states takes place 

( )( )2,

1
0 1 1

;,
, .q

D

p
adWp

y f uε α −
− −

Ω Γ∆
≤ ∀ ∈A                         (88) 

Let us show that the sequence of corresponding optimal controls { }0

0
uε ε >

 is BV-bounded. Indeed, due to the 
estimate (85), the numerical sequence ( ){ }0 0

0
ˆ ,I u yε ε ε ε >

 is uniformly bounded with respect to ε . Hence, in view 
of the structure of the cost functional (63), we deduce 

( )0 0 0, , .A u y f C Du Cε ε εε
∗ Ω

− ≤ ≤∫
                          (89) 

From this, we immediately conclude that 
( )

0
0sup

BV
uε ε> Ω

< +∞ , and, hence, due to Theorem 1, Proposition 7,  

and estimate (88), we may assume that there exists a pair ( )0 0, adu y K∈ ×A  such that ( ) ( )0 0 0 0, ,u y u yτ
ε ε →  

as 0ε →  in ( ) ( )2,
0 ;p

DBV WΩ × Ω Γ  (here, we have used the fact that the sets Kε  converge in Kuratowski 
sense to K, see the proof of Theorem 8). 

Let us show that the pair ( )0 0,u y  is feasible to the original problem (19). Using the arguments of the proof 
of Lemma 4, we have ( )0 0,A u y dε ε   in ( )( )p

∗
Ω  and ( )0 0,d A u y= . Then, as follows from (89), we have 

( )
( )( ) ( )

( )( ) ( )
( )( )

0 0 0 0 0 0

0 0
0 , lim inf , lim , 0.

p p p
A u y f A u y f A u y fε ε ε εε ε

∗ ∗ ∗
→ →Ω Ω Ω

≤ − ≤ − = − =
  

 

Thus, ( )0 0,A u y f=  as elements of ( )( )p
∗

Ω  and, hence, ( )0 0,u y ∈Ξ . 

It remains to prove that ( )0 0,u y  is an optimal pair. If, on the contrary, we assume that the exists a pair 
( ),u y∗ ∗ ∈Ξ  such that ( ) ( )0 0, ,I u y I u y∗ ∗ < , then 

( ) ( ) ( )
( )( ) ( )0 0 0 0 1 0 0, , , , , > 0.

p
I u y I u y A u y f I u yε ε ε ε ε εε ε∗

− ∗ ∗

Ω
≤ + − ≤ ∀


 

Therefore, passing to the limit in this inequality as 0ε →  and using the w-lower semicontinuity property of 
the cost functional, we finally get 

( ) ( ) ( )0 0 0 0

0
, lim inf , , .I u y I u y I u yε εε

∗ ∗

→
≤ ≤  

This contradiction immediately leads us to the conclusion: The ( )0 0,u y  is an optimal pair to the OCP (19).   
Remark 6.2. As follows from the proof of Theorem 11, whatever the sequence of optimal solutions ( ){ }0 0,u yε ε  

to the penalized problems (63)-(64) has been chosen, if this sequence satisfies condition (85), then it always 
gives in the limit as 0ε →  some optimal pair to the original OCP (19). However, it is unknown whether the 
entire set of the solutions to OCP (19) can be attained in such way. 

Remark 6.3. It is easy to see that in the case if the feasible set to the original OCP is nonempty, it suffices to 
guarantee the fulfilment of assumption (85). Indeed, let ( ),u y ∈Ξ  be any feasible pair to the original OCP 
(19). Then ( ) ( )ˆ , ,I u y I u yε =  for each 0ε > . Since ( )0 0,u yε ε  is an optimal pair to problem (63)-(64), this 
yields 

( ) ( ) ( )0 0

>0 >0

ˆ ˆsup , sup , ,I u y I u y I u yε ε ε ε
ε ε

≤ =  

and we arrive at the inequality (85). 
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