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Abstract 
We introduce and study in the present paper the general version of Gauss-type proximal point al-
gorithm (in short GG-PPA) for solving the inclusion ( )T x0∈ , where T is a set-valued mapping 
which is not necessarily monotone acting from a Banach space X to a subset of a Banach space Y 
with locally closed graph. The convergence of the GG-PPA is present here by choosing a sequence 
of functions kg X Y: →  with ( )kg 0 0= , which is Lipschitz continuous in a neighbourhood O of 
the origin and when T is metrically regular. More precisely, semi-local and local convergence of 
GG-PPA are analyzed. Moreover, we present a numerical example to validate the convergence re-
sult of GG-PPA. 
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1. Introduction 
We are concerned in this study with the problem of finding a point x X∈Ω ⊆  satisfying  

( )0 ,T x∈                                         (1) 

where : 2YT X   is a set-valued mapping and X and Y are Banach spaces. This type of inclusion is an abstract 
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model for a wide variety of variational problems including complementary problems, system of nonlinear 
equations and variational inequalities. In particular, it may characterize optimality or equilibrium problems. 
Choose a sequence of functions :kg X Y→  with ( )0 0kg =  which is Lipschitz continuous in a neighbor- 
hood O of the origin. 

Martinet [1] proposed the following algorithm for the first time for applying it to convex optimization by 
considering a sequence of scalars { }kλ , which are different from zero:  

( ) ( )1 10 ,  for each 0,1, 2,k k k kx x T x kλ + +∈ − + = �                       (2) 

Rockafellar [2] thoroughly explored the method (2) in the general framework of maximal monotone inclu- 
sions. In particular, Rockafellar ([2], Theorem 1) shows that when 1kx +  is an approximate solution of (2) and T 
is maximal monotone, then for a sequence of positive scalars kλ  the iteration (2) generates a sequence { }kx  
which is weakly convergent to a solution of (1) for any starting point 0x X∈ . In [3], Aragón Artacho et al. have 
been presented the general version of the proximal point algorithm (GPPA) (see Algorithm 1), for the case of 
nonmonotone mappings, for solving the inclusion (1). 

Let x X∈ . The subset of X, denoted by ( )kD x , is defined by  

( ) ( ) ( ){ }: : 0 .k
kD x d X g d T x d= ∈ ∈ + +                          (3) 

Thus we have the following algorithms which have been presented by Aragón Artacho et al. [3]: 
 

Algorithm 1 (GPPA) 

Step 1. Select 0x X∈ , ( )0,λ∈ ∞  and put : 0k = . 
Step 2. If ( )0 k

kD x∈ , then stop; otherwise, go to Step 3. 

Step 3. Put { } ( )0,kλ λ⊆ , ( )0 0kg =  and if ( )0 k
kD x∉ , choose kd  such that ( )k

k kd D x∈ . 

Step 4. Set 1 :k k kx x d+ = + . 

Step 5. Replace k by 1k +  and go to Step 2. 

 
Note that, for a starting point near to a solution, the sequences generated by Algorithm 1 are not uniquely de-

fined and not every sequence is convergent. The results obtained in [3] guarantee the existence of one sequence, 
which is convergent. Therefore, from the viewpoint of numerical computation, we can assume that these kinds 
of methods are not suitable in practical application. This drawback motivates us to introduce a method “so- 
called” general version of Gauss-type proximal point algorithm (GG-PPA). The difference between Algorithm 
1 and our proposed Algorithm 2 is that the GG-PPA generates sequences, whose every sequence is convergent, 
but this does not happen for Algorithm 1. Thus we propose here the GG-PPA as follows: 
 

Algorithm 2 (GG-PPA) 

Step 1. Select [ )1,η∈ ∞ , 0x X∈ , ( )0,λ∈ ∞  and put : 0k = . 

Step 2. If ( )0 k
kD x∈ , then stop; otherwise, go to Step 3. 

