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Abstract 
In the last three decades much effort has been devoted in process integration as a way to improve 
economic and environmental performance of chemical processes. Although the established frame- 
works have undergone constant refinement toward formulating and solving complicated process 
integration problems, less attention has been drawn to the problem of sequential applications of 
mass integration. This work addresses this problem by proposing an algorithm for optimal order-
ing of the process sinks in direct recycling problems, which is compatible with the typical mass 
integration formulation. The order consists in selecting the optimal sink at a specific integration 
step given the selection of the previous steps and the remaining process sources. Such order is 
identified through a succession of preemptive goal programming problems, namely of optimiza-
tion problems characterized by more objectives at different priority levels. Indeed, the target for 
each sink is obtained by maximizing the total flow recycled from the available process sources to 
this sink and then minimizing the use of pure sources, starting from the purest one; the hierarchy 
is respected through a succession of linear optimization problems with a single objective function. 
While the conditional optimality of the algorithm holds always, a thorough statistical analysis in-
cluding structured to random scenarios of process sources and process sinks shows how fre-
quently the sequential ordering algorithm is outperformed with respect to the total recycled 
amount by a different selection of process sinks with the same cardinality. Two more case studies 
proving the usefulness of ordering the process sinks are illustrated. Extensions of the algorithm 
are also identified to cover more aspects of the process integration framework. 
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1. Introduction 
The reduction of the cost and environmental impact of industrial processes is among the most relevant chal-
lenges for chemical engineers to design sustainable processes [1] [2]. From this perspective, the focus is typi-
cally on reducing the use of raw materials, energy utilities and fresh water, which also typically affects the pro-
duced waste loads and, therefore, the cost and the environmental impact associated with the end-of-pipe tech-
nologies. This has also motivated the field of process systems engineering to formulate the respective problems 
and develop efficient techniques to handle their increased complexity [3]. In this regard, process optimization 
and mathematical programming have undergone a significant development over the last three decades [4], par-
ticularly the field of process integration focusing on optimal interaction between process units, process streams 
and fresh resources [5]. 

Among the various methods and objectives of process integration, mass integration through direct recycling 
and mass exchange networks is a methodology that allows recovering part of the waste streams of a process (i.e., 
process sources) and reusing them in appropriate process units (i.e., process sinks), thus reducing the purchase 
of fresh resources [6] [7]. Many past works have utilized graphical approaches [8]-[10] and algebraic methods 
[11]-[13] to calculate the target for maximum recycling and, therefore, minimum fresh resource utilization. Such 
methods, although originally designed for continuous processes, have also been extended to batch processes 
[14]-[17]. 

More recent methodological development in the problem formulation and solution strategies of mass integra-
tion has focused on advanced optimization techniques. In this regard, Bagajewicz and Savelski presented a for-
mulation based on mixed integer linear programing (MILP) to solve the water allocation problem in process 
plants when a single contaminant is present [18]. Gabriel et al. proposed an approach to reformulate a general 
direct recycle/reuse of process waste problem into a linear problem (LP), thus simplifying the calculation of the 
global solution [19]. The strategies presented by Alva-Argaez et al. [20] use superstructure formulation, where 
the design of water networks is initially expressed in a mixed integer nonlinear programming (MINLP) formula-
tion and then decomposed into MILP for an efficient solution strategy. In the same direction, Faria et al. [21] 
suggested a method for the design of multicomponent wastewater networks, where the discretization of one va-
riable of the nonlinear programming problem (NLP) implies the generation of a MILP, which is finally solved 
through an iterative procedure. For this purpose, Karuppiah et al. solved the problem of the optimal synthesis of 
integrated water networks by first formulating a general superstructure as a nonlinear programming problem, 
which is then solved through a spatial branch-and-bound algorithm where the nonconvex terms are approx-
imated to obtain a simplified problem and get tight lower bounds on the global optimum [22]. Similarly, Ahme-
tovic et al. presented an optimization strategy for large-scale process water networks expressed as NLP or 
MINLP, where the bounds on the variables are obtained by solving general equations derived by physical in-
spection [23]. 

