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Abstract 
Adjusting radar transmitted waveform to its environment is one of the most important roles in 
cognitive radar; having the capability of updating transmitted waveforms in different applications 
is a key point. It has been shown in many studies that if the waveform is designed according to the 
target and clutter characteristics, the detection performance will improve significantly. The un-
certainty of the target radar signatures decreases via maximizing MI and the probability of ex-
tended target detection is increases via maximizing SNR. In this paper, a waveform design ap-
proach based on maximizing both SNR and MI and with regard to target and clutter shape is pre-
sented. The detection performance for proposed waveform is compared with previous proposed 
waveforms. The present paper compares different scenarios of target and clutter and using the 
probability of detection as a cost function to investigate the advantages and disadvantages of each 
waveform in different scenarios which are mainly discussed in this text. The desired waveform for 
cognitive radar is selected based on simultaneously making compromises between SNR and MI, 
which plays an important role in cognitive radar systems and based on the assumption addressed 
in the text, the best waveform transmitted into the environment. 
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1. Introduction 
Cognitive radar is a radar system which selects its transmitted waveform to adapt to the radar environment by 
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using feedback structure from the receiver to the transmitter. In these systems waveforms can be adaptively op-
timized based on preceding knowledge about the targets and environments; it leads to the improvement of the 
total performance of system [1]. Design of transmitting waveform has an important effect on the performance 
and efficiency of radar system. Adaptive waveform design for target detection and recognition has been devel-
oped during the past decade, and also recently most studies have been devoted to radar waveform optimization. 
In these approaches, one method is based on signal-to-noise ratio (SNR) maximizing under a particular model of 
the system, interference, clutter and targets [2]. Another approach is based on mutual information which is first 
proposed by Bell [3]. Bell shows for estimating the parameters of a target from a given ensemble, the radar 
waveform should be designed to maximize the mutual information between the received signal and the target 
ensemble [4]. SNR-based optimum matched waveform for a specific target via frequency domain approach is 
proposed in [5]. An optimal waveform for T-72 and M1 main battle tanks detection is proposed in [6]. 

The information-based approach in the presence of signal-dependent clutter is investigated in [7]. In their 
work, optimum waveform is investigated both from SNR maximization and information-theoretic approaches. 
The optimal waveform for detecting extended target in signal-dependent interference is proposed in [8]. They 
derive optimal waveform energy spectral density (ESD) by maximizing SNR. A method for waveform design 
based on mutual information is proposed in [9] in which the general water-filling method is utilized to solve the 
waveform design for the recognition of multiple extended targets. They have shown that their proposed method 
has the higher classification rate at higher SNRs and higher detection performance in lower SNRs as compared 
to LFM and water-filling signals. In [10], the performance of waveform design in cognitive radar is discussed 
and a new iterative algorithm is proposed to synthesize a constant modulus waveform to maximize SNR and MI 
simultaneously. Designing matched waveforms based on maximizing SNR and MI for both deterministic and 
stochastic targets are discussed in [11] [12]; using multiple transmission of obtaining waveform a target identi-
fication problem is investigated. A new technique is proposed in [13], which improves the classification perfor-
mance of SNR-based matched waveforms. In [7] [14], a closed-loop strategy is applied to discriminate target 
classes rather than a finite ensemble of known targets. In [15], optimization problem based on mutual informa-
tion for waveform design in signal dependent clutter is discussed and a new waveform using interior-point me-
thod to carry out the optimization task is proposed. In previous papers such as [8] [16], SNR improvement for 
proposed waveforms over LFM waveform is investigated and in this paper, we evaluate SNR and MI values for 
different waveforms and compare the results with LFM waveforms and show the best performance of obtaining 
waveforms. 

The contributions of this paper include an analysis of applying both the information-based and SNR-based 
approach to different deterministic extended targets and clutter scenarios considering the energy constraint. In 
this study, energy distribution for optimum waveform in clutter and noise scenario with the energy constraint 
have been addressed and we focus on the point that waveform should put a considerable amount of available 
energy on the frequency bands in which the target spectrum frequency components is considerable while the 
clutter is negligible. We derive various waveforms for each scenario and finally compare our results with linear 
frequency modulated (LFM) waveform to verify the performance of the proposed waveform. 