Step 3. Put { } ( )0,kλ λ⊆ , ( )0 0kg =  and if ( )0 k
kD x∉ , choose kd  such that ( )k

k kd D x∈  and 

( )( ) 0, .k
k kd dist D xη≤  

Step 4. Set 1 :k k kx x d+ = + . 

Step 5. Replace k by 1k +  and go to Step 2. 

 
We observe, from Algorithm 2, that  
1) if ( )k kg u uλ=  and then we assume Y X=  a Hilbert space, this algorithm reduces to the classical pro- 

ximal point algorithm defined by (2).  
2) if ( )k kg u uλ= , Algorithm 2 is equivalent to the classical Gauss-type proximal point method, which has 

been introduced by Rashid et al. [4].  
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A large number of authors have been studied on proximal point algorithm and have also found applications of 
this method to specific variational problems. Most of the study on this subject have been concentrated on vari-
ous versions of the algorithm for solving inclusions involving monotone mappings, and specially, on monotone 
variational inequalities (see in [5]-[8]). Spingarn [9] has been studied first weaker form of monotonicity and for 
details see in [10]. 

There have a large study on local convergence analysis about Algorithm 1 (cf. [3] [11] [12]), but there is no 
semilocal analysis for Algorithm 1. A huge number of contributions have been studied on semilocal analysis for 
the Gauss-Newton method (cf. [4] [13]-[16]). In [4], Rashid et al. have given a semilocal convergence analysis 
for the classical Gauss-type proximal point method. As our best knowledge, there is no study on semilocal anal-
ysis for Algorithm 2. Therefore we conclude that the contributions presented in this study are seems new. 

In the present paper, our aim is to study the semilocal convergence for the GG-PPA defined by Algorithm 2. 
The metric regularity property and Lipschitz-like property for set-valued mappings are mainly used in our study. 
The main results are convergence analysis, established in section 3, which based on the attraction region around 
the initial point and provide some sufficient conditions ensuring the convergence to a solution of any sequence 
generated by Algorithm 2. As a consequence, local convergence results for GG-PPA are obtained. 

This paper is arranged as follows. In Section 2, some necessary notations, notions and preliminary results are 
presented. In Section 3, we consider the GG-PPA which is introduced in Section 1 and by using the concept of 
metric regularity property for the set valued mapping T, we will show the existence and present the convergence 
of the sequence generated by Algorithm 2. In Section 4, we present a numerical experiment to validate the se-
milocal convergence of Algorithm 2. In the last Section, we will give a summary of the major results to close 
our paper. 

2. Notations and Preliminary Results  
In the whole paper, we assume that X and Y are Banach spaces. Let F be a set-valued mapping from X into the 
subsets of Y, denoted by : 2YF X  . Let x X∈  and 0r > . The closed ball centered at x with radius r is 
denoted by ( )r x . The domain domF , the inverse 1F −  and the graph gphF  of F are respectively defined 
by  

( ){ }dom : : ,F x X F x= ∈ ≠ ∅  

( ) ( ){ }1 : :F y x X y F x− = ∈ ∈  

and  

( ) ( ){ }gph : , : .F x y X Y y F x= ∈ × ∈  

All the norms are denoted by ⋅ . Let A X⊆  and C X⊆ . The distance from x to A is defined by  

( ) { }dist , : inf :   for each ,x A x a a A x X= − ∈ ∈  

while the excess from the set C to the set A is defined by  

( ) ( ){ }, : sup dist , : .e C A x A x C= ∈  

From [4], we recall the following definition of metric regularity for set-valued mapping.  
Definition 1 Let :F X Y  be a set-valued mapping and let ( ), gphx y F∈ . Let 0, 0x yr r> >  and 

0κ > . Then F is said to be  
1) metrically regular at ( ),x y  on ( ) ( )

x yr rx y×   with constant κ  if  

( )( ) ( )( ) ( ) ( )1dist ,  dist ,    for all , .
x yr rx F y y F x x x y yκ− ≤ ∈ ∈                  (4) 

