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Abstract 
In this paper, a new approach called Power Series Approximation Method (PSAM) is developed for 
the numerical solution of a generalized linear and non-linear higher order Boundary Value Prob-
lems (BVPs). The proposed method is efficient and effective on the experimentation on some se-
lected thirteen-order, twelve-order and ten-order boundary value problems as compared with the 
analytic solutions and other existing methods such as the Homotopy Perturbation Method (HPM) 
and Variational Iteration Method (VIM) available in the literature. A convergence analysis of PSAM 
is also provided. 
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1. Introduction 
Higher order boundary value problems in linear and non-linear form have been a major concern in recent years. 
This is due to its applicability in many areas of Mathematical Physics and other sciences in its precise analysis 
of nonlinear phenomena such as computation of radiowave attenuation in the atmosphere, interface conditions 
determination in electromagnetic field, potential theory and determination of wave nodes in wave propagation. 
Most conventional analytic methods for higher order boundary value problems are prone to rounding-off and 
computation errors. As a result, the analytics methods are less dependent in seeking the solution of higher order 
boundary values problems in most cases, especially the non-linear type. Thus, numerical methods have gained 
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momentum in seeking the solution of higher order boundary value problems.  
Over the years, several numerical techniques have been developed, such as the Variational Iteration Method 

(VIM) [1], Homotopy Perturbation Method (HPM) [2], Spline-Collocation Approximations Method (SCAM) 
[3], Spline Method [4], etc. that possess an elaborate procedure and structurally complex, which nevertheless 
yields efficient results. Siddiqi and Iftikhar [5] worked on a numerical solution of higher order boundary value 
problems. Also, Siddiqi and Iftikhar [6] adopted the technique of variation of parameter methods for the solution 
of seventh order boundary value problems. Iftikhar et al. [7] solved the thirteenth order value problems by Dif-
ferential transform method. Akram and Rehman [8] presented a numerical solution of eighth order boundary 
value problems in reproducing kernel space. Wu et al. [9] presented a precise and rigorous work on nonlinear 
functional analysis of boundary value problems: novel theory, methods and applications. Mamadu and Njoseh 
[10] have proposed a method which efficiently finds exact solutions and is used to solve linear Volterra integral 
equations. 

In this present work, the Power Series Approximation Method (PSAM) is a new approach developed for the 
numerical solution of a generalized Nth order boundary value problems. The proposed method is structurally 
simple with well posed Mathematical formulae. It involves transforming the given boundary value problems into 
system of ODEs together with the boundary conditions prescribed. Thereafter, the coefficients of the power se-
ries solution are uniquely obtained with a well posed recurrence relation along the boundary 0ξ , which leads to 
the solution. The unknown parameters in the solution are determined at the other boundary 1ξ . This finally 
leads to a system of algebraic equations, which on solving yields the required approximate series solution. The 
method is accurate and efficient in obtaining the approximate solutions of linear and non-linear boundary value 
problems. The method requires no discretization and linearization or perturbation. Also, computational and 
rounding-off errors are avoided. The method has an excellent rate of convergence as compared with existing 
methods in [1] [2] and the exact solutions available in the literature. 

The rest of this paper will be organized as follows: Section 2 of this work give detailed Mathematical formu-
lation of Nth order BVPs using PSAM. Section 3 presents the error analysis and convergence theorem of the 
method. Section 4 offers numerical stimulation of the method on some selected thirteen-order, twelve-order and 
ten-order boundary value problems. Finally, the conclusion is presented in Section 5. 

2. Power Series Approximation Method (PSAM) 
We consider the Nth order BVP of the form  

( ) ( ) ( ) ( ) ( ) 0 1,Ny x f x y x g x xξ ξ+ = < <                        (1) 

with the boundary conditions 
( ) ( ) ( )2

0 2 , 0,1, 2,3, , 1 ,m
my m nξ λ= = −�                        (2) 

( ) ( ) ( )2
1 2 , 0,1, 2,3, , 1m

my m nξ β= = −�                         (3) 

where ( ) ( ),f x g x  and ( )y x  are assumed real and continuous on 0 1xξ ξ≤ ≤ , 2mλ  and 2mβ ,  
( )0,1, 2,3, , 1m n= −�  are finite real constants. 