This paper is organized as follows: first a radar system model is described in Section 2 and then the derivation 
of MI-based and SNR-based waveforms in the presence of Gaussian clutter and other scenarios are derived. In 
Section 3, using the obtained relations in Section 2, transmit waveform spectrum for two deterministic extended 
targets are illustrated and the energy allocation realized by obtaining waveforms are briefly discussed. Section 4 
generally discusses the performance of obtaining waveforms and other predefined waveforms and a new 
closed-loop structure for detecting targets in different scenarios is proposed. Finally, in Section 5, we provide a 
general conclusion. 

2. Problem Formulation 
2.1. Signal, Clutter and Target Model  
To analyze a radar system, all constituent blocks should be defined. We consider a signal model of a Gaussian 
extended target in the presence of clutter as shown in Figure 1. Now we define the essential target and clutter 
models to analyze the overall performance of a radar system. 

Let x(t) be a finite-energy waveform with duration T. We assume x(t) is energy-limited and non-zero only in 
the time interval 2t T≤  which has a bandwidth w; The energy content of this signal is: 
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Figure 1. Known Gaussian extended target model in the presence of 
clutter [7].                                                                  
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c(t) is assumed to be sea clutter with known power spectral density (PSD) which can be approximated as fol-
lows: 
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Here fc is the peak locations of the Gaussian function; gc and 2
cσ  are parameters which are specified accord-

ing to problem conditions. h(t) is the impulse response of target. Once the impulse responses are generated, it is 
assumed that they are exactly known to the transmitter. In this study, target is assumed to have a Gaussian mix-
ture shape with the following power spectral density: 
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where ai and fi are respectively determined between a specific amplitude range and an appropriate interval due to 
clutter and noise specifications. The variance 2

Tσ  is supposed to have a constant value. Finally n(t) denotes the 
noise, which is a complex zero mean WSS Gaussian random process with known PSD Pn(f). Now let r(t) be the 
received signal that is equal to: 

( ) ( ) ( ) ( ) ( ) ( )r t x t h t x t c t n t= ∗ + ∗ +                            (4) 

2.2. Waveform Derivation 
In this part, the Energy Spectral Density (ESD) of MI-based is computed with the assumption of known target in 
different scenarios and compared with SNR-based waveform discussed in [8]. Like [11], using Lagrangian mul-
tiplier, we have derived optimum waveform ESD based on MI criteria in both signal-dependent interference and 
signal-independent noise. The MI between a Gaussian target ensemble and the received signal without the pres-
ence of clutter is equal to: 
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where ( )2
h fσ  is the continuous target signature. Now let εx(f) be the energy spectral density (ESD) of the 

waveform, so we have: 
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The desired waveform ESD is found by solving the constrained optimization problem: 

( ) ( )ˆ max
xx ff MIεε =                                    (7) 

With the energy constraint: 

( )ˆ dx xW
f f Eε =∫                                     (8) 

Now using the Lagrangian multiplier method, the waveform ESD will be obtained as follows: 
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We can equivalently maximize: 
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The first and the second derivatives of ( )( )xL fε  with respect to εx(f) are given by: 
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Since the second derivative is negative for all εx(f), ( )( )xL fε  is a concave function and by putting equating 
(10) to zero the desired εx(f) is obtained as follows: 
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where the parameter λ is found by solving the following equation: 
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In Equation (12), we see that the waveform ESD will be equal to zero for those frequencies satisfying: 
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Thus, we can consider λPn(f) as a threshold which depends on coefficient λ which means the waveform only 
puts energy into those frequencies where ( ) 2

ThresholdH f > . Thus, for a radar system to be cognitive, it 
should customize the transmit waveform in such a way that it emphasizes frequency bands where the target 
spectrum is greater than the obtained threshold and deemphasizes frequency bands where the target is negligible 
as compared with clutter. 