2) metrically regular at ( ),x y  if there exist constants 0, 0x yr r′ ′> >  and 0κ >  such that F is metrically 
regular at ( ),x y  on ( ) ( )

x yr rx y′ ′×   with constant κ .  
The infimum of the set of values κ  for which (4) holds is the modulus of metric regularity, denoted by 
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( )reg |F x y . The absence of metric regularity at x  for y  corresponds to ( )reg |F x y = ∞ . The inequality 
(4) has direct use in providing an estimate for how far a point x is from being a solution to the generalized 
equation ( )y F x∈  and the expression ( )( )dist ,y F x  measures the residual when ( )y F x∈ . 

Recall the definition of Lipschitz-like continuity for set-valued mapping from [17]. This notion was intro-
duced by Aubin in [18] and has been studied extensively.  

Definition 2 Let : 2XYΓ   be a set-valued mapping and let ( ), gphy x ∈ Γ . Let 0, 0x yr r> >  and 
0M > . Then Γ  is said to be Lipchitz-like at ( ),y x  on ( ) ( )

y xr ry x×   with constant M if the following 
inequqlity hold:  

( ) ( ) ( )( ) ( )1 2 1 2 1 2, for any  , .
x yr re y x y M y y y y yΓ ∩ Γ ≤ − ∈                 (5) 

The following result establish the equivalence relation between metric regularity of a mapping F at ( ),x y  
and the Lipschitz-like continuity of the inverse 1F −  at ( ),y x , which is obtained from the idea in [19] [20]. 

Lemma 1 Let : 2YF X   be a set valued mapping and ( )y F x∈ . Let 0, 0x yr r> > , then F is metrically 
regular at ( ),x y  on ( ) ( )

x yr rx y×   if and only if its inverse 1 : 2XF Y−   is Lipschitz-like at ( ),y x  on 
( ) ( )

y xr ry x×   with constant 0κ >  such that  

( ) ( ) ( )( ) ( )1 1,   for all , .
x yr re F y x F y y y y y yκ− − ′ ′ ′∩ ≤ − ∈   

We recall the following statement of Lyusternik-Graves theorem for metrically regular mapping from [21]. 
This theorem plays an important role in the theory of metric regularity and proves the stability of metric 
regularity of a generalized equation under perturbations. For its statement, we use that a set C X⊂  is locally 
closed at z C∈  if there exists 0a >  such that the set ( )aC z∩  is closed. 

Lemma 2 Consider a mapping : 2YF X   and any ( ), gph x y F∈  at which gph F  is locally closed. 
Let F be metrically regular at x  for y  with constant 0κ > . Consider also a function :g X Y→  which is 
Lipschitz continuous at x  with Lipschitz constant λ  such that 1λ κ −< . Then the mapping g F+  is metric-  

ally regular at x  for ( )y g x+  with constant 
1
κ
κλ−

.  

We finished this section with the following lemma, which is known as Banach fixed point theorem proved in 
[22]. 

Lemma 3 Let : 2XXΦ   be a set-valued mapping. Let 0 Xη ∈ , ( )0,r∈ ∞  and ( )0,1α ∈  be such that  

( )( ) ( )0 0dist , 1rη η αΦ < −                                 (6) 

and  

( ) ( ) ( )( ) ( )1 0 2 1 2 1 2 0, for any , .r re x x x x x xη α ηΦ ∩ Φ ≤ − ∈                  (7) 

Then Φ  has a fixed point in ( )0r η , that is, there exists ( )0rx η∈  such that ( )x x∈Φ . If Φ  is 
additionally single-valued, then the fixed point of Φ  in ( )0r η  is unique.  

