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Abstract

A bilogarithmic hyperbolic cosine method for the evaluation of overlapping formation constants at
varying (or fixed) ionic strength is devised in this paper and applied to data reported in the ana-
lytical literature, i.e. succinic acid system, Cu(II)-glycine system and Ag(I)-aminobutan-1-ol system.
The method is based on the linearization of the formation function 7i = f(pH) or ii = f(pL) data. A
theoretical slope of unity should be obtained thus proving the correctness of the assumed equili-
bria. An additional advantage of the bilogarithmic method proposed is that it provides a closed
scale representation of Y and X unlike other plots. This paper forms part of an investigation into the
uses of bilogarithmic methods and hyperbolic functions in parameter estimation. Methods based on
the application of spectrophotometric measurements have been the subject of recent studies.
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1. Introduction

The exact determination of the thermodynamic formation constants of many dibasic acids is complicated by the
overlapping [1]-[4] of the successive ionization steps. A great many methods have been derived [5]-[7] for the
potentiometric evaluation of formation constants of two-step simultaneous equilibria. Of them, methods based
on the formation function [8]-[12], fi = f(pH), have been, undoubtedly, the most widely applied. The present pa-
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per describes a procedure for the study of stepwise equilibria in potentiometric titration, which is also based on
Bjerrum’s function. Data (7, pH) are linearized according to a bilogarithmic mathematical model via a hyperbolic
cosine method relationship. The treatment of the (i, pH) data by the procedure derived in this paper does not re-
quire that the ionic strength is maintained constant by addition of inert salt. This paper forms part of an investiga-
tion [9] [13] into the uses of bilogarithmic methods and hyperbolic functions in parameter estimation. Methods
based on the application of spectrophotometric measurements have been the subject [14]-[16] of recent studies.

2. Theory

For a diprotic acid H,R, the average proton number [7] [9] [10] [17] [18] (the average number of proton bound
per R) is given by

[HR]+2[H,R]

fi = 1
"R TRI A v
where charges have been omitted for convenience. The stepwise thermodynamic formation constants of the acid
is defined by
K] = (HR) _ [HR] f, @
(H)(R)  (H)[R]f,
+_ (H;R) _ [H,R]f, 3)

©(H)(HR)  (H)[HR]

where parenthesis indicate activities and braces concentrations; f,, f; and f, being the activity coefficients of the
species H,R, HR and R, respectively.
By combining Equations ((1)-(3)) we get

K]0 (H)+2KT K] 2 ()
A= 1f ; . (4)
LK -*(H)+ KlTKsz—O(H)Z
1 2
On rearrangement Equation (4), we obtain
ﬁ+(ﬁ—1)Kf%(H)+(ﬁ—2)K;%(H)Z:0. (5)
1 2

Two different situations will be considered in that follows depending whether the proton number values were
lower or higher than the unity.

2.1. Procedure for Average Number Values Lower Than the Unity
By dividing Equation (5) by (H)*?, a further rearrangement leads to
f 1-nA f f
— == K24 (2-A)K'K] 2. 6
(H)s/z (H);l/z 1 fl +( n) 1 N2 f2 ( )
By multiplying and dividing the right hand of Equation (6) by

Vi

— 1 l
T e kK '
we get
#:KJ@% (1—ﬁ)(2—ﬁ)[\/(1H_)E\/::j\/i—;+\/UT)\/g\/%\/EJ- )
Making
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o1 1—ﬁ\/£ 1 o

e’ +e”’

and taking into account that

coshy = (10)

Equation (8) may be converted into
~ f f _ ~
; ﬁr)‘(z 5 (H1)3’2 v fl 2 = 2K] K] cosh [InTlo[log (%)+Iog%+ pH —log K] D (11)
- - 0 1

where pH = —log(H). By taking logarithmic on both sides of Equation (11), on rearranging we finally get

