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Abstract 
A comparative analysis of a model of complex scalar field φ and real scalar field χ with interaction 
gφ φχ∗  for the real and purely imaginary values of coupling g in perturbative and non-perturbative 

regions is provided. In contrast to the usual Hermitian version (real g), which is asymptotically 
free and energetically unstable, the non-Hermitian PT-symmetric theory (imaginary g) is energet-
ically stable and not asymptotically free. The non-perturbative approach based on Schwinger- 
Dyson equations reveals new interesting feature of the non-Hermitian model. While in the Hermi-
tian version of theory the phion propagator has the non-physical non-isolated singularity in the 
Euclidean region of momenta, the non-Hermitian theory substantially free of this drawback, as the 
singularity moves in the pseudo-Euclidean region. 

 
Keywords 
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1. Introduction 
Non-Hermitian PT-symmetric quantum models, open at the end of the last century [1], currently have a wide use 
in various fields of physics (see review [2] and references therein). For a quantum field theory the introduction 
into circulation the non-Hermitian PT-symmetric models is interesting as an extension of a narrow class of 
Hermitian models with acceptable physical and mathematical properties (such as stability, unitary, and renorma-
lisability) and opens new possibilities for describing the properties of high-energy particles. 

In works of Bender et al. [3] [4] the PT-symmetric model of a scalar field with the interaction 3φ  has been 
investigated. As has long been known (see [5]), the Hermitian version of this model is asymptotically free, but 
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the unstability of the cubic interaction leads to the fact that models of this type previously considered exclusive-
ly as a methodical examples (see, for example [6]). For the non-Hermitian version of this model with imaginary 
coupling, however, the main argument of the unstability—the cubic potential is unbounded below—becomes 
invalid since the set of complex numbers is not an ordered set. Moreover, in work [3], the arguments are given 
in favor of energy stability of the non-Hermitian model with cubic interaction. The analysis of Bender et al. (see 
[3] [4]) indicates that the 3

6igφ  theory is like a 4
4gφ  theory: it is energetically stable, renormalized and has the 

trivial-type ultraviolet behavior, i.e., compared with the conventional 3
6φ  model, the PT-symmetric 3

6igφ  
theory exhibits new interesting properties. 

In this paper we study the scalar Yukawa model, i.e., a model of a complex scalar field φ  (phion) and a real 
field χ  (chion) with the interaction gφ φχ∗ . This model is used in nuclear physics as a simplified version of 
the Yukawa model without spin degrees of freedom, as well as an effective model of the interaction of scalar 
quarks [7] [8]. If the coupling constant g takes purely imaginary values and the field χ  is a pseudoscalar, such 
a model is PT-symmetric. As expected, this model is a very similar to the 3φ  theory. All arguments of Bender 
et al. (see [3]) concerning the unstability of the Hermitian theory and stability of non-Hermitian PT-symmetric 
theory fully extended to the scalar Yukawa model. An additional argument is the consideration (in the spirit of 
[9]) a zero-dimensional version of the theory. The partition function  

( ) ( ) ( ){ }*, , exp dG g D x xφ φ χ= ∫ ∫ 
 

in a zero-dimensional space becomes the usual improper integral  

( ) ( )
2 2* * 2 * * * *1d d d exp 2π d d exp ,

2 2
gG g gφ φ χ φ φ χ φ φχ φ φ φ φ φ φ

∞ ∞

−∞ −∞

  = − − + = − +   
   

∫ ∫  

which converges for 2 0g <  (non-Hermitian case) and diverges for 2 0g >  (Hermitian case). 
In the coupling-constant perturbation theory, this model also has a very similar to the 3φ  theory. Section 2 

briefly presents the results of the coupling-constant perturbation theory and based on the perturbation theory re-
normalization-group analysis for this model. As well as the 3

6φ  theory the Hermitian scalar Yukawa model in a 
six-dimensional space is asymptotically free. The non-Hermitian scalar Yukawa model in the 6d = −   has, 
besides the Gaussian fixed point, also the non-Gaussian fixed point of Wilson-Fisher type. At 6d =  the 
non-Hermitian scalar Yukawa model, as well as 3

6φ  theory is ultraviolet unstable, and to describe the ultraviolet 
region we need to go beyond the perturbation theory. 