The mutual information between the received signal and the target ensemble with the presence of clutter is: 
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And like previous step for deriving non-clutter case we have: 
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We can equivalently maximize: 
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Now the first and second derivatives of ( )( )xL fε  with respect to εx(f) are computed and by following a 
procedure like the previous step for deriving MI-based waveform without the presence of clutter, leading to the 
waveform described by: 

( ) ( ) ( ) ( ) ( )
( )

2
2

1ˆ max 0, n
x

P f
f A f A f B f

H f
ε

λ

  
  = − + + −  

   

                 (18) 

where  

( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

2

2

2

2

2

2

n c

c c

n

c c

P f P f H f
A f

P f P f H f

P f H f
B f

P f P f H f

+
=

+

=
+

                          (19) 

And the parameter λ is found by solving the energy constraint equation: 
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In Equation (18), we see that the waveform ESD will put energy into those frequencies satisfying: 
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Here again the threshold λPn(f) is obtained by solving the energy constraint Equation (20) showing that the 
parameter λ is totally different for each energy constraint presented in this paper. A noteworthy point is that al-
though the thresholds are absolutely similar, their values are different due to parameter λ. Consequently, the 
waveform energy allocation is different from the non-clutter case. It has been shown in simulation results that 
this waveform distributes most of its energy into frequency bands which the target PSD is high and the clutter 
PSD is low. 

The waveform ESD for SNR-based waveform for a known target with the presence of clutter is described in 
[8]. SINR for a deterministic target in the presence of clutter is computed as: 
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And the waveform ESD using the Lagrangian multiplier technique is [8]: 
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where parameter λ  is found by solving: 
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As mentioned in [8], the obtained waveform only puts energy into those frequencies where ( ) ( )2
nH f P fλ>   

as we derived for MI-based waveforms and λPn(f) is considered as a threshold with different values for all 
waveforms. The last waveform discussed here is the waveform ESD for SNR-based waveform without the 
presence of clutter. In this case by putting ( ) 0cP f = , SNR expression in (22) is reduced to: 
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Using the Lagrange multiplier technique, we form the objective function ( )( )xL fε  like previous steps, and 
we see that the first derivative of this function is independent of εx(f) and simply implies that no solution exists 
using this technique. However, by the technique discussed in [2] and [11], the transmit waveform x(t) with time 
duration T that optimizes (25) is defined by: 
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In summary, the transmit waveform x(t) that maximizes SNR is the Eigenfunction corresponding to the max-
imum eigenvalue of the kernel M(t) which is described by: 
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And finally the SNR has been just the product of this eigenvalue and the energy in the transmit waveform as 
follows: 

max xSNR Eλ=                                      (28) 

Different methods are proposed to derive the optimum waveform for this scenario. One of them is the ap-
proach proposed in [16] whereby updating phase modulated waveform in such a way that the SNR at the receiv-
er filter output is maximized and the performance of extended target detection is enhanced significantly. In this 
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paper, we proposed a new waveform due to energy constraint and also the distribution of the target on specified 
bandwidth. Indeed, we are interested in waveforms which can follow the target spectrum and detect all peaks of 
the target in frequency domain. Regarding this assumption we defined the ESD of this waveform in such a way 
that is independent of noise and clutter power spectrum and only depends on the target spectrum. We name this 
waveform “Target Spectrum Follower (TSF)” [17]. Therefore, ESD of the proposed waveform is as follows: 

( ) ( ) 2
, 2TSF f H f f Wε λ= ≤                             (29) 

where the parameter λ is found by solving: 

( )dTSF xW
f f Eε =∫                                   (30) 

The ESD obtained using this method produces a waveform that totally follows the target spectrum. The ener-
gy of transmitted waveform is allocated to the target peaks in proportion to the amount of every peak; in other 
words, the proposed waveform allocates its energy in all of target spectrum frequency bands. This allocation is 
illustrated in Figure 3(d) and Figure 4(d). Unlike other waveforms, this waveform can detect lower target peaks 
which has some advantages and disadvantages that will be discussed later. Our main purpose to design such a 
waveform is to show the important role of energy allocation in radar transmitted waveform and the effect of this 
consideration on target detection scenarios. 