Iogcosh[lnlo[log( nj Iog—+pH IogK;n
l

T A JAf '
——[Iog Ky 109K, ]+ log n +log Y12 +3 pH —log 2
2 (1-n)(2-n) fo 2

Thus, a representation of the left term of Equation (12) against the term into brackets of the right hand should
give a straight line (Y = ay + a;X), obtained by linear regression [19]-[22], whose slope is the unity and the in-
tercept with the X-axis is equal to —(Iog K, +logK;, /2) , from which the log K] may be estimated as
log K
—

(12)

log K/ =20 _ (13)
&

The application of Equations ((12) and (13)) requires, however, the previous knowledge of log K] . Different
values of logK] may be assumed and the entire procedure then applied. The best value of log K] may be
taken as that satisfies an optimization criterion, e.g. that minimizes the mean quadratic error (MQE) in fi meas-
urements

o= Z(ﬁexp - ﬁcalc )2 (14)
N
where N is the number of data pairs, and f is calculated from Equation (4) once both logK values are known,
This task is easily carried out with the aid of an Excel spreadsheet.
In those cases in which the ionic strength is held constant by addition of an inert salt, e.g. potassium chloride
or potassium nitrate 0.1 M, Equation (12) is converted into

'OQ{COSh[IMO('Og( nj+ pH —log K? m
_[Iog K + IogszB }[Iog [ m ]+ % g 2} (15)

where K? and K3 are mixed or Bronsted constants, whose dependence on ionic strength can be expressed by

B _ [HR] _KTi:K_lc (16)

GG A
e_ [H.R] ¢ f K§
2 W Ky —=—, (17)

L
f fu

Ky and K; are the stoicheiometric constants and fy the activity factor of hydrogen ion. Note that the fi values

©,
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when ionic strength is held constant are given by

K2 +2KPKE (H)

= 5. (18)
1+KP (H)+KPKZ (H)

2.2. Procedure for Average Number Values Greater Than Unity

In these situations, by dividing Equation (5) by (H)*?, on rearrangement we get
(2- )] 2(H)" = (1) K] -2 [FH) + L= (19

f, f, (H )
By multiplying through
1 F 1 20)
Ja(-1)V fo K/

Equation (19) is converted into

Taking into account the definition of hyperbolic cosine first and taking decadic logarithms on both sides of
the resulting equation then, a posterior rearrangement leads to

log| cosh| —— In10 Iog(n 1) Iog&— pH +log K/
2 f,
log K/ f, 3 .
=| log K] L lo lo H —log2
[ T ] { g((n—nj+ 1, ’ J

When the left term of Equation (22) is plotted against the term into brackets of the right hand, a straight line
(Y = a + a;X) of unity slope should be obtained, from which the value of log K] may be estimated as

(22)

a, logK/

logK; = 5

(23)

Nevertheless, before Equation (22) can be applied, logK,; must be known. A procedure analogous to that
suggested in the previous section may be followed in order to circumvent this difficulty.
If the ionic strength is maintained constant during the titration then

log {cosh[lnlo[log (Ej— pH +log K} JH
2 n
] i .
:[Iog KS+ log K, J+ log _2-f1 |3 pH —log 2
2 A(A-1) | 2

The basis of this discussion has been protonation reactions, but the same principles apply for metal complexa-
tion reactions M + L = ML and ML + L = ML,

(24)

T )
L]
=[] )

being the formation function or Bjerrum index in this case
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[ML]+2[ML,] K [L]+2KK,[L]

"M MO+ ML ]~ 13 K [ L] KK [L]

(27)

2.3. Ionic Strength Expression

Taking into account that Vo millilitres of the diprotic acid H,R at a concentration C, moles/liter, haven been ti-
trated with a volume V of titrant, e.g. a strong monoacid base BOH, of concentration Cgz moles/liter, the compu-
tation of ionic strength may be made assuming the Speakman [23] expression corrected by the volume, as a first
approximation. Then, if CgV < CpV,