3. Convergence Analysis of GG-PPA  
In this section, we assume that : 2YT X   is a set-valued mapping with locally closed graph at ( ), gph x y T∈  
such that T is metrically regular at ( ),x y  with constant 0κ > . Let :g X Y→  be a (single-valued) function 
such that ( )0 0g = , which is Lipschitz continuous in a neighborhood O of 0 with a Lipschitz constant 0.λ >  
Let x X∈  and define a mapping xP  by  

( ) ( ) ( ): .xP g x T⋅ = ⋅ − + ⋅                                 (8) 

Then we obtain the following equivalence  

( ) ( ) ( )1   for any  and .xz P y y g z x T z z X y Y−∈ ⇔ ∈ − + ∈ ∈                  (9) 

In particular,  

( ) ( )1   for each , gph .xx P y x y T−∈ ∈                           (10) 
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Let ( ) ( ), gphx y g T∈ +  and let 0, 0x yr r> > . Since ( )g x⋅ −  is Lipschitz continuous on O x+ , app- 
lying the Lyusternik-Graves theorem (see Lemma 2) we assume that the mapping xP  is metrically regular at  

( ),x y  with constant 
1
κ
κλ−

, that is, by Lemma 1 we have the following inequality  

( ) ( ) ( )( ) ( )1 1,   for all , .
1x yx r x re P y x P y y y y y yκ

κλ
− − ′ ′ ′∩ ≤ − ∈

−
              (11) 

Write  

( )2 1 3
: min , .

2 4
y x xr r r

r
λ κλ

κ
− − 

=  
 

                         (12) 

Then  

2 10 min , .
3

y

x

r
r

r
λ

κ
 

> ⇔ <  
 

                            (13) 

The following lemma plays an important role for convergence analysis of the GG-PPA, which is due to [23]. 

Lemma 4 Suppose that ( )xP ⋅  is metrically regular at ( ),x y  on ( ) ( )
x yr rx y×   with constant 

1
κ
κλ−

 

such that (12) and (13) are satisfied. Let ( )
2
xr

x x∈  and ( )0
xr

O⊂ . Then ( )1
xP− ⋅  is Lipschitz-like at 

( ),y x  on ( ) ( )
2
xr ry x×   with constant 

1 3
κ
κλ−

, that is,  

( ) ( ) ( ) ( )1 1
1 2 1 2 1 2

2

, for any , .
1 3xx r x re P y x P y y y y y yκ

κλ
− − 

∩ ≤ − ∈   − 
   

For our convenience, we consider a sequence of functions :kg X Y→  with ( )0 0kg =  which are Lipschitz 
continuous in a neighbourhood O of 0, the same for all k, with Lipschitz constants kλ  satisfying  

1: sup .
6k

k
λ λ

κ
= <                                   (14) 

We rewrite the mapping ( )xP ⋅  in (8) by substituting kg  instead of g as follows:  

( ) ( ) ( ):    for each 0,1, 2, .k
x kP g x T k⋅ = ⋅ − + ⋅ = �                      (15) 

Since 1 1
6

λκ < <  by (14), then by Lyusternik-Graves theorem (see Lemma 2) and Lemma 1 we obtain that 

the mapping ( )1k
xP − ⋅  is Lipschitz-like at ( ),y x  on ( ) ( )

y xr ry x×   with constant 
1
κ
κλ−

 satisfying (11) 

and hence we have  

( ) ( ){ }: 0 .k k
xD x d X P x d= ∈ ∈ +                           (16) 

Furthermore, we define, for each x X∈ , the mapping :xZ X Y  by  

( ) ( ) ( ): ,k
x k kZ g x g x⋅ = ⋅ − − ⋅ −                            (17) 

and the set-valued mapping : 2k X
x XΦ   by  

( ) ( )1: .k k k
x x xP Z−  Φ ⋅ = ⋅                                 (18) 

Then  
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( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )   for each , .

k k
x x

k k k k

k k k k

Z x Z x

g x x g x x g x x g x x

g x x g x x g x x g x x x x X

′ ′′−

′ ′ ′′ ′′= − − − − − + −

′ ′′ ′ ′′ ′ ′′≤ − − − + − − − ∈

           (19) 

The main result of this study given as follows, which provides some sufficient conditions ensuring the con-
vergence of the GG-PPA with initial point 0x . 