The waveforms discussed in this paper are: SNR-based waveform in clutter (CSNR-based) [8], MI-based 
waveform without clutter (MI-based), MI-based waveform in clutter (CMI-based), target spectrum follower 
(TSF) and linear frequency modulation waveform (LFM). 

3. Numerical Examples 
3.1. Numerical Waveform Examples with Specified Gausiian Clutter 
We cannot find a closed-form solution for the waveform derivations. In this section, we provide two numerical 
examples which can be obtained using the proposed waveforms. As it was mentioned in the previous section, 
target and clutter are supposed to have a Gaussian shape with the power spectrum ( ) 2

H f  and Pc(f), respec-
tively. Two targets for numerical examples are considered here. In example one, suppose that we have a Gaus-
sian target and clutter shown in Figure 2. The ESD for CSNR-based, CMI-based, MI-based and TSF waveforms 
for target 1 are evaluated and shown in Figure 2. In the case of waveform design in signal-dependent interfe-
rence, CSNR-based waveform tends to concentrate most of its energy on one dominant narrow frequency band 
in which the target PSD is comparable to clutter PSD putting the rest of its energy into frequency bands with 
great amount of target PSD. CMI-based waveform follows such a procedure with different amounts of energy 
allocation to each frequency band. Therefore, both waveforms place most of their energy where clutter power is 
low. We will briefly discuss the performance of CSNR-based waveform over CMI-based waveform later. As  
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(d) 

Figure 2. Corresponding ESD to Different Scenarios with Target 1. (a) ESD for CSNR-based waveform; (b) ESD for 
MI-based waveform; (c) ESD for CMI-based Waveform; (d) ESD for TSF Waveform.                                              
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shown in Figure 2(b) MI-based waveform without considering clutter shape puts its energy relative to the target 
peak values and finally TSF waveform unlike other waveforms follows all target peak energy allocation is done 
in each band where the target has either small or large peaks. As shown in this figure, CSNR-based waveform 
compared with other waveforms distributed less energy into the frequency band [−0.2, 0], where the target is 
comparable to the clutter and instead puts more energy into the frequency band [0.3, 0.4], where the clutter has 
smaller amounts of PSD compared with the target. 

The target-to-noise ratio (TNR) is defined as the ratio of the area under target PSD to the area under noise 
PSD [17], and also the ratio of the area under the clutter PSD to noise PSD is called clutter-to-noise ratio (CNR). 
The last ratio is TCR which is the area under the target PSD to clutter PSD. In this example, TNR, CNR and 
TCR are 1.66 dB, 10.94 dB and −9.29 dB, respectively. As we expected, with specified energy constraint, these 
waveforms which are designed in such a way to focus their energy into frequency bands; the target has the larg-
est PSD value and the clutter has the smallest PSD value. As can be seen in Figure 2 for target 1, the CSNR- 
based and CMI-based allocated most of their energy in the frequency sub-band [0.3, 0.4], where the target is 
comparable in terms of PSD value with clutter while this point for MI-based and TSF waveforms are not consi-
dered. We will show later that this is the main reason for the improvement of CSNR-based and CMI-based on 
scenarios with low values of TCR. 

We repeat the experiment with target 2 and with the same clutter and noise PSD. For this target, we have 
TNR = 0.51 dB, CNR = 0.95 dB and TCR = −0.44 dB and corresponding waveforms for this target scenario are 
computed and illustrated in Figure 3. As seen in this figure, TSF waveform follows all target peaks and puts its 
energy due to each target peak not consider clutter and noise for this energy allocation. CMI-based and 
MI-based waveforms have approximately similar response to this target and just follow two great peaks of this 
target putting their energy equally into the corresponding frequency bands while CSNR-based puts its main 
energy into frequency band which has the smallest value of clutter PSD value; this could be a reason for better 
performance of this waveform compared with others. 

3.2. SNR and MI Comparison between Different Waveforms 
As shown before, solving optimization problem requires knowledge of the target and clutter spectrum. It was 
shown in [8] that the probability of detection is related to the probability of false alarm by: 

( )
1 0

10

1

1 1D h h FA
gP P
g

ψ ψ − 
= − − 

 
                               (31) 

where ( )
1h
ηΨ  is the cumulative density function of a chi-square random variable with 1h  degrees of freedom. 