Recent works have also extended the complexity of the mass integration problem formulation. This includes, 
for instance, multi objective optimization of waste water integration problems with multiple pollutant substances 
[24]-[26], simultaneous mass and property integration considering also thermal constraints [27], and the synthe-
sis of optimal water networks in the case of time-variable configurations [28]. 

In all the approaches mentioned above, the main focus is to find the optimal solution of the respective mass 
integration problem (e.g., proposing a final optim0al design of a direct recycling or mass exchange network) with-
out proposing a sequential order of actions to reach this optimal solution. However, creating an order of integra-
tion actions can be of special interest in practical engineering problems where the optimal overall solution can-
not be realized at once but only as a sequence of steps. Some reasons can be significant deviations in the actual 
performance of the integration steps (e.g., because of modeling uncertainties or simplifications), the fact that it 
may not be a priori known if all the necessary integration steps will be executed (e.g., because of time and capi-
tal expenses limitations considering also the relative significance of the integration step) or, due to process ope-
rability reasons, the transition to the optimal integration design has to be practically sequential (e.g., to avoid 
production loss through extended shut-down). A further more qualitative reason refers to the enhanced interpre-
tability of the proposed solutions that is often critical for the implementation of new designs in industrial prac-
tice. 

This work addresses this problem by proposing a new algorithm for optimal ordering of the process sinks in 
direct recycling mass integration problems. The order consists in selecting the optimal sink at a specific integra-
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tion step when the selection of the previous steps and the remaining process sources are given, ensuring also that 
the overall optimal direct recycling target is reached. The latter is achieved through a succession of preemptive 
goal programming (PGP) problems, namely of optimization problems characterized by more objectives at dif-
ferent priority levels [29], which in this case are the amount recycled to a process sink and the purity of the 
sources that have been used for this task. This approach ensures to reach the overall direct recycling target simi-
larly to the sink composition and source prioritization rules proposed by El-Halwagi [6]. This study also identi-
fies conditions, under which, for a particular cardinality of the solution (i.e., number of integration steps), the 
group of sinks is not only sequentially but also globally optimal (i.e., with respect to all the solutions with the 
same cardinality). Moreover, a statistical analysis for a wide range of direct recycling scenarios demonstrates 
how frequently the sequential optimality corresponds also to overall optimality for a given number of integration 
steps. The usefulness of the ordering algorithm for the process sinks is illustrated in two case studies. The first 
refers to a sequential “switch off/switch on” operation of process units for realizing a mass integration plan. The 
second refers to realizing a mass integration plan in process units with relevant nonlinear behavior with respect 
to the impurities in recycle streams and discusses the potential benefits of the sequential approach proposed 
herein. Finally, this study also highlights the further needs for methodological research in this direction. 

2. Methods 
2.1. Direct Recycling Problem Formulation 
From the classic direct recycling perspective, a generic chemical process is characterized by the presence of 
waste streams comprising a target compound which in presence of several impurities can be partially or fully 
recovered through direct recycling to suitable process units. Such waste streams are referred to as process 
sources and all the process units that can accept recycled waste streams are named process sinks. Typically, 
fractions of process sources are mixed together with an external fresh source (e.g., pure stream of the target 
compound being recycled) to satisfy the required amount of the target compound in a given process sink. At the 
same time, each process sink can accept a predefined maximum allowable level of impurity. 

With this formulation (Figure 1), a linear optimization problem can be defined to maximize the amount of 
process sources recycled to process sinks and equivalently minimize the required amount of fresh resources: 

( ) ( )Maximize or Minimize w ,here 1 ,rec rec
n n sinksn nW w F f n N= = =∑ ∑              (1) 

s.t: 
( ), 1, ,rec waste

i n i i sourcesnw w w i N= + ∀ =∑                                (2) 

( ), 1, ,rec
n n i n sinksig w f n N= + ∀ =∑                                  (3) 

( ), 1, ,rec
n n n i i sinksig z w y n N= ∀ =∑                                   (4) 

( )max0 1, ,n n sinksz z n N≤ ≤ ∀ =                                       (5) 

( )0 1, ,n sinksf n N≥ ∀ =                                            (6) 

( ) ( ), 0 1, , and 1, ,rec
n i sources sinksw i N n N≥ ∀ = ∀ =                       (7) 