Theorem 1 Suppose 1η >  and that ( )k
xP ⋅  is metrically regular at ( ),x y  on ( ) ( )

x yr rx y×   with 

constant 
1
κ
κλ−

, and let r  be defined in (12). Let ( )
xr

x O⊂  and 0δ >  be such that  

a) 1min , , ,1,
4 2 3 6

yx rr r λκδ
λ λ κλ

 −
≤  

 
,  

b) ( )3 1η κλ+ ≤ , 
c) y λδ< .  
Suppose that  

( )( )lim dist , 0.
x x

y T x
→

=                               (20) 

Then there exists some ˆ 0δ >  such that any sequence { }kx  generated by Algorithm 2 with initial point in 
( )ˆ x

δ
  converges to a solution *x  of (1), that is, *x  satisfies that ( )*0 T x∈ .  

Proof. Let  

: .
1 3

t ηκλ
κλ

=
−

                                   (21) 

Then by assumption (b), (21) gives us  

1.t ≤                                       (22) 

Assumption (c) and (20) allow us to take ˆ0 δ δ< ≤  so that  

( )( ) ( )ˆ0 0dist 0,    for each .T x x x
δ

λδ≤ ∈                        (23) 

We will proceed by mathematical induction and show that Algorithm 2 generates at least one sequence and 
any sequence { }kx  generated by Algorithm 2 satisfies the following assertions  

2 ,kx x δ− ≤                                   (24) 

and  
1

1
k

k kx x t δ++ − ≤                                  (25) 

for each 0,1, 2,k = � . Define  

( ) ( )5:   for each .
3 1xr y x x x Xκ λ

λκ
= + − ∈

−
                    (26) 

Since 1η > , by assumption (b) and (c), we have  

( )2
5 5 2   for each .

1 2xr x xδ
κλ δ δ δ
λκ η

≤ ≤ ≤ ∈
− +

                    (27) 

It is trivial that (24) is true for 0k = . For showing that (25) is true for 0k = , we need to prove that 1x  
exists, that is, ( )0

0D x ≠ ∅ . We will prove ( )0
0D x ≠ ∅  by applying Lemma 3 to the mapping 

0

0
xΦ  with  

xη = . Let us check that both assertions (6) and (7) of Lemma 3 are hold with 
0

: xr r=  and 2:
5

α = . Noting that  
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( ) ( )
0

10
xx rx P y x−∈ ∩  by (10). Then by the mapping 

0

0
xΦ  in (18) and the definition of excess e, we have  

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

0 0 00

0

0 0 1 0 0 1 0
2

0 1 0 1 0

dist , , ,

,

x

x

x x r x x x

x r x x

x x e P y x x e P y x x

e P y x P Z x

δ
− −

− −

Φ ≤ ∩ Φ ≤ ∩ Φ

 ≤ ∩  

 


        (28) 

(noting that ( ) ( ) ( )
0 2x xr rx x xδ≤ ⊆   ). Now, by the choice of λ , we have  

( ) ( ) ( ) ( ) ( )
0

0
0 0 0 0 0 0

0 0 0 .
xZ x y g x x g x x y g x x g x x y

x x y x x yλ λ

− = − − − − ≤ − − − +

≤ − + ≤ − +
           (29) 

Since ( ) ( )ˆ0x x xδδ
∈ ⊂  , by the fact 3 yrλδ ≤  in assumption (a) and y λδ≤  in assumption (c), for 

each ( )x xδ∈ , (29) implies that  

( )
0

0 2 ,x yZ x y rλδ− ≤ ≤                                (30) 

that is, for each ( )x xδ∈ , ( ) ( )
0

0
yx rZ x y∈ . In particular,  

( ) ( ) ( ) ( )
0

0
0 0 0 0 0

0 0 0

0

2 .
x

y

Z x y g x x y g g x x y

x x y x x y rλ λ λδ

− = − − − ≤ − − +

≤ − + ≤ − + ≤ ≤
                 (31) 