It has been shown that: 
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(b) 

 
(c) 

 
(d) 

Figure 3. Corresponding ESD for different scenarios with target 2. (a) ESD for CSNR-based waveform; (b) ESD for 
MI-based waveform; (c) ESD for CMI-based waveform. (d) ESD for TSF waveform.                                              

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Normalized frequency

E
S

D
(d

B
)

 

 
Target PSD
Clutter PSD
MI-based waveform ESD

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Normalized frequency

E
S

D
(d

B
)

 

 
Target PSD
Clutter PSD
CMI-based waveform ESD

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Normalized frequency

E
S

D
(d

B
)

 

 
Target PSD
Clutter PSD
TSF waveform ESD



V. Karimi et al. 
 

 
260 

( )
0

1

1
1

g
g D x

=
+

                                      (32) 

With a good approximation ( )D x  is equal to: 

( ) ( ) ( )
( ) ( ) ( )

2 2

22 d 2
W c n

X f H f
D x f SINR

X f P f P f
= =

+
∫                          (33) 

And finally we have: 

( )1 0

111 1
1 2D h h faP P

SINR
ψ ψ − = − − + 

                             (34) 

Using the above equation, since maximizing PD for arbitrary values of Pfa depends on the values of SINR for 
each waveform and by maximizing SINR, we can achieve higher values of PD. Previous research has shown that 
SNR-based waveform and LFM waveform are compared through this method and shown that the proposed me-
thod had better performance in terms of maximizing the probability of detection. Here, we obtained different 
waveforms with both SNR and MI values and now we want to select the desired waveform based on achieving 
maximizing probability of detection for each target and clutter scenarios regarding the point that the desired 
waveform should have a sufficient MI value in comparison with other waveforms. MI and SINR which are de-
fined in (14), (21) respectively, are considered as objective functions. We computed their values for three dif-
ferent targets. 

For each target the corresponding waveform according to target, clutter and noise spectrum is generated and 
utilized for computing SNR and MI. Now we suppose a specific scenario with known target, clutter and noise 
PSDs. We are interested in investigating the effects of target, clutter and noise separately. So, we consider the 
scenario 1 which includes a specific Gaussian extended target, Gaussian clutter and AWGN noise with known 
PSDs, then compute CNR, TCR and TNR values for this scenario. Afterwards, by changing clutter (target and 
noise are fixed), scenario 2 is obtained and similarly scenario 3 and scenario 4 are obtained by changing the tar-
get and noise, respectively. Target, Clutter and Noise PSD for each scenario are illustrated in Figure 4 and also 
their CNR, TCR and TNR values are shown in Table 1. 

After defining scenarios, ESD of each waveform in accordance with each scenario is computed due to the ob-
tained relations. Eventually for each scenario corresponding SNR and MI values for investigating the applied 
changes in target, clutter and noise are evaluated by Equation (15), (22) as summarized in Table 2.  

As indicated in Table 2, CSNR-based waveform compared with other waveforms has greater SNR amount 
for each scenario, and according to (34) this waveform should have the best performance in terms of maximiz-
ing the probability of detection. The point that should be considered is its MI value which is not maximum even  
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(b) 

 
(c) 

 
(d) 

Figure 4. Target, clutter and noise PSD for each scenario. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4.                                              
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Table 1. CNR, TCR and TNR values for different scenarios in dB.                                                                                           

Value(dB) 
 

Scenario 
CNR TCR TNR 

Scenario 1 10.95 −17.37 −6.42 

Scenario 2 −6.62 0.2 −6.42 

Scenario 3 10.95 −11.82 −0.87 

Scenario 4 20.95 −17.37 3.58 

 
Table 2. Corresponding SNR and MI values in dB for different waveforms in each scenario.                                              