( )0 1, ,waste
i sourcesw i N≥ ∀ =                                         (8) 

where rec
nw  is the amount recycled to process sink n (i.e., ,

rec rec
n n iiw w= ∑ ), fn is the amount of fresh resource 

used in process sink n, ,
rec
n iw  is the amount of process source i that is recycled to process sink n and waste

iw  is 
the amount of process source i that is not recycled and therefore is treated as waste, iy  is the impurity fraction 
of the process source i, nz  is the impurity fraction at the process sink n, max

nz  is the maximum allowable level 
of impurity of the process sink n, iw  is the amount of waste of each process source, ng  is the required amount 
of the target compound at each process sink, recW  and F are the total amounts of recycling and fresh resources 
used, respectively. 

It should be noted that in this particular problem formulation there is one type of fresh source assumed to be 
100% pure, all possible impurities are lumped into one, and there is no minimum allowable level of impurity at 
any process sink. Typically, the values of ng  and max

nz  at every process sink are known, as well as the waste  
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Figure 1. Process representation with sinks, intermediate units, sources and re- 
cycling (the symbols are defined in Equations (1) to (8)).                                           

 
loads ( iW ) and their compositions ( iy ). Thus, solving the linear problem consists in finding the optimal values 
of ,

rec
n iw . 

This problem is based on the simplifying assumption that the impurities in the process sources recycled back 
to the process sinks after integration have a negligible impact on the respective process output variables, at least 
as long as the maximum allowable impurity constraints are satisfied; in this way, there is no need to include any 
process model that describes the impact of the recycled impurities on the performance of the process units. This 
assumption practically allows this kind of mass integration problem to be linear and solved to global optimality. 
Typically, there may be more than one optimal solutions, characterized by different connections among process 
sources and sinks. 

2.2. Ordering Algorithm 
Solving the direct recycling problem, as presented above, leads to an optimal target in the form of minimum 
fresh sources or maximum recycling of a target compound and one (of possible many or even infinite) optimum 
source-to-sink connectivity pattern that corresponds to the optimal target. In large problems (i.e., with many 
sources and sinks), the structure of the global solution can be quite complicated, impractical to realize in its full 
extent or all at once, and difficult to interpret. Additionally, significant simplifications may have been made in 
the problem formulation and this may have an impact on the reliability of the overall solution of the direct recy-
cling problem from industrial practice point of view. 

For these reasons, a sequential methodology implying some ordering of recycling actions can be beneficial. In 
principle, it would be desirable that a sequential method can also lead to the same overall optimum of the super-
structure approach, if executed in all its steps. It is also important for such an approach to result in a decreasing 
gradient of the respective cumulative curve for the recycling loads as a function of the steps of the sequential 
method; in this way, the user can terminate the computational procedure quite in advance without having to 
compute many subsequent steps of marginal improvement. It is also important to know if the obtained optimum 
at any termination point is also globally optimum given the number of steps (i.e., not only sequentially optimum 
in the sense that an optimum is found at any step given the decisions made at previous steps) or at least to have a 
list of necessary conditions for this to be true. 

One can think of many ways to define the concept of sequential steps in the direct recycling problem. For in-
stance, one step of the sequential method could be defined as one source-to-sink connection (i.e., using the ter-
minology of the direct recycling formulation this corresponds to the variable ,

rec
n iw ). In this work, we present an 

ordering algorithm for the process sinks of the direct recycling problem, the order being based on the total re-
cycled flows from all process sources to each sink ( ),

rec rec
n n iiw w= ∑ . Thus, one step of the sequential method is 

defined as the selection of the optimal process sink to integrate with the available process sources. The sinks in-
tegrated in previous steps and part of the respective sources assigned to them are kept fixed (i.e., they are elimi-
nated from the rest of the sequential selection procedure). Therefore, at each step there is a remaining set of 
process sinks and process sources to which PGP is applied to find the optimum sink and process sources recy-
cling waste loads to it. Figure 2 presents schematically this sequential logic of the ordering algorithm for an 
example of three process sinks. Figure 3(a) and Figure 3(b) present in detail the steps of the ordering algorithm 
and the PGP applied to its step, respectively. The following remarks should be made with respect to the applica-
tion of the ordering algorithm. 

