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Abstract

In this paper, we discussed population model of two competing populations with non-linear
double diffusion and variable density which described by nonlinear system of competing individ-
uals. We identify new properties, such as finite speed of propagation, and localization of the out-
breaks in a specific area.
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1. Introduction

Population models are studied for a long time. The first such work was done by Gause G.F. and Fisher R.D., and
mathematical studies were performed by Kolmogorov, Petrovskii (KPP) and Piskunov (1937) in the famous pa-
per [1]-[4]. They were interested in the behavior of the speed of the wave solutions and the resulting estimate of
the speed of wave propagation.

Then there were other models of the population [5]-[8]. In recent years, intensive study of nonlinear models
was based on diffusion and revealed new properties of finite speed of propagation of diffusion waves (see [3]
and the literature given there). We have proposed a population model of two competing populations with
non-linear double diffusion and variable density that are described by nonlinear system of competing individuals.
We identify new properties, such as finite speed of propagaton, and localization of the outbreaks in a specific
area. In particular, in the critical case, the rate type CPT generalizes their result.
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Statement of the Task

In this paper, we investigate the properties of solutions of biological population task of Fisher-Kolmogorov type
in the case of variable density. The main research method is a self-similar anproach. Considerina in the field
Q= {(t X):0<t<oo,Xxe RN} , there is a parabolic system of two quasilinear equations of reaction-diffusion

0 n _
% = div(D1 X[ upt vy |*? Vul) +p(X)ky, (1-uf),
@)
o(p(x -
(p(a—t)) dIV(D X[ ur (vu, " Vu2)+ p(X)k,u, (1—u2ﬂ2),

U1|t:o :ulo(x)’ u2|t:0 :uzo(x)’ @)
which describes the nrocess of hinloaical nonulation of Kolmoaorov-Fisher in a nonlinear two-component envi-
ronment, and mutual diffusion coefficients which are respectively equal to D, |x| um v P v,

D, |X[" u*[Vu,|** Vu, . Numeric parameters m,,m,,n, p, 5,4, D;, D, are positive real numbers, and
V() grad(\), .5, 21, p(x)=|x", xeR" 1>0; u =u(t, x)zo, U, =U,(t,x)=0is desired solu-
tions. x

We study properties of solutions to problem (1), (2) based on the self-similar analysis of solutions of a system
of equations constructed by the method of nonlinear splitting and a reference equations and bringing the system
(1) for radially symmetric mind.

Note that replacing in (1)

b (6X) =€, (2(0),0(x)) . U (3) =€, (7(0), (%))

leads to the form

0
w = div( D, |x|n Vg‘lfl |Vv1|P*2 VVl) _ p(x) kle[(/irp+2)k1—(nu—1)k2]tvfl+l,

3
0
L0 _ iy, o, 2, ) p 1) 20
T
V1|t:0 :Vlo(x)1 V2|t:0 :Vzo(x)' (4)
If k (p—(m, +1))=k,(p—(m,+1)), choosing
[(m—-L)ko+(p-2)ky Jt [(me-L)ky+{(p-2)kz Jt
e e m
o(t) = = X)=x"/p., p=(p—(n+1))/p,
o (o e o A WA A R G UV
we get the following system of equations:
a _ 1‘Sdiv(¢s‘lDlW;“1‘1 Vw | VW1> —a,rwAt
‘ (5)
—2 = ¢"div (gos’l D,w™ |Vw2|p*2 VWZ) —a, 72wt
or
by (ﬂl_(p_z))kl_(ml_l)kz
h =k -2)k -1k, )", b=
whnere al 1((p ) 1+(m1 ) 2) bl (p—2)k1+(m1—1)k2
by (ﬂz‘(p_z))kz_(mz _l)kl
—k ~1)k +(p-2)k,)?, b, = .
a, 2((m2 ) 1+(p ) 2) A (mz—l)kl+(p—2)k2
If b=0,and & (t)=const, i=12,system has the form:
m_ o v D [V [ V) - e,
or ©6)

oW, . _
il I (;;1*Sd|v((ps’1D2W1r*12‘l |VW2|p 2w, ) —a,w/2*,

or
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A significant role in the study of the Cauchy problem and boundary problems for Equations (1) has self-
similar solutions. Under self-similar solution we will understand as particular solutions of Equation (1), depend-
ing on the combination of t and x. Knowledge of them plays a sometimes crucial role in the study of various
properties of solutions of the original equations.