Waveform 
 

Scenario 

MI-based 
Waveform 

CMI-based 
Waveform 

CSNR-based 
Waveform 

TSF 
Waveform 

LFM 
Waveform 

Scenario 1 SNR = 17.16 
MI = 16.82 

SNR = 17.94 
MI = 17.45 

SNR = 18.09 
MI = 17.1 

SNR = 15.66 
MI = 15.55 

SNR = 8.25 
MI = 8.24 

Scenario 2 SNR = 18.16 
MI = 17.75 

SNR = 18.16 
MI = 17.76 

SNR = 18.26 
MI = 15.53 

SNR = 16.06 
MI = 15.94 

SNR = 8.34 
MI = 8.34 

Scenario 3 SNR = 19.93 
MI = 19.47 

SNR = 22.5 
MI = 21.51 

SNR = 22.87 
MI = 20.67 

SNR = 19.76 
MI = 19.52 

SNR = 13.59 
MI = 13.56 

Scenario 4 SNR = 25.26 
MI = 24.03 

SNR = 26.75 
MI = 25.03 

SNR = 27.18 
MI = 24.47 

SNR = 24.15 
MI = 23.39 

SNR = 17.63 
MI = 17.53 

 
in one scenario and this is the CMI-based waveform that has greater MI amounts compared with other wave-
forms. As mentioned in [18], LFM waveform is a good candidate for distinguishing point targets, and for an ex-
tended target case may not have good performance which we will discuss in the following paragraph. 

In Table 2 for scanario1, we have 9.84 dB SNR improvement for CSNR-based waveform over LFM wave-
form and 9.69 dB SNR improvement for CMI-based waveform over LFM waveform. This improvement for the 
waveform is proposed in [8] over LFM waveform was 3 dB and by the method proposed in [16] SNR of the 
proposed waveform was about 4 dB higher than the square pulse or the LFM pulse. For TSF waveform, we have 
7.41 dB improvement which can be a good choice in some scenarios. For example, for high values of TCR, this 
waveform has a better performance in terms of MI and approximately the same performance in terms of SNR 
compared with CSNR-based waveform. 

It is obvious from Table 1 and Table 2 that by decreasing the clutter PSD, SNR and MI value will increase 
from one scenario to another. This idea is true for the case of increasing the amounts of target spectrum and de-
creasing noise PSD.  

To evaluate the performance, we used receiver operating characteristic (ROC) curves corresponding to the 
obtained waveforms and LFM. Figure 5 shows these ROC curves for all scenarios. As it is clear, the improve-
ment of obtaining waveforms over LFM is shown in this Figure for all scenarios; we see that CSNR-based and 
CMI-based waveforms for all scenarios have a better performance compared with other waveforms.  

4. Providing General Result and Defining an Appropriate Closed-Loop Structure 
4.1. Numerical Results with Different Deterministic Extended Target, Clutter and Noise 
Now to better demonstrate the importance of waveform design in cognitive radar, we simulate different targets, 
clutters and noise realizations. To reach an aggregation, we compute SNR and MI values for each waveform by 
changing TCR, TNR and CNR values in a specific range. For example in Figure 6(a) and Figure 6(b), SNR and 
MI changes in dB versus TCR for each waveform are illustrated. It can be concluded from this figure that all 
waveforms have a similar SNR performance with increasing TCR and as previously discussed have a better 
performance over LFM waveform.  

From MI consideration, as we expected, CMI-based and MI-based have better performance with a little dif-
ference compared with CSNR-based and TSF waveforms. Finally, we can conclude that indifferent values of 
TCR, all waveforms have 9 dB and 7 dB improvement in SNR and MI, respectively over LFM waveform. 
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Figure 6(c) and Figure 6(d) show the SNR and MI value changes in dB for different TNR values. As indi-
cated in this Figure, CSNR-based and CMI-based waveforms are completely similar in low TNRs but in high 
TNR values in terms of MI, CMI-based waveform is slightly better. TSF waveform also shows a moderate per-
formance and better than MI-based and LFM waveforms especially in moderate TNRs. 