Remark-1: In Figure 3(a) the set of available process sources (SRavj) is updated at every process sink selec-
tion step (j) according to the procedure of box-1 of the algorithmic scheme, which is illustrated in example-1. 

Example-1 
At some process sink selection step j of the algorithm there are three available process sources, namely SR1  
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Figure 2. Schematic representation of the sequential logic of the ordering algorithm for an example of three process sinks. 
The gradual depletion of process sources is graphically shown as less intense gray shading.                                     
 

 
(a) 

 
(b) 

Figure 3. (a) Sequential algorithm for ordering the process sinks in a direct recycling mass integration problem; (b) Pre- 
emptive goal programming (PGP) as an inherent step of the sequential ordering algorithm.                                      
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(50 kg/sec), SR2 (40 kg/sec), and SR3 (60 kg/sec), the values in parenthesis denoting the loads of the sources. 
This means that { }1 2 3SRav SR ,SR ,SRj = . After following the procedures described in box-2 to box-7 of Fig-
ure 3(a), a process sink is selected (SKmax) to which the process sources in SRavj recycle the maximum possible 
load and impurity. For instance, this could be a process sink with ng  of 50 kg/sec, where according to the im-
purity concentrations in SR1, SR2, SR3 respectively and the maximum allowable impurity level of the sink, 20 
kg/sec and 30 kg/sec are recycled from SR1 and SR2, respectively, and no recycle from SR3. This means that 
SRsel and SRnew in box-8 of Figure 3(a) can now be defined in the following way: { }1 2SRsel SR ,SR=  and 

{ }1 2SRnew SRnew ,SRnew=  where SRnew1 and SRnew2 have now remaining loads of 30 kg/sec and 10 
kg/sec, respectively. Moving now to the next step (j = j + 1) and updating the available process sources set in 
box-1 of Figure 3(a), { }( ) { }1 1 2 3 3SRav SR ,SR ,SR SRsel SRnew SR SRnewj+ = − =   = {SRnew1, SRnew2, 
SR3}. 

Remark-2: The impurity concentrations in the process sources are assumed not to change after closing the re-
cycle loops. However, this is not a particularity of the sequential ordering algorithm presented here, since the 
same assumption is implicitly made in the general formulation of direct recycling problems (i.e., in its LP form), 
when it is stated that the recycled impurities do not affect the performance of the process sinks and, consequent-
ly, the composition of the process sources does not change. 

Remark-3: As shown in box-8 of Figure 3(a), SKsel is a sequence (i.e., a set with ordered elements) denoted 
as { }SKsel SKsel j= . Thus, SKsel includes the ordered sinks and at the same time performs the reduction of 
the set of available process sinks SKavj for every process sink selection step (i.e., box-2 of Figure 3(a)). 

Remark-4: From box-3 to box-5 there is an internal loop at every process sink selection step. In this loop the 
maximum recycled amount to each process sink in SKavj is independently calculated (i.e., by solving a LP such 
as the one described by Equations (1) to (8) with Nsinks = 1) considering the process sources in SRavj. It should 
be reminded here that the solution of each LP problem may not be unique, since more than one (or even infinite) 
combinations of the process sources may be maximizing the recycled amount ( rec

nw ) to a given process sink 
SKn. 

Remark-5: After finding SKmax (box-6 of Figure 3(a)) the PGP procedure follows (box-7 of Figure 3(a)), 
which is presented in Figure 3(b). In this, the level of impurity is maximized or, equivalently, the recycled 
amount of the purest sources is minimized (box 7.2 of Figure 3(b)) by replacing the purer recycled streams with 
more impure ones. This is realized through a succession of linear problems in a PGP formulation, namely keep-
ing constant each objective found in one LP as an additional constraint for the next LP in succession. 

Remark-6: In case that in a process sink selection sept j, more than one SKmax are found in box-6 of Figure 
3(a), they all undergo the procedure of box-7 of Figure 3(a), and the sink with the highest flow of recycled im-
purity has the precedence and is selected in SKsel. 