Below we describe one way of obtaining self-similar system for the system of Equations (5). It consists in the
following. We find first the solution of a system of ordinary differential equations

dW1 Wit
W/
dr e
dw. -
FRR L
in the form
— - 1 — —r2 1
w,(7) :(T(t)) = W) =(e (1) " =2
By P,
for the case of b =0, and & (t)=const, i=12.Andinthe case of b #0,and a (t)=const, i=12 we
solve a system of ordinary differential equations
I _ o s,
dr
dr

in the form

Wl(f):(r(t))iy& "= blﬂ-:l’ W, (T):(T(t))iyz » Vo = bz +1,

then the solution of system (5) is sought in the form

v (6%) = ()2 (2 (1) 0 (X)),

)
Vz(t’x):WZ(T)ZZ(T(I)'¢’(|X|))’
and 7 =r(t) is selected so
7 ()= 7" Ov™ (t)dt
0
1 1 n(p-2pr2(m-1)]
T+7 , if 1|y (p-2)+y,(m -1)|=0,
ey LR 7 (p=2)+72(m -]
“In(T +7), if 1-[7,(p—2)+7,(m -1)] =0,
(T+7), if p=2andm =1,
if )/1(p—2)+72(m1—1)zyz(p—2)+7/1(m2—1).
Then for z, (2', (p(|x|)),i =1,2 we get the system of equations:
% = ¢’l_sdiv((0s_1Dlz£nl4|vzl|p72 VZI) +y, (Zl - Zlﬁlﬂ),
o ®)

_12 - ;pl’sdiv(gos’lD2 2t |vz, [ sz) +y, (z2 —~ zfz*l),

where
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1
i if 1— 7 (p- 2 +7/ >0,
v, = |- (p=2)+ 72(m-1)])c [1(p=2)+7,(m-1)] .
R, if 1-[7(p-2)+7,(m -1)]=0,
l -
) if 1-|y,(p-2 +71 >0,
v, = (1—[y2(p—2)+71(m2-1)])1 [7(p-2) -1)]
7€ 1( Lralp-2)inime]) if 1-[7,(p-2)+7(m,-1)]=0.

If 1-[7(p-2)+7,(m—1)]=0 self-similar solution of system (9) has the form

2, (v(1).0)= £(6), i=12 &=p(N)/[=()]" (10)

Then substituting (10) into (8) with respectto f, (&) gets a self-similar system of equations

1-51 s-1 -1 pzdf édf _fh) =

1fsd s-1 ¢ my-1 fdf B
Ll gt ,f, (1- £/2)=0.

: dé[é diJ paz et 1)

1 1

nr-2rnm-1]) " ([np-2+nm-1])

System (11) has an approximate solution of the form

=A(a-¢ )", y=p/(p-1), T,=B(a-¢&)",

where 4 and B are constants and

(p-D(p=(m+y) ~_ (p-H(p=(m+1)
(p=2) ~(m-1)(m,-1)" " (p~2)~(m ~1)(m,~1)

In this paper, on the basis of the aforesaid methods, we studied qualitative properties of solutions of the sys-
tem (1), solved the problem of choosing the initial approximation for iterative, leading to fast convergence to the
solution of the Cauchy problem (1), (2), depending on the values of numerical parameters and initial data. For
this purpose, as the initial approximation was used, we found the asymptotic representation of the solution. This
has allowed to perform numerical experiments and visualization of the process described by system (1), de-
pending on the values included in the system of numeric parameters.

df,
ds

LA

(11)

where g =

) =

2. Construction of Upper Solutions

Let us build an upper solution for system (11).
Note that the functions f, (&), f, (&) have properties

L |df [’ i, e 4o
Mt d§_ —APTB™ (3, )P £F, € C(0,0)
o |dF, [ o
=2 d§ Alepl(y;/Z)éf eC(O )

and
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s A cavma df df_ -1 aemal| = df.
—| & === APIB™ | of 4 &L