The last case shows the SNR and MI value changes in dB for different CNRs. As indicated in Figure 6(e) and 
Figure 6(f) for different values of CNRs, similar to those we have for TNR and TCR values, CSNR-based and 
CMI-based waveforms are completely similar. A noteworthy point is that in low CNR values, MI-based wave-
form has a good performance but with increasing CNR, its performance declines and TSF waveform perfor-
mance outperform this waveform in high CNR values. Finally, LFM waveform is fairly constant with CNR and 
performs the poorly as compared with other waveforms. So, according to the mentioned features for each wave-
form and due to each application, we should propose a good structure which considers all aspects of the problem 
conditions. Due to each waveform feature, it should utilize the best waveform to transmit into the environment. 
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(c) 

 
(d) 

Figure 5. ROC curves corresponding to each waveform and each scenario. (a) Scenario 
1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.                                              

 
Therefore, a cognitive radar should be designed in such a way that firstly evaluates the TCR, TNR and CNR 
values and considering to the application and also waveform features which are mainly discussed in this paper, 
chooses the best waveform to transmit into the environment and achieve the maximum probable values of PD. 

4.2. Determine a New Closed-Loop Structure for Detecting Deterministic Extended  
Targets 

In Figure 7, new closed-loop structure for detecting M targets indifferent scenarios is proposed. In this structure, 
SNR and MI values are considered as the cost function. This means that in the transmitter, the desired waveform 
are selected based on its MI and SNR values. 
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(d) 

 
(e) 

 
(e) 

Figure 6. Comparison of SNR and MI versus TCR, TNR and CNR with deterministic extended target. (a) SNR versus TCR; 
(b) MI versus TCR; (c) SNR versus TNR; (d) MI versus TNR; (e) SNR versus CNR; (f) MI versus CNR.                                              
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Figure 7. Modelling a new structure of cognitive radar for detecting targets in different noise and clutter scenarios.                         

 
As indicated in this figure, the proposed cognitive radar structure includes an adaptive transmitter based on 

the feedback from the receiver and the interactions with a defined database. The radar transmitted its initial 
waveform into the environment. If the target is detected in the receiver, we have reached our goal; otherwise, 
cognitive radar loop is established using a feedback from the receiver to the transmitter and this procedure is 
done as long as the target of interest is identified. Surely, we can set the number of transmitting signals to a pre-
determined value to prevent the cognitive radar from being in an infinitive loop. 

5. Summaryand Conclusion 
In this paper, we considered a deterministic Gaussian extended target with Gaussian clutter case for our experi-
ments. The transmitted waveform optimization is done by maximizing the signal to noise ratio and mutual in-
formation between the target frequency responses of different targets and the received signal. This helps achieve 
a better performance in target recognition. We derived different MI-based, SNR-based and TSF waveforms and 
used an approximate analytical expression for the probability of detection for different waveforms and compared 
the performance of these waveforms based on this idea. The remarkable features for designing these waveforms 
for deterministic extended targets, are energy allocation in which waveforms should allocate their energy into 
frequency bands where target has the greatest PSD value and clutter has the smallest PSD value. This idea will 
cause the product of target and transmitted waveform got the maximum amount and then the performance of 
target detection in the presence of clutter will increase. 

The derivations of MI-based waveforms for deterministic Gaussian extended targets and in the case of Gaus-
sian clutter are new results. Moreover, TSF waveform in signal-dependent interference is a new result derived to 
show that depending on the application such as deterministic extended target, energy allocation is not done well. 
In fact for the scenarios outlined in the text, it is better to allocate most of transmitting waveform energy into 
frequency bands in which target has considerable peak amount and clutter amount is negligible instead of dis-
tributing energy into all target spectrum peaks. In this paper, different values of SNR and MI are obtained in 
different TCR, CNR and TNR amounts and it is proven that the obtained waveforms have various performances 
in different TCR, CNR and TNR and in cognitive radar. We propose a new closed-loop structure considering all 
features discussed in this paper and for each scenario of target, clutter and noise intelligently find the optimum 
solution. This work just uses deterministic Gaussian targets case in Gaussian clutter. Future work will attempt to 
investigate methods of waveforms designing for stochastic extended targets in Gaussian and non-Gaussian en-
vironments and suggest a general method for each clutter and target scenarios. 
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