The given nth order BVP (1), (2) and (3) are transformed to systems of ODEs such that we have 

( ) ( ) ( )

1

1
2

2
3

d ,
d
d ,
d
d ,
d

d ,
d

y y
x
y y
x
y y
x

y g x f x y x
x

=

=

=

= −

�

                              (4) 

with the boundary conditions  
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( ) ( ) ( ) ( )1 0 0 2 0 1 3 0 2 2 0 2 1, , , , n ny y y yξ λ ξ λ ξ λ ξ λ −= = = =�                    (5) 

and 

( ) ( ) ( ) ( )1 1 0 2 1 1 3 1 2 2 1 2 1, , , , , .n ny y y yξ β ξ β ξ β ξ β −= = = =�                   (6) 

Let the series approximation of (1), (2) and (3) be given as 

( )
0

, ,
N

i
N i

i
y x a x N

=

= < ∞∑                                (7) 

where ( ), 0 1ia i N=  are unknown constants to be determined and [ ]0 1,x ξ ξ∈ . 
Now, we estimate the unknown constants ( ), 0 1 ,ia i N=  at 0x ξ=  by substituting (7) in (4) successively, 

which is as follows: 
We consider the first derivative of Ny  wrt to x as 1y , i.e., 

1 1
1 1 1 1

1 2

d .
d

N N
i iN

i i
i i

y y i a x y a i a x y
x

− −

= =

= ⇒ = ⇒ + =∑ ∑                      (8) 

At ( )1 0 0 ,y ξ λ=  we have,  

1 1
1 0 0 1 0 0

2 2
.

N N
i i

i i
i i

a i a a i aξ λ λ ξ− −

= =

+ = ⇒ = −∑ ∑                         (9) 

Thus (8) becomes 

1 1
1 0 0

2 2

N N
i i

i i
i i

y i a i a xλ ξ − −

= =

= − +∑ ∑                            (10) 

Next: 1
2

d .
d
y y
x
=  

( ) ( )2 21
2 2 2 2

2 3

d 1 2 1
d

N N
i i

i i
i i

y y i i a x y a i i a x y
x

− −

= =

= ⇒ − = ⇒ + − =∑ ∑              (11) 

( )2 0 1,y ξ λ=  we obtain, 

( ) ( )2 2
2 0 1 2 1 0

3 3

12 1 1
2

N N
i i

i i
i i

a i i a a i i aξ λ λ ξ− −

= =

 + − = ⇒ = − −  
∑ ∑               (12) 

Thus (11) becomes 

( ) ( )2 2
2 1 0

3 3
1 1

N N
i i

i i
i i

y i i a i i a xλ ξ − −

= =

= − − + −∑ ∑                      (13) 

Carrying on the above sequential approach to the thn  order we obtain the following recursive formulae at 0x ξ= , 

0
1

1 ! , 0
!

N
i n

n n i
i n

a n a n
n

λ ξ −

= +

 = − ≥  
∑                          (14) 

0
1 1

! ! , 0,
N N

i n i n
n n i i

i n i n
y n a n a x nλ ξ − −

= + = +

= − + ≥∑ ∑                      (15) 

Here, the choice of N is equivalent to the order of the BVP considered. 

3. Error Analysis and Convergence Theorem 
An error estimate for the approximate solution (7) of (1), (2) and (3) is obtained here. 

Let  

( ) ( )n Ne y x y x= −  

as the error function of ( )Ny x  to ( )y x ; where ( )y x  is the exact solution of (1), (2) and (3).  
Hence, ( )Ny x  satisfies the following problems: 
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( ) ( ) ( ) ( ) ( ) ( ) [ ]0 1, , ,N
N N Ny x g x f x y x H x x ξ ξ= − + ∈                     (16) 

( ) ( ) ( )2
0 2 , 0,1, 2, , 1m

N my m nξ λ= = −�                            (17) 

( ) ( ) ( )2
1 2 , 0,1, 2, , 1m

N my m nξ β= = −�                            (18) 

The perturbation term ( )NH x  can be obtained by substituting the computed solution ( )Ny x  to obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )N N
N N NH x y x g x f x y x= − +                           (19) 

We then transform (16), (17) and (18) into systems of ordinary differential equations and proceed to find an 
approximate ( ),N ne x  to the error function ( )ne x  in the same way as we did before for the solution of the 
problem (1), (2) and (3). 