Section 3 presents an attempt to go beyond the coupling-constant perturbation theory. The formalism of bi-
local source is used to build a non-perturbative expansion of the system of the Schwinger-Dyson equations, and 
equation for the phion propagator in the leading approximation of this expansion is investigated. A remarkable 
property is established: for the Hermitian theory the phion propagator has a non-isolated singularity in the Euc-
lidean region of momenta while for the Hermitian theory this singularity (an origin of a cut) moves in a pseudo- 
Euclidean region, i.e., from the point of view of the analytic properties the non-Hermitian theory is preferable. 

2. Perturbation Theory and Renormalization Group 
2.1. Perturbation Theory 
We consider the model of interaction of a complex scalar field φ  (phion) and a real scalar field χ  (chion) 
with the Lagrangian  

( )
2

2* 2 * 2 *0
0

1
2 2

m gµ µ µ
µ

φ φ φ φ χ χ φ φχ= −∂ ∂ − − ∂ − +                       (1) 

in a d-dimensional Euclidean space ( )dx E∈  near 6d = . At 6d =  the coupling g is dimensionless, and the 
theory contains ultraviolet divergences which can be eliminated with a standard recipe by the renormalization of 
fields and vacuum expectations (Green functions). 

The perturbation theory on the renormalized coupling constant g gives us the following expressions for the 
renormalized 1PI functions: 

Propagators of the phion  
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( ) ( ) ( )1 2 2 2 2 2 2 2 2 4
1, ,p m p g L p m m p z O gµ δ δ−∆ = + − + + +                   (2) 

and of the chion  

( ) ( ) ( )1 2 2 2 2 2 2 2 2 4
2, , .D k k g L k m m k z O gµ δµ δ− = + − + + +                   (3) 

A vertex:  

( ) ( ) ( )3 5, , .x y x yp p g g p p g O gδΓ = + Λ + +                          (4) 

Here ,m µ  are the renormalized masses of the phion and the chion. 2 2
1 2, , ,m z zδ δ δµ δ  are counter-terms of 

the renormalization of the masses and fields of the phion and the chion correspondingly, gδ  is a counter-term 
of the renormalizarion of coupling, and  

( )
( ) ( )

2 2 2
2 2 22

d 1 1, , ,
2π

d

d

qL p m
m qp q

µ
µ

=
++ −

∫  

( )
( ) ( ) ( )2 2 2 22 2

d 1 1 1, .
2π

d

x y d
x y

qp p
q m p q m p qµ

Λ =
+ + + + −

∫  

In the dimensional regularization ( 6d = −  ):  

( ) ( ) ( )
2 22

2 2 2 0
3 3, , ,

192π 64π

mpL p m O
κ µκµ

−− +
= − − +




 

 

( ) ( )0
30,0 .

64π
Oκ −

Λ = +





 

Here κ  is a ’t Hooft scale. We define the dimensionless coupling as  
2 ,g g gκ→ = 

  

and by adopting the MS scheme [6], we get the counter-terms:  

( )2 2 2 2 2 2 3 2
2 2

1 23 3 3 3, , , .
64π 32π 192π 64π

g m g m g gm z z g
µ κδ δµ δ δ δ

+
= − = − = = − = −



   
            (5) 

2.2. Renormalization Group. Hermitian Theory 
The independence of initial (bare) quantities and unrenormalized Green functions from the ’t Hooft scale κ  
leads to the renormalization group equation:  

2 2
1 22 2 0.