Hence by using (31) and Lemma 1 for Lipschitz-like property in (28), we have  

( )( ) ( ) ( )

( )

0 0

0

0 0
0dist ,

1 1
21 1 .
5

x x

x

x x y Z x y x x

r r

κ κ λ
κλ κλ

α

Φ ≤ − ≤ + −
− −

 = − = − 
 

 

This shows that assertion (6) of Lemma 3 is satisfied. Now, we show that the assertion (7) of Lemma 3 is 
satisfied. Let ( )

0
,

xr
x x x′ ′′∈ . Then by assumption (a) and (27), we have ( ) ( ) ( )

0 2,
xr rx

x x x x xδ′ ′′∈ ⊆ ⊆     
and ( ) ( ) ( )

0 0

0 0,
yx x rZ x Z x y′ ′′ ∈  by (30). By assumed Lipschitz-like property of ( )10

xP −
⋅ , we have  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

0 0 0 00

0 0

0 0

0 0 0 0

0 1 0 0 1 0

0 0

( ), ,

,

.
1

x x

x

x r x x r x

x x r x x

x x

e x x x e x x x

e P Z x x P Z x

Z x Z xκ
κλ

− −

′ ′′ ′ ′′Φ ∩ Φ ≤ Φ ∩ Φ

   ′ ′′= ∩   

′ ′′≤ −
−

 

            (32) 

Applying (19) in (32), we obtain  

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

0 00

0 0

0 0 0 0 0 0

0

,

1
2 2 .

1 1

xx r xe x x x

g x x g x x g x x g x x

x x x x

κ
κλ
κλ κλ
κλ κλ

′ ′′Φ ∩ Φ

′ ′′ ′ ′′≤ − − − + − − −
−

′ ′′ ′ ′′≤ − ≤ −
− −



               (33) 

Then by (14), (33) reduces to  

( ) ( ) ( )( )0 00

0 0 2 2, .
1 5xx r xe x x x x x x x x xκλ α

κλ
′ ′′ ′ ′′ ′ ′′ ′ ′′Φ ∩ Φ ≤ − ≤ − = −

−
  

This implies that the assertion (7) of Lemma 3 is also satisfied. Since both assertions (6) and (7) of Lemma 3 
are fulfilled, we can deduce there exists a fixed point ( )

01̂ xr
x x∈  such that ( )

0

0
1 1ˆ ˆxx x∈Φ , which translates to 

( ) ( )
0

0 0
1 1ˆ ˆx xZ x P x∈ , that is, ( ) ( )0 1 0 1ˆ ˆ0 g x x T x∈ − +  and hence ( )0

0D x ≠ ∅ . 
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Now, we show that (25) is hold for 0k = .  
Note that 0r >  by assumption (a). Then (13) is valid for (14). Since ( )1k

xP − ⋅  is Lipschitz-like at ( ),y x  
on ( ) ( )

y xr ry x×  , it follows from Lemma 4 that the mapping ( )1k
xP −

⋅  is Lipschitz-like at ( ),y x  on  

( ) ( )
2
xr ry x×   with constant 

1 3
κ
κλ−

 for each ( )
2
xr

x x∈ . In particular, ( )
0

10
xP −

⋅  is Lipschitz-like at 

( ),y x  on ( ) ( )
2
xr ry x×   with constant 

1 3
κ
κλ−

 as ( ) ( ) ( )ˆ0
2
xr

x x x xδδ
∈ ⊂ ⊂    by assumption (a) 

and the choice of δ̂ . Furthermore, assumptions (a) and (c) imply that  

.y rλδ< ≤                                    (34) 

It seems that ( )0 r y∈ . Then by Lemma 1 we can say that the mapping ( )
0

0
xP ⋅  is metrically regular on  

( )
2
xr

x  relative to ( )r y  with constant 
1 3

κ
κλ−

. Thus by applying Lemma 1, we have  

( )( ) ( )( )0 0

10 0
0 0dist , 0 dist 0,

1 3x xx P P xκ
κλ

−
≤

−
                       (35) 

and (23) implies that  

( )( ) ( )( ) ( )( )0 0

10 0
0 0 0dist , 0  dist 0,  dist 0, .