Thus, the error function satisfies the problem 
( ) ( ) ( ) ( ) ( ) ( ) [ ]0 1, , ,N
n n Ne x g x f x e x H x x ξ ξ− + = − ∈                      (20) 

with the homogeneous conditions 
( ) ( )2

0 0, 0,1, 2, ,m
Ny m Nξ = = �                              (21) 

( ) ( )2
1 0, 0,1, 2, ,m

Ny m Nξ = = �                              (22) 

3.1. Convergence Theorem 
We now prove that if the solution series by PSAM is convergent, it must be an exact solution by increasing the 
order of approximation. 

Theorem 1: 
If the solution series ( )

0

N
i

N i
i

y x a x
=

= ∑  converges it must be an exact solution by increasing the order of ap-
proximation. 

Proof: 

Let the series 
0

N
i

i
i

a x
=
∑  be convergent. Then 

( )
0

N
i

i
i

y x a x
=

= ∑                                   (23) 

( )lim 0ii
y x

→∞
=                                   (24) 

We have  

1
1

0

N
i i

i i i
i

a x x a x −
−

=

 − ∑                                (25) 

Using Equation (23), 

( )1
1

0
lim 0

N
i i

i i i iii
a x x a x y x−

− →∞=

 − = = ∑                          (26) 

Using Equation (14), 

1 1
1

0 0

N N
i i i

i i i i
i i

a x x a x a x− −
−

= =

   − =   ∑ ∑                               (27) 

Since 0ia ≠  in Equation (27), we have 

1

0
0

N
i

i
i

a x −

=

=∑ �                                       (28) 

If the value of N is so large or approaches infinity as in (14) and (15),  
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1 1

0 0
0

N N
i i

i i i
i i

a x a x y− −

= =

 = + + = ∑ ∑�  

and this completes the proof. 

4. Numerical Examples 
To implement the method developed, three examples are considered. 

Example 1 
Consider the following thirteenth-order problem [1] 

( ) ( )13 cos siny x x x= − ,                                 (29) 

( ) ( )0 0 1,y =  

( ) ( )1 0 1,y =  

( ) ( )2 0 1,y = −  

( ) ( )3 0 1,y = −  

( ) ( )4 0 1,y =  

( ) ( )5 0 1,y =  

( ) ( )6 0 1,y = −  

( ) ( )0 1 1,y =  

( ) ( )1 1 1,y = −  
( ) ( )2 1 1,y = −  
( ) ( )3 1 1,y =  
( ) ( )4 1 1,y =  
( ) ( )5 1 1,y = −  

The exact solution is  

( ) sin cos .y x x x= +  

The given 13th order BVP (29) are transformed to systems of ODEs such that we have 

1

1
2

2
3

d ,
d
d

,
d
d

,
d

d cos sin ,
d

y y
x
y y
x
y y
x

y x x
x

=

=

=

= −

�

 

with the boundary conditions at 0 0x ξ= =  



I. N. Njoseh, E. J. Mamadu 
 

 
1220 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5 6

7 8 9 11 12 13

0 1, 0 1, 0 1, 0 1, 0 1, 0 1,

0 1, 0 , 0 , 0 , 0 , 0 .

y y y y y y

y y a y b y d y e y f

= = = − = − = =

= − = = = = =
 

The series approximation of (29) is given as Equation (7) 
where the unknown constants ( ), 0 1ia i N=  are uniquely determined by Equation (14). 

Since, 0 0ξ = , we have Equation (14) as 

, 0
!
n

na n
n
λ

= ≥                                     (30) 

Using Equation (30) for ( )0 1 11n = , we have the following: 

0 1 2 3 4 5 6

7 8 9 10 11

1 1 1 1 11, 1, , , , , ,
2 6 24 120 720

, , , , .
5040 40320 362880 3628800 39916800

a a a a a a a

a b c d ea a a a a

= = = − = − = = = −

= = = = =

              (31) 

Substituting (31) into Equation (7) for N = 0 (1) 11 we obtain 

( ) 10 9 8 7 6

5 4 3 2 11

1 1 1 1 1
3628800 362880 40320 5040 720

1 1 1 1 11
120 24 6 2 39916800

y x x d x c x b x a x

x x x x x x e

= + + + −

+ + − − + + +

              (32) 

Using boundary condition at 1 1x ξ= =  in Equation (32) we obtain the values of a, b, c, d and e, as 1a = , 
1b = , 1c = − , 0.999997d =  and 1e = − . 