2 2
nl

m
n lm

g m µκ β γ µ γ γ γ
κ µ

 ∂ ∂ ∂ ∂
+ − − − − Γ = ∂ ∂ ∂ ∂ 

                   (6) 

Here nlΓ  is the one-particle-irreducible function with n phion and l chion tails. 
Counter-terms (5) allow us to calculate renormalization-group coefficients1 

( )
3

5
3

d ,
d 2 256π

g gg O gβ κ
κ

= = − − +
                             (7) 

( ) ( )
2 2

2 2 2 4
3

d 2 3 ,
d 192πm
m gm m O gγ κ µ
κ

= − = + +                        (8) 

( ) ( )
2 2

2 2 2 4
3

d 6 ,
d 192π

g m O gµ
µµ γ κ µ
κ

= − = − +                         (9) 

 

 

1We use the notations of Collins [6]. Note, that the complete renormalization-group analysis assumes also an addition the linear term hχ  
in Lagrangian (1) and the corresponding counter-term. We omit this simple generalization of calculations as non-essential for our considera-
tion. 
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( )
2

41 2
1 2 3

d ln d ln
.

d d 192π
z z g O gγ κ γ κ
κ κ

= = = = +                       (10) 

These renormalization-group coefficients quite similar to corresponding coefficients of 3
6φ -theory (see [3] 

[6]). As for 3
6φ -theory the scalar Yukawa model near 6d =  possesses only a Gaussian fixed point * 0g = , 

and near this point the couplings scale according their scaling dimension. 
At 6d =  the scalar Yukawa model is asymptotically free as the 3

6φ -theory. The running coupling (invariant 
charge) ( ),g t g  is a solution of equation  

( )d
d
g g
t

β=                                      (11) 

with the boundary condition ( )0, .g t g g= =  Here 
2

2
0

ln pt
p

= . 

For β -function (7) the solution of this equation at 6d =  is  
2

2
2

3

,
1

128π

gg
g t

=
+

                                  (12) 

i.e. the model possesses the typical asymptotically-free behavior at high momenta with all consequences. 

2.3. Renormalization Group. Non-Hermitian Theory 
For the non-hermirian PT-symmetric theory one should make the substitution  

,g ig g i gδ δ→ →  

in formulae of above Subsections. Thus, the expression for β -function takes the form  

( )
3

5
3

d
d 2 256π

g gg O gβ κ
κ

= = − + +
                            (13) 

etc. 
The situation in this case is also similar to 3φ -theory (see [3]). β -function vanishes, except of the Gaussian 

point * 0g = , at the fixed point of Wilson-Fisher type:  
2 3
* 128π .g =                                      (14) 

Near the Gaussian point couplings are still defined by their canonical dimensions. Near the non-Gaussian 
fixed point (14) the scale behavior is modified in accordance with the linearized renormalization group equa-
tions. At 6d =  fixed points merge into one Gauss point. 

The running coupling in this case is  
2

2
2

3

,
1

128π

gg
g t

=
−

                                  (15) 

i.e., the theory at large momenta has the trivial-type behavior, and the perturbation theory in this asymptotic re-
gion cannot be applicable. 

3. Beyond the Perturbation Theory 
3.1. Shcwinger-Dyson Equations 
To construct the non-perturbative approximation we will use the formalism of Schwinger-Dyson equations (SDE). 

The generating functional of Green functions (vacuum averages) of the model with Lagrangian (1) is the 
functional integral  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }* *, , , exp d d d , d .G j D x x x y y y x x x j x xη φ φ χ φ η φ χ= − +∫ ∫ ∫ ∫          (16) 
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Here η  is the bilocal source of phions2, j is the single source of chions. 
The translational invariance of the functional integration measure leads to relations  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }* * *
*, , exp d d d , d 0,D y x x x y x x y y zj z z

x
δφ φ χ φ φ η φ χ

δφ
− + =∫ ∫ ∫ ∫

 
and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }* *, , exp d d d , d 0,D x x x y x x y y zj z z
z

δφ φ χ φ η φ χ
δχ

− + =∫ ∫ ∫ ∫
 

which can be rewritten as the functional-differential SDE for generating functional G:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2
0 1 1

1

d ,
, , ,x

G G Gg m x x x x y G
y x j x y x y x
δ δ δη δ

δη δ δη δη
= − ∂ + + −∫           (17) 

and  

( ) ( ) ( ) ( )2 2
0 .