1 1 CgVv
EONORE IR Oyl e
In those cases in which CgV > C,V, we get
1 1 2C.V -C,V,
| :E([H]+[B]+[HR]+2[R]):E([H]+2(VOT]J. (29)

The Debye-Hiickel equation [24]-[26] (or other more sophisticated one) may be employed for the ionic activ-
ity coefficients and unity assumed for the activity of the uncharged molecule H,R

AV
1+ B&/I
where A and B are constants of the Debye-Hiickel theory, and & is the so-called ion-size parameter, or some ex-

tended form of the empirical Debye-Hiickel equation as the Davies equation [27]. The activity coefficient may
be evaluated if required by standard iteration to constant f;.

log f, =— (30)

2.4. Error Analysis

In those cases in which i < 1, the straight line intersect the X-axis at the point

T

|Og KT +%:—i (31)

1
2 &

from which we may evaluate the value of log K] once the value of log K] is known.
By applying the law of random error propagation [28] we get

1Y 1 a’
slzUgKlT +(Ej SIZOQK; :gsjo +gis§1 —Z%COV(aO,ai) . (32)
2
Taking into account [19]-[22] [28] the expressions for (sao )2, (sal) and cov(ao,ai) are given by
s? %2 s py
S5 = S5 :(1+X—js§,x, cov(ay,a ) =X 2~ S S =85 (33)
Syx N Sy Sy N-2
where
2 2
DX 2X 2y
T K MW NI 34
An estimate of the uncertainty of these calculations is given by

2 72 2 X
e sl
log K] 2] Tlogkj a \N S, ) a'Sy a Sy

In those cases in which fi > 1 then
logKJ +log K /2=a,/a (36)

<,
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and the application of the random error propagation law gives in this case
1Y 11 % a? a, X
St = | Siok =| | —+ + R e 37
e (3 o Lf[w e Rl 2 e

2.5. Choice of Starting Values

Two principal difficulties should be self-evident. Primarily the present analysis requires a prior estimate of the
individual stability constants. On this respect, preliminary values of logK, and logK; may be evaluated [9]
[29] from Equations ((35) and (36)) by considering three well defined points on the titration curve at fi = 0.5, 1.0,

and 1.5
log K, = pH,, +2\/§sinh(ln(ApH)—Iog\/§) (38)
logK, = pH,, —2\/§sinh(ln (ApH)—Iog\/§) (39)
where
ApH = pH; s = PH; 15 = 2(PH ;o5 — PHao) = 2( PH 0 = PHs)- (40)

Expressions (35) and (36) are only approximate because of the influence of varying ionic strength. In addition,
it is always disadvantageous to calculate stability constant from a minimum amount of experimental data. As a
matter of fact, however, even the pH values of fi = 0.5 and /i = 1.5 may be taken as starting point for log K]
and log K, values, respectively.

3. Applications

In order to check the usefulness of the method it has been applied to a variety of systems previously described in
the literature. Systems chosen for study were representative of the most difficult experimental situation encoun-
tered in practice. All have log K values similar in magnitude thus being very suitable for the purpose of this
work. Experimental details and [pH,V] and [pL,f] data employed are given in that follows:

I. Succinic acid [24]: Cg = 0.005 M; V, =100 mL, Cg = 0.1 M (KOH); T = 25°. Data [V, pH]: [1.00, 3.677;
1.25, 3.767; 1.50, 3.853; 1.75, 3932; 2.00, 4.009; 2.25, 4.081; 2.50, 4.153; 2.75, 4.223; 3.00, 4.291; 3.25, 4.361;
3.75, 4.498, 4.00, 4.569; 6.00, 5.135; 6.25, 5.204; 6.50, 5.273; 6.75, 5.342; 7.00, 5.412; 7.25, 5.480; 7.50, 5.554;
7.75, 5.629; 8.00, 5.208; 8.25, 5.789; 8.50; 5.881; 8.75, 5.981; 9.00, 6.099].