1 3 1 3 1 3x xx P P x T xκ λκ λκ δ
κλ κλ κλ

−
≤ = ≤

− − −
         (36) 

Then from (16) and using (36), we obtain that  

( )( ) ( )( )0

10 0
0 0dist 0, dist , 0 .

1 3xD x x P λκ δ
κλ

−
= ≤

−
                     (37) 

From Algorithm 2 and using (21) and (37), we obtain that  

( )( )0
1 0 0 0 dist 0, .

1 3
x x d D x tηκλη δ δ

κλ
− = ≤ ≤ <

−
                   (38) 

This implies that (25) is hold for 0k = . 
Suppose that the points 1, , nx x�  have been obtained, and (24) and (25) are true for 0,1, 2, , 1k n= −� . We 

will show that there exists a point 1nx +  such that (24) and (25) also hold for k n= . Since (24) and (25) are 
true for each 1k n≤ − , we have the following inequality  

1 1
1

0
0 0

2 .
1

n n
i

n i
i i

tx x d x x t
t

δδ δ δ δ
− −

+

= =

− ≤ + − ≤ + ≤ + ≤
−∑ ∑                  (39) 

This reflects that (24) holds for k n= . Now with almost the same argument as we did for the case when 
0k = , we can find that the mapping ( )1

n

n
xP −

⋅  is also Lipschitz-like at ( ),y x  on ( ) ( )
2
xr ry x×   with  

constant 
1 3

κ
κλ−

. Then by applying again Algorithm 2, we have  

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( ) ( )

1
1

1 1 1 1 1

11
1 1

 dist 0,  dist , 0

dist 0, dist 0,
1 3 1 3

dist 0, 0
1 3 1 3

.
1 3 1 3 1 3

n

n

n n
n n n n n x

n
x n n

n n n n n n n

n nn
n n n n

x x d D x x P

P x T x

g x x g g x x

x x x x t t

η η

ηκ ηκ
κλ κλ

ηκ ηκ
κλ κλ

ηκλ ηκλ ηκλ δ δ
κλ κλ κλ

−
+

− − − − −

+−
− −

− = ≤ =

≤ =
− −

= − − = − −
− −

≤ − ≤ − ≤ ≤
− − −

        (40) 

This shows that (25) holds for k n= . Therefore, the proof is completed.  
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In the particular case, when x  is a solution of (1), that is, 0y = , Theorem 1 is reduced to the following 
corollary, which gives the local convergence of the sequence generated by the GG-PPA defined by Algorithm 
2. 

Corollary 1 Suppose that 1η >  and that x  satisfies ( )0 T x∈  and that ( )k
xP ⋅  is metrically regular at  

( ), 0x  with constant 
1
κ
λκ−

. Let 0r >�  be such that ( )2r x O⊂�  and suppose that  

( )( )lim dist 0, 0.
x x

T x
→

=                                 (41) 

Then there exists some ˆ 0δ >  such that any sequence { }kx  generated by Algorithm 2 with initial point in 
( )ˆ x

δ
  converges to a solution *x  of (1), that is, *x  satisfies that ( )*0 T x∈ .  

Proof. Since ( )k
xP ⋅  is metrically regular at ( ), 0x , there exist constants 0r , x̂r  and 

1
κ
κλ−

 such that 

( )k
xP ⋅  is metrically regular at ( ), 0x  on ( ) ( )

0ˆ 0
xr rx ×   with constant 

1
κ
κλ−

. Then, for each ˆ0 xr r< ≤ , 

one has that  

( )( ) ( )( ) ( ) ( )
0

1dist ,  dist ,    for all , 0 .
1 x

k k
x x r rx P y y P x x x yκ

κλ
−

≤ ∈ ∈
−

               (42) 

Let ( )sup : 0,1k kλ λ= ∈  be such that 
1

3
κλ

η
≤

+
. Choose ( )ˆ0,x xr r∈  such that 

2
xr r≤ �  and 0 0.