,
G Gg j z G
z z j z

δ δµ
δη δ

+ − ∂ =                           (18) 

Here 0m  and 0µ  are bare phion and chion masses. Equation (18) allows us to express all Green functions 
with chion legs in terms of functions that contain phions only. For logarithm logZ G=  this equation has the 
form  

( ) ( ) ( ) ( ) ( )1 1 1 1 1
1 1

d d .
,c c

Z Zx D x x j x x gD x x
j x x x
δ δ

δ δη
= − − −∫ ∫                   (19) 

(Here ( ) 12 2
0 .cD µ

−
≡ − ∂ ) 

The differentiation of (19) over η  gives us the three-point chion-phion function  

( ) ( ) ( ) ( )
2

1 1
1 1 2

0

| d ,c

j

z zZV xy z z gD z z Z
x yj z yx

η

δ
δ δη

= =

 
≡ − = −  

 
∫                 (20) 

where  

( ) ( )
2

2

0
, ,

j

x y ZZ
x y y x y x

η

δ
δη δη

= =

 
≡ ′ ′ ′ ′ 

                          (21) 

is the two-particle phion function. The differentiation of (19) over j with taking into account Equation (20) gives 
us the chion propagator:  

( ) ( ) ( ) ( ) ( ) ( )
2

1 12
1 1 1 2 1

1 10

d dc c c

j

x xZD x y D x y x y g D x x Z D y y
y yj y j x

η

δ
δ δ

= =

 
− ≡ = − + − − 

 
∫       (22) 

etc. Thus, for a complete description of the model we need to know phion Green function only. 
Excluding with the help of the SDE (18) a differentiation over j in SDE (17), we obtain at 0j =  the equa-

tion  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2 2

1 1 0
1 1

1 1
1

d
, , ,

d , 0,
,

c x
G Gx g D x x m

x x y x y x
Gy x y x y G
y y

δ δ
δη δη δη
δη δ

δη

− + − ∂

+ + − =

∫

∫
                  (23) 

which only contains the derivatives over the bilocal source η . 
Since ( ) ( ) ( ) ( ) ( ) ( )2 * *, ,G y x y x x y x yδ δη δη φ φ φ φ′ ′ ′ ′= , then Bose-symmetry entails the relation  

 

 

2A formalism of the bilocal source was first elaborated in the quantum field theory by Dahmen and Jona-Lasinio [10]. We consider this us-
ing presumably as a convenient choice of the functional variable. 
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( ) ( ) ( ) ( )
2 2

,
, , , ,

G G
y x y x y x y x

δ δ
δη δη δη δη

=
′ ′ ′ ′

 
reflecting crossing symmetry of the two-particle function, and, accordingly, the Equation (23) can be written as  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2 2

1 1 0
1 1

1 1
1

d
, , ,

d , 0.
,

c x
G Gx g D x x m

x x y x y x
Gy x y x y G
y y

δ δ
δη δη δη
δη δ

δη

− + − ∂

+ + − =

∫

∫
                  (24) 

Both equations give the same coupling-constant perturbation series, and are completely equivalent from the 
point of view of some visionary exact solutions of Schwinger-Dyson equations. However, these equations give 
different non-perturbative expansion. This is due to the incomplete structure of the leading-order multi-particle 
functions of such expansions in terms of crossing symmetry. It is a peculiar feature of some non-perturbative 
approximations. In order to restore crossing symmetry lost in the leading-order approximation, it is necessary to 
consider the next-to-leading-order approximation. (A more detailed discussion of this issue see in the papers [11] 
[12] and references therein). 

Equation (23) can be used for the construction of the mean-field expansion (see [11]). In the language of 
Feynman diagrams the leading order of this expansion corresponds to the summation of the chains and its struc-
ture actually reproduce the renormalization-group summation of the previous section. 

In this paper we consider the expansion, based on the Equation (24) (see also [12]). In the language of Feyn-
man diagrams the leading order of this expansion corresponds to the summation of ladder graphs, so we'll call it 
the ladder expansion. 