Remark-7: Since the availability of process sources at SRavj is more limited than at SRavj−1, it follows that 
1SKmax SKmaxj j−≤ . This means that the slope of the cumulative curve representing the total recycled amount 

at each process selection step will be decreasing. 
Remark-8: At the end of the ordering algorithm, when all the sinks have been selected for recycling, the total 

amount recovered from the waste streams corresponds necessarily to the one calculated in the general LP prob-
lem (Equations (1) to (8) considering all the sinks simultaneously). Actually, it is already known that starting 
from any sink and following a similar procedure like the one described in Figure 3(b), a unique target for the 
direct recycling can be reached. The procedure presented here is simply a specific, not random, selection of the 
process sinks, which can, therefore, be considered as a subcase of the random sink selection proposed by 
El-Halwagi [6]. Of course, the ordering algorithm can never find a superior total amount recycled, since it is 
known that the general LP formulation can be solved to optimality. 

In the same way, a subgroup of process sinks is characterized by a fixed target for maximum recycle, given a 
set of available process sources. Therefore, at a general step of the process sink ordering algorithm, the total 
amount of recycle corresponds necessarily to the target quantities calculated in the general LP problem (Equa-
tions (1)-(8)) considering that group of n process sinks. The ordering algorithm is further illustrated in exam-
ple-2. 

Example-2 
The sets of process sinks and process sources in Table 1 are considered to realize mass integration through 

direct recycling. These designate the initial SKav and SRav1 sets, respectively. If no mass integration was per-
formed, the process sinks would require 280 kg/sec of the fresh target compound, while 310 kg/sec of waste 
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Table 1. Process sinks and process sources of example-2.                                                            

 
Process sinks 

Required amount  
of target compound (kg/sec) 

Maximum allowable  
impurity (% w/w) 

Maximum allowable  
impurity (kg/sec) 

SK1 50 2 1 

SK2 40 5 2 

SK3 60 10 6 

SK4 30 20 6 

SK5 100 25 25 

 
Process sources 

Waste load 
kg/sec 

Impurity content 
(% w/w) 

Impurity content 
(kg/sec) 

SR1 30 1 0.3 

SR2 40 5 2 

SR3 50 10 5 

SR4 50 15 7.5 

SR5 40 20 8 

SR6 100 30 30 

 
should be disposed. 

In this case, for the first process selection step (j = 1), one may heuristically start from SK5 in box-3, namely 
the sink with the maximum required amount of target compound; if this amount could be recycled from the 
available process sources, there would be clearly no further need to check the rest of the sinks at this process se-
lection step. One solution of the respective LP maximization problem could be to recycle the waste loads of SR3 
and SR4. This would satisfy recycling 100 kg/sec to SK5, but only 12.5 kg/sec of impurities would be recycled, 
while SK5 can take up to 25 kg/sec of impurities. According to the PGP problem in box-7, the goal is to succes-
sively replace purer with more impure sources to achieve the goal of maximizing the impurity (or equivalently 
minimizing the use the purer sources at earlier steps of the process sink selection). It can be easily verified that 
solving the respective PGP problem results in using SR4 (6.7 kg/sec), SR5 (40 kg/sec) and SR6 (53.3 kg/sec). 
This recycles 100 kg/sec to SK5 and 25 kg/sec of impurity, which is its maximum allowable impurity level. Thus, 
in box-8 of Figure 3(a), { }SRsel SR4,SR5,SR6= , { }SRnew SR4new,SR5new,SR6new= , where SR4new = 
43.3 kg/sec, SR5new = 0 kg/sec and SR6 = 47.7 kg/sec, while { } { }1SKsel SKsel SK5= = . Finally, making the 
first algorithmic loop to define the new available set of sources (box-1 of Figure 3(a)), it leads to 2SRav =  { }SR1,SR2,SR3,SR4new,SR6new , SR5new being eliminated since all of it has been recycled in this process 
sink selection step. 

Using the same heuristic like before for the next process selection step (j = 2), it now makes sense to start 
from SK3 in box-3. Doing so, one can easily find that the maximum required amount of target compound (60 
kg/sec) can be indeed recycled to SK3 and the impurities can be maximized and reach again the maximum al-
lowable impurity level with the following solution: SR2 (5 kg/sec), SR3 (50 kg/sec) and SR4new (5 kg/sec). 
Thus, in box-8 of Figure 3(a), { }SRsel SR2,SR3,SR4new= , { }SRnew SR2new,SR3new,SR4new= , where 
SR2new = 35 kg/sec, SR3new = 0 kg/sec and SR4new = 38.3 kg/sec, while { } { }2SKsel SKsel SK5,SK3= = . 
Then, making the second algorithmic loop to define the new available set of sources (box-1 of Figure 3(a)), it 
leads to { }3SRav SR1,SR2new,SR4new,SR6new= , SR3new being eliminated since all of it has been recycled 
in this step of the process sink selection. 