The above values of , , ,a b c d  and e coincide with the results in [1], where Variational Iteration Method is 
used for the same problem considered. 

Thus, the final approximation solution of BVP (29) can be written as 

( ) 7 10 9 8 7

6 5 4 3 2

1 1 12.755723655 10
362880 40320 5040

1 1 1 1 1 1
720 120 24 6 2

y x E x x x x

x x x x x x

−= − + +

− + + − − + +

 

The comparison of the approximate solution of example 1 obtained with the help of PSAM and the approx-
imate solution using VIM obtained in [1] is given in Table 1. From the numerical results, it is clear that the 
PSAM is more efficient and accurate. By increasing the order of approximation more accuracy can be obtained. 

Example 2 
Consider the following linear tenth-order problem [2] 

( ) ( ) ( )10 2e , .xy x y x a x b−= ≤ ≤                              (33) 

with the following boundary conditions 

( ) ( ) ( )2 0 1 , 0,1, 2,3, 4.ky k= =                                (34) 

( ) ( ) ( )2 0 1 , 0,1, 2,3, 4.ky k= =                                (35) 

The exact solution is  

( ) exy x = . 

The given 10th order BVP (33) is transformed to systems of ODEs such that we have 
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( )

1

1
2

2
3

2

d ,
d
d

,
d
d

,
d

d e
d

x

y y
x
y y
x
y y
x

y y x
x

−

=

=

=

=

�

 

with the boundary conditions at 0 0x ξ= =  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 4 5

6 7 8 9 10

0 1, 0 1, 0 1, 0 1, 0 1,

0 , 0 , 0 , 0 , 0 .

y y y y y

y a y b y c y d y e

= = = = =

= = = = =
 

Since, 0 0ξ = , we have Equation (14) as 

, 0.
!
n

na n
n
λ

= ≥  

Hence for ( )0 1 9n =  we have 

0 1 2 3 4 5

6 7 8 9

1 1 11, 1, , , , ,
2 6 24 120

, , , .
720 5040 40320 362880

aa a a a a a

b c d ea a a a

= = = = = =

= = = =
 

Hence, substituting the above values of ( ), 0 1 9na n =  in (7), we obtain 

( ) 2 3 4 5 6 7 8 91 1 1 1 1 1 1 11
2 6 24 120 720 5040 40320 362880

y x x x x x ax bx cx dx ex= + + + + + + + + +       (36) 

Using boundary condition at 1 1x ξ= =  on equation (36) we obtain the values of a, b, c, d and e, as 
1.000029332a = , 0.9997112299b = , 1.002812535c = , 0.9735681663d = , and 1.218281800e =  

Thus, the final approximation solution of the BVP (33) can be written as 

( ) 2 3 4 5 6

7 8 7 9

1 1 11 0.008333577767 0.001388487819
2 6 24

0.0001989707411 0.00002414603587 3.357258047 10

y x x x x x x x

x x E x−

= + + + + + +

+ + +
 

The comparison of the approximate solution of Example 2 obtained with the help of PSAM and the approx-
imate solution using HPM [2] is given in Table 2. From the numerical results, it is clear that the PSAM is more 
efficient and accurate. By increasing the order of approximation more accuracy can be obtained. 

Example 3 
Consider the following twelve-order problem 

( ) ( ) ( ) ( ) ( ) ( )12 2 32e , .xy x y x y x a x b= + ≤ ≤                          (37) 

with the following boundary conditions 
( ) ( )2 0 1, 0,1, 2,3, 4,5ky k= =                               (38) 

( ) ( )2 11 , 0,1, 2,3, 4,5
e

ky k = = 
 

                             (39) 

The exact solution is  

( ) e xy x −= . 