2
xrr λ

− >  

Then  

( )0 1 32min , 0,
2 4

xx rr rr
κλλ

κ
− −

= > 
 

                         (43) 

and  

0 1min , , , 0.
4 2 3 6
xr rr λκ

λ λ κλ
−  > 

 
                            (44) 

Thus we can choose 0 1δ< ≤  such that  

0 1min , , , .
4 2 3 6
xr rr λκδ

λ λ κλ
− ≤  

 
                           (45) 

Now it is routine to check that inequalities (a)-(c) of Theorem 1 are hold. Thus Theorem 1 is applicable to 
complete the proof of the corollary.  

4. Numerical Experiment  
We will provide, in this section, a numerical example to validate the semilocal convergence results of GG-PPA.  

Example 1 Let 0, 0.2, 2, 0.2 and 0.5X Y x η λ κ= = = = = =� . Define a set-valued mapping T on �  by 
( ) { }2 1,1T x x= − + . Consider a sequence of Lipschitz continuous function ng  with ( )0 0ng = , which is  

defined by ( ) 1
3ng x x= . Then Algorithm 2 generates a sequence which is converges to * 0.5x = .  

It is obvious from the statement that T is metrically regular at ( )0.2,0.6 gphT∈  and ng  is Lipschitz 
continuous on the neighborhood of 0 with Lipschitz constant sup : 0.2k kλ λ= = . Consider ( ) : 2 1T x x= − + . 
Then from (3), we have that  

( ) ( ) ( ){ }: 0

3 6: .
5

k
k k k k k k

k
k k

D x d g d T x d

xd d

= ∈ ∈ + +

− = ∈ = 
 




 

On the other hand, if ( )k
kD x ≠ ∅  we obtain that  
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( ) ( )1 1 1
30 .

5
k

k k k k k
xg x x T x x+ + +

−
∈ − + ⇒ =  

Thus from (40), we obtain that  

1 .
1 3k kd dηκλ

κλ −≤
−

 

For the given values of , ,η λ κ , we see that 2 1
1 3 7
ηκλ

κλ
= <

−
. Thus, this implies that the sequence generated  

by Algorithm 2 converges linearly. Then the following Table 1, obtained by using Mat lab program, indicates 
that the solution of the generalized equation is 0.5 when 10k = . 

Moreover, in the case when ( ) { }2 1,1T x x= − + , we can sketch the following Figure 1: 

5. Conclusions  
In this study, we have established semi-local and local convergence results for the general version of Gauss-type 
proximal point algorithm for solving generalized equation under the assumptions that 1η > , a sequence of 
functions :kg X Y→  with ( )0 0kg =  which is Lipschitz continuous in a neighbourhood O of the origin  
 

 
Figure 1. Graphical representation of ( )T x .                  

 
Table 1. Finding a solution of generalized equation.                

x T(x) 

0.2000 0.6000 

0.5600 −0.1200 

0.4880 0.0240 

0.5024 −0.0048 

0.4995 0.0010 

0.5001 −0.0002 

0.5000 0.0000 

0.5000 −0.0000 

0.5000 0.0000 

0.5000 −0.0000 

0.5000 0.0000 
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and T is metrically regular. Moreover, we have presented a numerical experiment to validate the semilocal 
convergence result for Algorithm 2. For the case where 1η = , the question, whether the results are true for 
GG-PPA, is a little bit complicated. However, from the proof of the main theorem, one sees that all the results 
obtained in the present paper remain true provided that, for any x X∈Ω ⊆ , the following implication holds:  

( ) ( )
( )

such that min .
d D x

D x d D x d d
∈

≠ ∅⇒ ∃ ∈ =  

To see the detail proof of the above implication, one can refer to [17]. 
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