For logarithm logZ G=  this equation has the form  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2

1 1
1 1 1 1

2 2
0 1 1

1

d
, , , ,

d , 0.
, ,

c

x

Z Z Zx g D x x
x x y x x x y x

Z Zm y x y x y
y x y y

δ δ δ
δη δη δη δη

δ δη δ
δη δη

 
− + 

  

+ − ∂ + + − =

∫

∫
                 (25) 

3.2. Legendre Transform 
Equation  

( ) ( ), | ,
,

Z x y
y x

δ η
δη

= −∆                                 (26) 

which determines the phion propagator can be regarded as an equation that determines implicitly η  as a func-
tional of ∆ :  

[ ].η η= ∆  
Assuming the unique solvability of the Equation (26), we can move to a new function variable ∆  and define 

the generating functional of Legendre transform  
[ ] ( ) ( )d d , , .Z x y x y y xηΓ ∆ = + ∆∫                             (27) 

From definitions (26) and (27) it follows that  

( ) ( ), | ,
,

x y
y x
δ η

δ
Γ

= ∆
∆

                                (28) 

and SDE (25) takes the form  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2 2
0

2
2 1

1 1 1 1
1 1 1

, ,
,

d , .
, ,

c

c

x y m x y g D x y x y
y x

Zx xy g D x x y y
x x y x

δ δ
δ

δ
δη δη

−

−

Γ
= ∆ − − ∂ − + − ∆

∆

+ − ∆∫
               (29) 
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In this equation, it is assumed that 2 2Zδ δη  is a functional of new functional variable ∆ , what can be done, 
using the condition of connection  

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1
1 1 1 1

d d ,
, , , ,

Zx y x y x y
y x y x y x x y

δ δ δ δ
δ δ δη δη

Γ ′ ′= − − −
′ ′∆ ∆∫              (30) 

which follows from the relation  
( )
( ) ( ) ( ),

.
,

x y
x y x y

y x
δη

δ δ
δη

′ ′= − −
′ ′

 

3.3. Ladder Expansion 
SDE (29) tells us a non-perturbative expansion of the generating functional 0 1Γ = Γ + Γ + , which based on 
the following leading approximation  

( ) ( ) ( ) ( ) ( ) ( )1 2 2 20
0, , .

, cx y m x y g D x y x y
y x

δ
δ

δ
−Γ

= ∆ − − ∂ − + − ∆
∆

               (31) 

Next-to-the-leading-order equation is  

( ) ( ) ( ) ( ) ( )
2

2 101
1 1 1 1

1 1 1

d d ,
, , ,c

Z
x y g D x x y y

y x x x y x
δδ

δ δη δη
−Γ

= − ∆
∆ ∫                 (32) 

where 2
0Zδ δη  is a functional of ∆ , defined by condition of connection (30). 

At the source being switched off, Equation (31) is the equation for the leading-order phion propagator:  

( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 0 .x cx y m x y g D x y x yδ−∆ − = − ∂ − − − ∆ −                   (33) 

A differentiation of equation (31) on ∆  and taking into account connection condition (30) together with eq-
uation (20) gives us the equation for the three-point function:  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
1 1 0 1 0 1 1 1 0 1 0d d , , | , , | .c cx y x x V x y z y y g D x z x y g D x y V x y zδ− −∆ ∆ = − − + −∫      (34) 

3.4. Phion Propagator 
Lets go to the Equation (33) for the phion propagator. To eliminate ultraviolet divergences in Equation (33) is 
sufficient to introduce counter-terms of phion-field renormalization 1z  and mass 2mδ . The normalization of 
the renormalized propagator ( )2p∆  at zero momentum  

( )
2

1
1 2 2

2
0

d0 , 1
d p

p m
p

−
−

=

∆
∆ = = =

 
leads to the renormalized equation in momentum space  

( ) ( )1 2 2 2 2 ,rp m p p−∆ = + + Σ                               (35) 

where ( ) ( ) ( ) ( )2 2 20 0r p p p ′Σ = Σ −Σ − Σ  is the renormalized mass operator, and 

( )
( )

( ) ( )
6

2 2
6

d .
2π

c
qp g D p q pΣ = − − ∆∫

 
Below we consider the case of massless chion: 21cD k= . In this case nonlinear integral Equation (35) can 

be reduced to an integral Volterra-type equation, which, in turn, is reduced to a differential equation. Using the 
formula of massless integration in six-dimensional space  

( )
( )

( )
( ) ( )

2

2

226 2 2 2
2 2 2 2 2 2

6 2 3 2 2 20

d 1 1 1d d 1
3 3128π2π

p

p

qq q q pq q q q q q
p p qp q

∞
  Φ      = Φ − + Φ −     −      

∫ ∫ ∫       (36) 

we obtain  
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( )
2

32 2 2
2 2

3 20
d 1 .