The given 12th order BVP (37) is transformed to systems of ODEs such that we have 
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( ) ( ) ( )

1

1
2

2
3

32

d ,
d
d

,
d
d

,
d

d 2e ,
d

x

y y
x
y y
x
y y
x

y y x y x
x

=

=

=

= +

�

 

with the boundary conditions (at 0 0x ξ= = )  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4 5 6 7

8 9 10 11 12

0 1, 0 , 0 1, 0 , 0 1, 0 , 0 1,
0 , 0 1, 0 , (0) 1 and 0 .

y y a y y b y y c y
y d y y e y y f

= = = = = = =

= = = = =
 

Since, 0 0ξ = , we have Equation (14) as 

, 0.
!
n

na n
n
λ

= ≥  

Hence for ( )0 1 11n =  we obtain the following 

0 1 2 3 4 5 6 7

8 9 10 11

1 1 11, , , , , , , ,
2 6 24 120 720 5040

1 1, , , .
40320 362880 3628800 39916800

b c da a a a a a a a a

e fa a a a

= = = = = = = =

= = = =
 

Hence, substituting the above values of ( ), 0 1 11na n =  in (7), we obtain 

( ) 2 3 4 5 6 7

8 9 10 11

1 1 1 1 1 11
2 6 24 120 720 5040

1 1 1 1
40320 362880 3628800 39916800

y x ax x bx x cx x dx

x ex x fx

= + + + + + + +

+ + + +
               (40) 

Using boundary condition at 1 1x ξ= =  in Equation (40) we obtain the values of a, b, c, d, e and f, as 
0.9999940293a = − , 1.000058885b = − , 0.9994190942c = − , 1.005725028d = − , 0.9434337955e = −  and 
1.632120555f = − . 

Thus, substituting the values a, b, c, d, e and f in (40), the final approximation solution of BVP (37) can be 
written as 

( ) 2 3 4

5 6 7 8

9 10 8 11

1 11 0.9999940293 0.1666764808
2 24

1 10.008328492452 0.0001995486167
720 40320

10.000002599850627 4.088806104 10
3628800

y x x x x x

x x x x

x x E x−

= − + − +

− + − +

− + −

 

The comparison of the approximate solution of Example 3 obtained with the help of PSAM and the approx-
imate solution using HPM [2] is given in Table 3. From the numerical results, it is clear that the PSAM is more 
efficient and accurate. By increasing the order of approximation more accuracy can be obtained. 

5. Conclusion 
In this paper, the Power Series Approximation Method has been applied to obtain the numerical solution of li-
near and nonlinear generalized Nth order boundary value problems. The PSAM requires no discretization, li-
nea-rization or perturbation. By increasing the order of approximation more accuracy can be obtained. Compar-
ison of the results obtained with existing techniques [1] [2] shows that the PSAM is more efficient and accurate. 
Hence, it is easier and more economical to apply PSAM in solving BVPs. 
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Table 1. Comparison of results of PSAM with Variational Iteration Method (VIM).             

X Exact Solution PSAM VIM 

0.00 1.0000000 1.0000000 1.000000 

0.10 1.0948376 1.0948376 0.994054 

0.20 1.1787359 1.1787359 0.931864 

0.30 1.2508567 1.2508568 0.769356 

0.40 1.3104793 1.3104800 0.784691 

0.50 1.3570081 1.3570112 0.659287 

0.60 1.3899781 1.3899892 0.537115 

0.70 1.4090599 1.4090924 0.381117 

0.80 1.4140628 1.4141457 0.240714 

0.90 1.4049369 1.4051257 0.129106 

1.00 1.3817733 1.3821676 0.000000 

 
Table 2. Comparison of results of PSAM with HPM.                                       

X Exact Solution PSAM HPM 

0.0 0.100000000 0.100000000 0.1000000000 

0.2 0.122140276 0.122140276 0.1221408246 

0.4 0.149182470 0.149182470 0.1491833581 

0.6 0.182211880 0.182211878 0.1822127686 

0.8 0.222554093 0.222554055 0.2225546413 

1.0 0.271828183 0.271827885 0.2718281799 

 
Table 3. Comparison of results of PSAM with HPM.                                       

X Exact Solution PSAM HPM 

0.0 10.000000000 10.000000000 10.000000000 

0.2 8.187307531 8.187318703 8.187308703 

0.4 6.703200460 6.703218540 6.703208540 

0.6 5.488116361 5.488134449 5.488114451 

0.8 4.493289641 4.493300834 4.493289646 

1.0 3.678794412 3.678794408 3.678794453 
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