& dé(é: 2 d§ de |7’71| i Sl+§d§

s d | _eavm a|df, . zdf p-1 my-lpp-l| df_z
el K - A™BP sf, +E—2 |,

4 d§[§ 1 déf df: |7’7’2| e 52+§d§

We choose A and B from the system of nonlinear algebraic equations
-1 _ _
il ATTB™ T =Y p
-1 My — _
|7’72|p WzAZprlzl/p-

Then functinns . f- were the solution of the Zel’dovich-Kompanees for the system (1) and in the field
|£] < (a)(p’l)/ P they satisfy the system of equations

1—51 s-1¢ m-1
ot

l—si s-1§ my-1
e 5{5 f

df

1 +£%+if_1=0
dg) pds p
£p7£ +££+if_ =0
d¢ ) pds p°

in the classical sense.

Due to the fact that
crema|df 7
A
crem |d, 7 dF,
ég ' 1 e dgg ég 2
function f, (&), f,(&) and the flows have the following smoothness properties
0< §(2). [ j; &heC(0),
- sAFm df d
0Sf2(§),§ lf1 d§ .f , € ( oo).

We choose A and B such that the inequality of inequality

| i AIB™ 21 p

p-1 m,-1p p-1 (12)
|7’72| V7 A B® Z:I-/p-

Since then

df
aé
i p-
dg

1—51 s-1¢ m-1
eafe

1—51 s-1gmy-1
e afe

fdfl __5f
dé Tpde T ¢

§df __ 57
df Tpae T T p

It is due to the fact that
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g—félSO, %SOnpu §e(0,oo)

from (12) we have
df,
dg
df,

dg

P2 = v
% +£%SO'
d¢ | pdé

P2 = =
d¢ | pdé

1—51 s—1- ¢ m-1

£e(0,).

&

Then in the field Q according to the comparison principle of solutions have
Theorem 1. Let u;(0,x)<u,. (0,x), xeR. Then for the solution of problem (1) Q is the evaluation

WU, ()=,
0 (%) <U,. (LX) = €7 T, (2), © o(X)/[=(1)]

where T, (&), T, (&) u r(t)—above-defined functions.

-2)* =(m, -1)(m, -1
Note that the solution of system (1) when 3 =L (p)l)((pr)nl (m)(”‘lz)) )" has the following representation at

/o) (o)

where B(a, b)-Euler Beta function.
It is proved that this view is the self-similar asymptotics of solutions of systems (1).

fl—s d {55—11:_1"111

1

T_ET(a—fl’)TdX: R

—0

1 o0

rh j(a—é{)izdx=Pz

1w n ﬂll 1 ﬂl 1

v [(a-g) dx=a” =[n’ (1—77)"1d77:ay—B(—,lJrnJ:P1
o * 7 yo\r

,:700 iy 'Lle 1. n 'LZ:I_ 1

r % [(a-g) dx=a’ =[n" (1-n)*dp=a’ =B| =,1+n, [=F,
o * 7 v o\r

Here

3. Slow Diffusion
Case n,>0,n, >0, n>0 (slow diffusion). Applying the method of [1] to solve Equation (11) will receive the
following features

0(§)=(a=¢)!.6,(¢)=(a-¢)",
where @a>0, (y) =max(y,0), &<a.ltisknown [1] [2] that for the global existence of solutions of prob-

908
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lem (1) function f (&) must satisfy the following inequality:

—p-2 — _

df, - df +£%+ulfl<l—f1”l)£0,
dé| d&) pdS

ol

2 -
daf, | ¢&df, 5
—Z 22 f(1-f <0,
de dff}pdéJ%l( )

1-s d s—1- ¢ m-1
o afe

£e(0,).

1-s d s—1§m-1
oafem

and
A :]/nzlﬂz :]/nl'

Let’s take the function 6, (&),6, (&), and show that they are asymptotic finite solutions of the system (11).
Theorem 2. The finite solution of system (11) when & —a_ has asymptotic f, (&)~ 3 (&) .
Proof. We seek a solution of Equation (8) in the following form

[ =8()n (). i=12, (13)

where n=-In(a-¢),and 7 —+o at &—a_, to explore the asymptotic stability of the solution of problem
(11) when 7 — +o0 . Substituting (13) into (11) for y, (r7) gets the following equation

p-2 . p-2
di[y;n'il (%—niyij]+(iaie”—ni][yg"il (%_ni%j]
n n e n (14)

S(dy e’ —ng i, B
+= = —ny. |- . 1+e ™Myl )=0
p d7] Iyl :u| a_ef,l yl (77)( yS—I)
where 7 above-defined function.