I1. Cu(ll)-Glicine system [18] at T = 25°C. Data [pL, f]: [8.667, 0.250; 8.607, 0.270; 8.549, 0.296; 8.492,
0.326; 8.423, 0.351; 8.358, 0.385; 8.294, 0.426; 8.221, 0.463; 8.150, 0.511; 8.076, 0.564; 7.993, 0.620; 7.902,
0.681; 7.803, 0.749; 7.715, 0.807; 7.630, 0.872; 7.215, 1.169; 7.084, 1.251; 6.975, 1.139; 6.838, 1.425; 6.708,
1.515; 6.565, 1.606; 6.380, 1.697; 6.192, 1.788; 5.886, 1.880].

I11. Silver(l)-4-aminobutan-1-ol [30] [31] at T = 20°C and | = 0.5. Data [pL, fi]: [4.198, 0.261; 4.121, 0.327;
4.058, 0.392; 4.000, 0.458; 3.950, 0.523; 3.906, 0.589; 3.861, 0.654; 3.818, 0.719; 3.780, 0.785; 3.740, 0.850;
3.700, 0.915; 3.59, 1.110; 3.549, 1.110; 3.516, 1.238; 3.477, 1.303; 3.389, 1.429; 3.292, 1.553; 3.173, 1.671;
3.023, 1.779; 2.824, 1.862].

Figure 1 shows the application of the bilogarithmic hyperbolic cosine method (BHCM) to the succinic acid
system. The residuals obtained were [- +++—+—-——+—++]and [+ +—+———+—+++ -] forfi<land i >
1, respectively, then show no special pattern. A well defined unity slope, 1.0009 + 0.0043 and 0.9985 + 0.0024,
respectively, was obtained in both cases. The results obtained by means of the BHMC method are in good
agreement with the values obtained by Albert and Serjeant [25] by applying a computerized FORTRAN method.

The ideal methodology devised for H,R/HR/R systems may be applied to simultaneous complex systems
ML,/ML/M. In this case the data available are (pL, fi). Figure 2 and Figure 3 show the application of the
BHMC method to the Cu(ll)-glycine and Ag(l)-4-aminobutan-1-ol systems, respectively. Irving and Rossotti
(18) obtained for the Cu(ll)-glycine system (Table 1) values of log K; of 8.12 to 8.16 and log K, of 6.73 to 6.78.
The results obtained in this paper are [8.177 - 8.143] for log K4, and [6.772 to 6.645] for log K,. The values ob-
tained for i < 1 and fi > 1 differ in 0.034 and 0.127 log units, for log K; and log K, respectively. The slopes of
our method in both cases are close to 1 (0.9787 + 0.0271 for fi < 1 and 0.9878 + 0.0134 for fi > 1).
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Figure 1. Top left: Mean quadratic error (MQE) as a function of log K, assumed (fi < 1). Top right: Bilogarithmic plot (i < 1)
for the succinic acid system. Bottom left: Mean quadratic error (MQE) as a function of log K; assumed (fi > 1). Bottom right:
Bilogarithmic plot (i > 1) for the succinic acid system.

A well defined slope (1.0073 + 0.0136) was obtained for the system Ag(l)-4-aminobutan-1-ol (i > 1) and
values of log K; and log K, of 3.416 + 0.002 and 3.896 (assumed), respectively. Lansbury et al. [30] and Unwin
et al. [31] obtained values of 3.41 and 3.89, respectively, using computerized methods based on the use of
weighted least squares, and response surfaces, respectively. The results obtained by applying the BHMC method
proposed in this paper coincide with those provided by these authors. The Ag(l)-4-aminobutan-ol system, how-
ever, departs from a behaviour model at fi > 1 values.