Following this procedure until all sinks are ordered (j = 5, not presented here because of space limitations) 
results in the following ordering of process sinks { } { }5SKsel SKsel SK5,SK3,SK1,SK4,SK2= = . The respec-
tive cumulative curve of the recycled amounts is presented in Figure 4. As it can be seen, 261.3 kg/sec are  
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Figure 4. Cumulative recycling curve (solid line) according to the sequential ordering algorithm applied 
to example-2. The dashed line represents the cumulative curve of the required amount of the target 
compound for the same order of the process sinks.                                                        

 
recycled from the process sources to the process sinks, reducing the process requirements for fresh target com-
pound to only 18.7 kg/sec and the respective waste streams to 48.7 kg/sec. It can be easily verified that the same 
targets are calculated by the general LP problem of Equations (1) to (8), when all process sinks are considered 
simultaneously. 

Comparing the recycling cumulative curve with the cumulative curve of the required amount of target com-
pound, it can be seen that no fresh compound is required in process sinks SK5 and SK3. It can also be seen that 
the cumulative recycling curve has a decreasing slope, which, however, in this case does not lead to marginally 
increasing recycling steps, and, therefore, it would not make sense to terminate the algorithm before considering 
all process sinks. 

2.3. Analysis of the Optimality of the Process Sinks Ordering 
The ordering algorithm assures the conditional optimality of the process sink selection at a given algorithmic 
step (i.e., given the previously selected process sinks) and also that the recycled amount to it cannot be superior 
to any previous one with the available set of process sources. However, it does not guarantee that for a given 
cardinality of the process sink selection (i.e., ordering the first n sinks out of the totality of Nsinks) the sequential 
procedure leads to the maximum cumulative recycling among any other group of n sinks. Nevertheless, one tri-
vial condition can point out whether another group of n sinks has the potential to lead to a higher recycled 
amount or, instead, the first n sinks of the ordering algorithm are globally optimal. The condition requires that 
the cumulative recycling to the first n ordered process sinks is superior to the cumulative required amount of the 
target compound of any other group of n sinks. This is expressed by Equation (9): 

( ) ( ) ( ) ( )
{ } { }

1 2\1 1 2\1,2, , 1

1 2 1 2, , , , , ,
k k knn n

k k kn n

R R R G SK G SK G SK

SK SK SK SK SK SK
−+ + + ≥ + + +

∀ ≠



 

 

                    (9) 

where ( )\1, , 1n nR −

 refers to the recycled amount to process sink n ( rec
nw ) given the n − 1 previously ordered 

process sinks and ( )knG SK  refers to the required amount of the target compound at a process sink kn (i.e., 
with respect to the notation in Equations (1) to (8), ( )kn knG SK g= ). 

Thus, we can make the following statements: 
Statement-1: Any group of process sinks that violates condition (9) may be characterized by a higher target  
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for maximum recycling (i.e., such a group is a candidate for outperforming the ordered group of process sinks 
and thus it should be further tested, for example, by solving the respective linear optimization problem, ex-
pressed by Equations (1) to (8), for this specific candidate group of process sinks. 

Statement-2: If no group violates the condition (9), then the ordering algorithm has identified the globally 
maximum recycling for the cardinality of sinks at the specific step of the process sink selection. Therefore, the 
condition (9) is a necessary condition. 

For instance, in the previously presented example-2, at the third process sink selection step, where 
{ }5 3 1SKsel SK ,SK ,SK= , the condition (9) takes the form: 

( ) ( ) ( ) { } { }5 3\5 1\5,3 1 2 3 1 2 3 5 3 1, , , , .,k k k k k kR R R G SK G SK G SK SK SK SK SK SK SK+ + > + + ∀ ≠       (10) 

In this particular example, 5 3\5 1\5,3 204 kg secR R R+ + =  and no other triplet of process sinks exists that vi-
olates the condition (10). Thus, at this process sink selection step, the sequential algorithm demonstrates not on-
ly conditional but also global optimality.  