Note that the study of the solution of the last equation is equivalent to examining the solution of Equation (11),
each of which in a certain period [770,+oo) satisfies the inequality:

dy;
—_nv.
dny WY

dy;
L _nv.
dny WY

dy.
: 0, A_ny =0.
yi (17)> a ny, #

Let us show first of all that decision 'y, (77) Equations (14) have a finite limit y, at 7 — +oo . We intro-

duce the notation
p-2
(% — Y, } :
dn
Then for the Equation (14) has the form

, s e’ dy; e™” npn
a)uz_[_ _nija)l_%(%_niyi)_ﬂi—yi(n)(l—’_e .ﬁ.nysﬁ_.i>_

ya—e a—-e”’

dy;
dn

m;i-1

@ (77) = Y3 -nY;

To analyze the last expression we introduce a new helper function

- s_e” 4 dyl e’ =N Gin\, B
G e e = TR )

where ¢ —real numbers. Hence it is easy to see that each value r function ¢(z,n) stores the sign on a cer-
tain interval [7,,+o) <[, +) andforall »e[n,+«) either of the inequalities

@ (7)>0, o/(n7)<0.

And so for the function ¢, (7) there is a limit when 7 e [771,+oo). From the expression for ¢, (1) it fol-

lows that
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i ! =i — E e’ — _é di_ — e’ NSy Pai L —
JLT@@(U)‘JLT@{ (}/a_e,, ni]“’. [dﬂ niyij ﬂia_e,,, yi('])(1+e y3—i) =0.

Hence, given that

&—a, lime” >0, lima-e”7—»a, @ =0

n—+w 7—>+0

get the following algebraic equation

1y - 1
nlp 1y;n1 1|yl|p 1 _ p}/pfl
- 1
nzp—lyfwz—1|y2|p 1 :W'

The latter system gives y, =1 and because (14) f, (&)~ 3 (¢).
Theorem 2 is proved.

4. Fast Diffusion

Case n, >0,n, >0,n<0 (fastdiffusion case). For (11), we have

n(§)=(a+&)" x(&)=(a+&)”,

where a>0.
Theorem 3. At £ — +o0 vanishing at infinity solution of problem (11) has the asymptotics

L (£) =2 (6)i=12.

Proof. In the proof of theorem used the transform
fi=2(£)y(n). i-12, (15)

where 7 =In(a+ &), which leads (11) to the following form.
Substituting (15) into (11) for y, (r7) gets the following equation
p-2
(% — Y j}
7 (16)

d| ma 2 (dy, s e’ M
—| ym —L—ny | |+| ———+n i
dﬂ{ySI (dﬂ |y| }/ a+e,7 i y3—|

& ( dy, e” 0B
+===4+ny, |- ——, 1+e "yt ) =0,
p d?] Iyl ﬂ|a+e77 y|(’7)( y3—|)
where 7 is above-defined function.

Note that the study of the solution of the last equation is equivalent to examining the solution of Equation
(11), each of which in a certain period [7,,+ ) satisfies the inequality:

dy.
i _ny
dny i Yi

dy.
—L—nvy.
dn i Yi

dy.
: 0, Z—ny,#0.
Y.(ﬂ)> dry WY #

Let us show first of all that solution vy, (77) of the Equation (16) has a finite limit y, at 7 — +o. We in-

%_niyi

p-2
; (% -ny, j . Then Equation (15) has the form
n

troduce the notation @, (17) = vyy';* ;
n

ya+e’ a+e”

vi 7
o = _(E A n jwi _%(3_):;+ nYi j_ﬂi e—yi (77)(1+einiﬂ'" yz )