4. Conclusion

A major goal of scientific experimentation is the discovery of relationships [32] among variables. The evalua-
tion of stability constant by linearized plots on this respect seems to be more prevalent, probably owing to the
transparency [33] of the methods used. Note that non-linear least squares are not always problem-free. Occasio-
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nally, problems arise [34] because of the choice of the data, initial estimates, convergence or multiple local mi-
nima, and all-typical of non-linear regression. A main advantage of the bilogarithmic method devised in this paper
is that a theoretical slope of unity should be obtained this proving directly the correctness of the assumed equilibria.
Significant deviation from this behaviour is indicative of more complicated phenomena. It is interesting to note

Cu(II)-Glycine system

2
= 1
0 T 1
6 7 8 9
pL
0.8 0.6
Cu(Il)-GLYCINE Cu(Il)-GLYCINE
y = 0.9878x + 10.728 0.5 - y=09787x-11221
R?=0.99837 R>=0.99093
0.6 - - o
n<l n>1
LOGK1=8.177 0.4 1 Locgkz=6645
> LOG K2 =6.772 oo LOGKI =8.143
0.4 0.3 -
0.2 -
0.2 -
0.1 -
0.0 - ; : 0.0 \ \ :
-109 -10.7 -10.5 -10.3 -10.1 114 11.6 11.8 120 122
X X

Figure 2. Top: Graphical representation for the fi versus pL data. The curve in the figure is calculated with logK,
and logK; given in Table 1 (bilogarithmic method). Bottom left and right: logarithmic plots.

Ag(I)-4-aminobutan-1-ol system

*e
_ ; *s
= 1.0
0.0 e .
2.0 3.0 4.0 5.0
pH
0.45
Ag(D-4-AMINOBUTAN-1-OL 0.4 Ag(I)-4-AMINOBUTAN-1-OL
y = 1.0073x - 5.4039 y =0.9761x + 5.4322
0.35 - R* = 0.99861 R®=0.96948
i<l 0.3 - i<l
LOG K2 = 3.895 LOG K1 =3.495
0.25 4 LOGKI1=341 LOG K2 =3.818
> 0.2 -
0.15 -
0.05 0-1 7
-0.05 T w 0.0 - * ‘
-5.6 -5.5 -5.4 -53 52
5.4 5.5 X5.6 5.7 5.8 X

Figure 3. Top: Graphical representation for the fi versus pL data. Bottom left and right: Bilogarithmic plots.
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Table 1. Comparison of results obtained by different methods in the evaluation of formation constants.

System Method log Ky log K, Ref.

Computer FORTRAN method 5.634 4.200 [24]
Succinic acid BHCM (fi<1) 5.643 £ 0.008 4.183 This paper
BHCM (fi > 1) 5.634 4.199 £ 0.002 This paper

Successive approximation method 8.16 6.73 [18]

Correction term method 8.13 6.78 [18]

Cu(Il)-Glycine Least squares treatment 8,12 6.77 [18]
BHCM (i < 1) 8.143 + 0.009 6.772 This paper
BCHM (fi > 1) 8.177 6.672 + 0.005 This paper

Weighted least squares method 341 3.89 [30]

Computer FORTRAN technique 341 3.89 [31]

Ag(l)-4-aminobutan-1-ol .

BCHM (fi<1) 3.416 +0.002 3.896 This paper
BCHM (fi > 1) 3.495 3.818 + 0.007 This paper

that by applying other least-squares procedures, it is not possible to determine whether a given pH against frac-
tion titrated curve is characterized only by the assumed reactions. In this respect, when the independent and de-
pendent variables are varied over a number of orders of magnitudes, the points tend usually [17] to be bunched
together. However, an additional advantage of the bilogarithmic method reported here provides a closed scale
representation of y and x, unlike other plots. The bilogarithmic hyperbolic tool devised here, for all reasons in-
dicated above, constitutes an appropriate and useful mathematical model for the potentiometric study of simul-
taneous equilibria.
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