384π
p

r
g p qq q

p
 

Σ = − ∆ − 
 

∫                            (37) 

Introducing dimension-less function  

( ) 1
2

1 ,u t
m

−= ∆
 

where 
2

2 ,pt
m

=  we obtain the integral equation  

( ) ( ) ( )
2

3
3 2 0

d1 ,
384π

tg tu t t t t
u tt

′
′= + − −

′∫                           (38) 

which is reduced to the non-linear fourth-order differential equation  

( )
2

2
3 .

64π
gt u

u
′′′′ = −                                   (39) 

This differential equation enables us to calculate the asymptotics of ( )u t  for large t:  

( ) log ,u t At t                                    (40) 

where  
2

2
3 ,

192π
gA = −

 
i.e., for Hermitian theory with 2 0g >  the asymptotic behavior becomes purely imaginary. In order to under-
stand what is happening with the propagator in Euclidean region, consider a simplified model with the same UV 
behavior. This model is based on the following approximation of mass operator (37) in a high-momentum re-
gion:  

( ) ( )
2 2

32 2 2 2 2
2 2 2 2

3 2 30 0
d 1 d .

384π 384π
p p

r
g p q g pq q q q

p
 

Σ = − ∆ − ≈ − ∆ 
 

∫ ∫                  (41) 

The equation for the inverse propagator u takes the form:  

( ) ( )0

2

3

d .
384π

t

t

g t tu t t
u t

′
= −

′∫                                (42) 

The cutoff at the lower limit of integration is introduced in order to avoid mass singularities (in the case in-
significant). 

The exact solution of Equation (42) is  

( )
2

3
0

1 log ,
192π

g tu t t
t

= −                                (43) 

i.e., an asymptotic behavior at large momentum given by the same formula (40). 
Thus, we can conclude that for the usual Hermitian theory with 2 0g >  the propagator in the ladder ap-

proximation has the non-physical non-isolated singularity in the Euclidean region, while for the non-Hermitian 
theory with 2 0g < , this singularity moves in a pseudo-Euclidean region, i.e., the non-Hermitian theory is more 
preferable from the standpoint of the analytical properties of the propagator. 

4. Conclusions 
Our results demonstrate that the non-Hermitian PT-symmetric scalar Yukawa model has interesting properties  
both perturbative and non-perturbative. In the perturbation region of small momenta, ( )*

6
ig φ φχ  theory similar 

in their properties to Hermitian ( )2*

4
g φ φ  theory, i.e., energetically stable, has, in addition to the Gaussian  
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fixed point, a non-trivial fixed point of Wilson-Fisher type. As expected, the properties of the scalar Yukawa 
model in the perturbative region completely analogous to the corresponding properties of 3

6igφ  theory (see [3]). 
The non-perturbative ladder expansion of Section 3 reveals new interesting feature of the non-Hermitian model. 
While in the Hermitian version of theory the phion propagator has the non-physical non-isolated singularity in 
the Euclidean region of momenta, the non-Hermitian theory substantially free of this drawback, as the singulati-
ty moves to the pseudo-Euclidean region. 

For a complete description of the leading-order ladder expansion, including its renormalization group analysis, 
it is necessary to solve Equation (34) for the three-point function. This is a very difficult task, since this equation 
contains a nontrivial phion propagator, described by Equation (33). Perhaps for the renormalization-group anal-
ysis, clarifying the nature of the behavior of couplings in the asymptotic region is sufficient to solve a more li-
mited problem, namely the calculation of the vertex function at zero momentum (which is, however, also very 
difficult). We can assume that in the Hermitian case the theory retains the property of asymptotic freedom, and 
everything will return to own. For the non-Hermitian PT-symmetric theory a prediction of the answer is harder. 
In any case, the results indicate that the non-Hermitian scalar Yukawa model has, compared with the Hermitian 
version, a number of attractive features, which make it a very interesting object of study. 
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