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Abstract 
An attempt to obtain a new theoretical derivation of the size of the electron microparticle has 
been done. To this purpose first the Maxwell equation for the electron current has been examined 
for the case of the one-electron current present in the Bohr model of the hydrogen atom. It has 
been shown that the equation is satisfied on condition that the microstructure properties of the 
electron particle are taken into account. In the next step, the quanta of the magnetic field charac-
teristic for the Bohr atom and the electron time periods specific for the electron current along the 
orbits were substituted in place of parameters entering the classical Oersted equation. This gives 
an expression for the cross-section radius of the orbits not much different than results for the ra-
dius of the electron microparticle obtained in a former electron theory. 
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1. Introduction 
In order to obtain any classical property of an elementary microparticle, say the electron, an approach combined 
of both the quantum and classical physical laws seems to be necessary. In the present case—when the classical 
size parameter of the electron particle is aimed to be deduced—the quantum aspects can be provided by the 
Bohr model of the hydrogen atom. Here—for any quantum state—we have a definite orbital motion of a single 
electron in the electrostatic field of a positively charged proton nucleus. The motion—beyond of its orbital track 
—has well-defined velocity and energy parameters. However, in order to make use of the equations of classical 
electrodynamics, especially the Maxwell equations, knowledge of the magnetic field—together with the electric 
field—in the atom seems to be necessary. 
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However both of the Maxwell equations—that consider the change of the magnetic induction and that concern 
the electric line current only (by assuming that the displacement current can be neglected)—take into account 
the time parameter on different footing [1]-[4]. In the first equation the time action is reduced to the use of a 
short interval representing the derivative of the magnetic flux with respect to time; in the second equation the 
time interval enters solely the current velocity, which can be assumed to be a constant term along an arbitrarily 
long quantity of time. This produces a stationary electric current whose charge density e  satisfies the equa-
tion  

0.e
t

∂ =
∂


                                            (1) 

If we assume the Bohr theory as valid for the hydrogen atom, the electric current given by the one-electron 
orbital motion is fully stationary for any chosen quantum level n. The velocity of the current composed of a sin-
gle electron particle is [5] 
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since 
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is the orbit length and 
3 3

4
2π

n
nT

me
=

                                             (4) 

is the time period necessary to travel the distance nl  about the atomic nucleus. 
The aim of the present paper is, in the first step, to point out that the Maxwell equation concerning the electric 

line current 
,e=j v                                               (5) 

where v  is the electron velocity and   is the density of the electron particle, can be satisfied only when the 
microstructure properties of the electron particle are taken into account. 

To this purpose we consider the quanta of the magnetic field nH  neglected in the original Bohr model [5] 
[6]. These quanta—introduced in Section 2—seem to be of importance (see [7]) because they lead to the quanta 
of the magnetic flux identical with those known experimentally since a long time in superconductors [8] [9]. 
Moreover, a combination of the electric and magnetic field present in the atom gives the Poynting vector which 
approximately provides us with a proper rate of the energy emission due to the process of the electron transition 
between two quantum levels [10]. In Section 3 we show that the quanta nH  fulfill the Maxwell equation for 
the electric current with a satisfactory accuracy.  

In the next step, in Section 4, the quanta of the magnetic field nH —which are due to the electron orbital mo-
tion in the atom—are substituted into the equation representing the Oersted law: 

4πd 2π .n n nH H r I
c

= =∫ s


                                 (6) 

Here the path of ds  circumvents the circular cross-section area of the orbit, the area is assumed to have the 
radius r: it defines the surface of the orbital conductor at which the magnetic field is equal to nH  (see Figure 
43 in Ref. [2]). Since any orbit can be occupied solely by a single electron particle, r should be independent of 
the quantum index n. Symbol nI  in (6) represents the current intensity which is coupled with the circulation 
time period nT  of the electron along the orbit n by the formula 

.n
n

eI
T

=                                              (7) 

It will be found that the indices n in (6) cancel together leaving the formula for the cross-section radius r of 
the orbit independent of n. This r is expected to approach the radius er  of the electron particle moving along 
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the orbit. 

2. Maxwell Equation for the Electric Current and the Magnetic Field in the  
Hydrogen Atom 

The Maxwell equation is written briefly in the form 
4π
c

∇× =H j                                             (8) 

but it seems to be more convenient to apply an integral form of (8) which is 
4πd d .n nl H l
c

= =∫ ∫H j f


                                      (9) 

The magnetic field nH  in (9) is a constant term for a given n; see below. The length nl  is given in (3). It 
should be noted that the integral on the left of (9) does not concern the dot product of nH  and dl , but is the 
integral of nH  extended over the line having the length nl  [2]. 

The nH  can be obtained as a result of a constant electric current on the level n if we note that the current is 
surrounding periodically the nucleus with the frequency 

2π
n

nT
Ω =                                             (10) 

where nT  is given in (4). On the other hand, the nΩ  is coupled with nH  by the formula [7] [11] 

.n
n

eH
mc

Ω =                                          (11) 

This is an effect of the Lorentz force law in which the wave-vector k  of the electron particle satisfies the 
relation 

[ ]d .
d n n n n

k e e H v
t T c c

∆
≈ = × =

k H v                                (11a) 

The last step in (11a) is due to the fact that the magnetic field is normal to the velocity vector along the orbit. 
For a full circulation time nT  we have 2π nk k∆ = . Since n nk mv=  we obtain from (11a) the relation 

2π n
n n n n

n

k emv H v
T c

= Ω =
  

identical with (11). 
A substitution of nT  from (4) into (10) gives together with (11) the equation 

4

3 3
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=



 

from which we obtain 
2 3

3 3 .n
m e cH
n

=


                                    (12) 

It is interesting to note that nH  in (12) can be obtained also from the theory of the cyclotron resonance in 
metals [11]. We have the relation [11] 

2π n
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where 
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n
=
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                                     (13) 

is the absolute electron energy in state n [5], and 
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2πn nS r=                                        (14) 

is the area occupied by the electron orbit in that state. Here the constants nE  and nS  replace respectively the 
energy interval E∆  and area interval S∆  in the real space admitted in course of the change of the quantum 
state n. A substitution of nE  from (13) and nS  from (14) valid for the hydrogen atom gives together with the 
formula (11) for nΩ = Ω  the relation: 

4
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This gives 
6 4 2

2 2
6 6n

e m cH H
n

= =


 

which yields the square value of nH  in (12). 