To analyze the last expression we introduce a new helper function
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e’ dy. e’ i B
¢(T:77):_[—+n3iJT_C{d_Z;‘FniYiJ_,U'—Yi(ﬂ)(1+e 3_'ﬂs_")/sl?i_')v

a+e’ "a+e”

where ¢ -real number. Hence it is easy to see that each value z function ¢(z,7) stores the sign on a certain
interval [1,,+o) < [n,,+o) andatall »e[n,+) satisfied either of the inequalities
@ (7)>0, o/(n7)<0.
Therefore for the function e, () there is a limit when 7 e[n,,+ ). From the expression for «, () fol-
lows that

lim o/ (77) = lim {—(3 e —nija}. —é[g—ﬁ—niyi)—uiai—ﬂe,,yi (n)(l+e”‘ﬂ‘”yﬁi)}=°-

n—>+o0 n—>+0 ya— e p

Hence, when & —> o0, £ >1i=12 we get the following algebraic equation

— 1 o 1
(_nl)ply;n1 1y1p1= pypfl’

o 1
(=n,)" "y tyt = s

The calculation of the last equation gives y; =1 and because (15) f (&)~ x, ().
Theorem 3 is proved.

5. Computational Experiment

Investigation of qualitative properties of system (1) has allowed to perform numerical experiment depending on
the values included in the system of numeric parameters. For this purpose, the initial approximation was used to
construct asymptotic solutions. The numerical solution of the problem for the linearization of system (2) was
used linearization methods of Newton and Picard. To build self-similar system of equations of biological popu-
lation used the method of nonlinear splitting [1] [6].

For the numerical solution of the problem (1) we will construct a uniform grid

@, ={x =ih,h>0,i=0,1---,n, hn=1},
and temporal grid
o, ={t; = ih,h >0,j=0L-,nrm=T}.

Replace the problem (1) implicit difference scheme and receive differential task with the error O(h2 + hl) .

It is known that the main problem for the numerical solution of nonlinear problems is the appropriate choice
of the initial approximation and the method of linearization of system (1).

Consider the function:

Vi (LX) =v, (t)-(a= &),
Vao (1 X) =V, (t)-(a=&)7,

where v, (t)=e“v,(t) n v,(t)=e"v,(t) above-defined functions,

Record (a) means (a) =max(0,a). These functions have the property of finite speed of propagation of
perturbations [1] [6]. Therefore, for the numerical solution of problem (1) when g, > o, as an initial approxi-
mation of the proposed function v,, (t,x), i=12.

Created on input language Matlab the program allows you to visually trace the evolution process for different
values of the parameters and data.

Numerical calculations show that in the case of arbitrary values o >0, 8 >0 qualitative properties of solu-
tions do not change. Below are the results of numerical experiments for various values of the parameters

(Figures 1-4).
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ul(t,x)

0.5

-0.5

/ =
\@/

N
<)
2
o
<)
2
-

u2(t,x)
1
1

0.5

0 _
? 0.5

1
0 0 1
11 -1 0.5 0 0.5 1

Figure 1. Results of numerical simulationsat n, <1i=12, x =1x,=1, n =0.87,n,=077,m =3, m,=2, p=4.2.

ul(t,x)

o
Nvo o =
o
.
N
N
o
N
-

u2(t,x)

o
Nvo o =
o
.
N
)
o
N
-

Figure 2. The results of numerical simulationsat n, <1i=12,x =2;x,=2, n,=0.87,n,=077,m =3, m,=2, p=4.2.

ul(t,x)

o
No o [=Y
o
)
)
o
IN)
N - o N

u2(t,x)

o
No ol [=Y
o
)
)
o
IN)
N - o N

Figure 3. The results of numerical simulationsat n, >1i=12, x =1x,=1, n=187n,=177, m =3, m,=2,p=4.2.
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ul(t,x)
0.4 1
0
1 ‘1
0 10
0 0
-10 -10 -1 0 1
u2(t,x)
0.4 1
0
10 -1
10
0 0
-10 -10 -1 0 1

Figure 4. The results of numerical simulationsat n, >1i=12, x =2;x,=2, n,=187,n,=177,m =3, m,=2, p=4.2.

6. Conclusions

Thus, the proposed nonlinear mathematical model of biological populations with double nonlinearity and variable
density properly describes the studied process. Numerical study of nonlinear processes described by equations
with a double nonlinearity and analysis results on the basis of evaluation solutions provides a comprehensive
picture of the process in two-component systems competing biological population with the preservation of
localization properties in the target area and the size of the flash.

Results in future will provide an opportunity to evaluate the speed of propagation of diffusive waves.
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