3. Current Analysis Done with the Aid of a Microstructure Parameter of the  
Electron Particle 

Usually, when the electron is considered as a charged particle having the radius er , the potential energy of the 
charge extended on a spherical surface is assumed to be approximately equal to the rest energy of the electron [2] 
[12]: 

2
2.

e

e mc
r
≅                                        (15) 

In effect 
2

2 .e
er

mc
≈                                        (16) 

The current (5) is composed, first, of the volume V occupied by the electron particle, so 

3

1 1 ,
4π
3 e

V r
ρ = =                                     (17) 

next the same current should move within a tube having a cross-section area equal approximately to 
2d π .er≅∫ f                                       (18) 

Since the velocity nv  for a given n is a constant [see (2)], we obtain for the right-hand side of (9) the formula 
3 3 2
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The left-hand side of (9) is 
2 3 2 2

3 3 22π 2π .n n
m e c n emcH l

nn me
= =





                            (20) 

A difference between the both sides of (9), or (19) and (20), is represented by the factor of 3/2. 

4. The Quanta of the Magnetic Field and Time Periods Entering the Oersted Law  
Give the Radius of the Electron Microparticle 

Any current is associated with the magnetic field and the lines of that field circumvent the line of the current. 
We assume that at the distance r from the center of the current cross-section area the field is nH  for any orbit n. 
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In this case the formulae (6) and (7) give the relation 
4π2πn

n

eH r
c T

=                                      (21) 

from which we obtain 
2 3 4

3 3 3 3
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                                 (22) 

In effect the cross-section radius of the orbit which approximately can be identified with the radius of the 
electron microparticle becomes 

2

2 .
πe

er r
mc

≈ =                                       (23) 

This result—evidently independent of the index n—is not much different than that given by the well-known 
formula (16) and the formula derived in [13]: 

2

2 .
6πe

er
mc

=                                         (24) 

5. Summary 
The Maxwell equations, when applied to electrons, usually neglect the microsize parameters of the electron par-
ticle. In Appendix we demonstrate that the Poynting vector PS  can be connected with the rest energy of the 
electron, therefore also with the radius r or er . 

One of aims of the present paper was to indicate that these parameters can be essential in making the Maxwell 
equations satisfied for a given problem. 

The Maxwell equation for the electric current has been examined for the case of the one-electron current 
present in the Bohr model of the hydrogen atom. It has been shown, for the magnetic field induced by the cur-
rent, that the equation is satisfied on condition that the microstructure parameter of the electron radius er  is ex-
plicitly taken into account. Here an earlier result can be pointed out that the magnetic field strength n nH B=  
entering the Poynting vector constructed for the rate of the emission spectrum in the hydrogen atom cannot be 
reproduced from the Biot-Savart law unless the electron microstructure radius er  is applied in the calculations 
(see [10] [14] [15]). 

But the size of the electron microradius can be of importance for itself, especially in quantum electrodynamics, 
so its calculation becomes a useful task. In the next step of the paper, a substitution of nH  and nT —characte- 
ristic respectively for the magnetic field quanta and time periods of the electron circulation in the atom—into the 
Oersted formula gives the expression for the cross-section radius of the electron orbit equal to 

2

2 .
π

er
mc

=                                           (25) 

The result in (25), which can be identified with the size of the radius er  of the electron microparticle, does 
not differ much from the well-known formula (16) as well as the formula quoted in (24). 
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Appendix: Rest Energy of the Electron Mass Connected with the Poynting Vector of  
the Hydrogen Atom 
The value of the Poynting vector for the energy emission in the hydrogen atom can be easily calculated with the 
aid of nH  in (12) and the absolute value of the vector of the electric field intensity nE : 

2n
n

e
r

=E                                                (A1) 

where nr  is the orbit radius applied in (2) and (3). For the spherical surface S having the radius nr , so 
2π ,n nS S r= =                                             (A2) 

we obtain the absolute value of the Poynting vector P
nS  equal to 
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            (A3) 

The decrement of P
nS  due to the change of the quantum state 1n +  into n for large n is equal to 
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The time period nT  of the electron circulation in state n of the hydrogen atom [see (4)] is entering the deno-
minator of the last term in (A3) and (A4). This is a characteristic substitution of the transition time t∆  between 
two neighbouring quantum levels 1n +  and n in the hydrogen atom obtained in a quantum aspect of the 
Joule-Lenz energy dissipation theory [10] [16]: 

.nt T∆ ≈                                               (A5) 

The emission rate (A4) can be compared with that given by the Joule-Lenz approach [10] [16]: 
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We see that decrease of (A6) with increase of n is much more rapid than decrease of (A4). Moreover we have 
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which makes any (A6) much smaller than (A4). The reason of the discrepancy seems to be the choice of S equal 
to (A2) instead of a much smaller S equal to the toroidal surface enclosing the orbit of the electron circulation 
about the nucleus. 

In any way the Joule-Lenz approximation for the energy emission rate in the hydrogen atom works well as it 
is indicated by its comparison with the quantum-mechanical theory (see [17] [18]). 
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