3. Case Studies and Results 
3.1. Case Study-1: Statistical Evaluation of the Performance of the Ordering Algorithm 
Since the ordering algorithm does not always guarantee global optimality for a given cardinality of ordered pro- 
cess sinks (i.e., other than the first and the last step of the algorithm, namely when only the first sink or all the 
sinks of the direct recycling problem are ordered), it is interesting to test the frequency of such cases under dif-
ferent conditions. Thus, a thorough computational screening of direct recycling problems was performed includ- 
ing various factors differentiating the scenarios tested. Table 2 summarizes these factors and their levels of dif-
ferentiation defining the scenarios tested. 

The first factor refers to the target compound for recycling with three levels of differentiation, namely inert, 
generated or consumed compounds in the process system. The tested levels of depletion or excess of generation 
for the last two cases range from 10% to 90% with respect to the fresh source required before any recycling. The 
second factor refers to cases with either higher number of sources or sinks, the number of sources and sinks 
ranging each from 1 to 15. The third factor refers to the type of sampling with respect to the loads and the im-
purity concentrations of the process sources and the required amount of target compound and maximum allowa-
ble level of impurity of the process sinks. Three types of sampling were considered: latin-hypercube without 
space filling, allowing repetitions and totally randomized. 

Combinations of these factors have been used to define the different scenario categories (e.g., consumed 
compound with 90% depletion, higher number of process sources than sinks and totally randomized sampling, 
may refer to one combination of factors defining one scenario). Multiple samples were created (i.e., 1000 for 
each sub-problem) based on the size of the problem (i.e., number of sinks) and the loads and impurity combina-
tions. 

For the evaluation of the scenarios, three indices were defined (Equations (11)-(13)): 

1 v sinksInd N N=                                     (11) 

2 h sinksInd N N=                                     (12) 

3 2 1Ind Ind Ind=                                    (13) 
 
Table 2. Factors considered in creating diverse direct recycling scenarios (in parenthesis the abbreviated name is given for 
every level of differentiation).                                                                                    

Factors of differentiation Levels of differentiation 

Type of target compound to be recycled Inert (P1) Depleted (P2) 
10 to 90% 

Generated (P3) 
10 to 90% 

Number of process sources and sinks Sources > sinks  Sinks < sources 

Type of sampling Latin hypercube (LH) Allowing repetitions 
(Rand) 

Totally random 
(Totrand) 
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where vN  is the number of cases where condition (9) was violated, hN  refers to those cases among vN  
which reach a higher recycling than the one proposed by the sequential ordering algorithm for a given process 
sink selection step, and sinksN  is the number of sinks of the specific scenario tested. 

The number of sinks obviously defines the steps of the process sink selection and, thus, also the potential vi-
olation points for condition (9). Therefore, 1Ind  and 2Ind  are normalized to sinksN  so as to compare lumped 
cases with different number of sinks (e.g., all cases with more sources than sinks as one “population” for the sta-
tistical analysis) through aggregated statistical metrics (e.g., mean values, standard deviations etc.). Since sinksN  
refers also to the number of sequential steps of the ordering algorithm, 1Ind  values around 1, for instance, 
means that one group of sinks per process sink selection step, on average, is violating the condition (9). Similar-
ly, 2Ind  values around 1 means that one group of sinks per process sink selection step, on average, recycles 
more than what is proposed by the sequential ordering algorithm and, thus, 3Ind  values close to 1 means that 
almost all of the cases that violated the condition (9) achieve, indeed, a higher recycling than what is proposed 
by the sequential ordering algorithm. 

The results of the statistical evaluation on the basis of the three indices and the lumped cases of Table 2 are 
presented in Figure 5. For instance, P1 refers to lumping all scenarios where the target compound resembles the 
behavior of an inert compound, namely the total amount of the compound in the process sources is equal to the 
total amount required in the process sinks. This means that this case includes scenarios with all three different 
types of sampling, more sources than sinks and vice versa. From the results in Figure 5, it can be inferred that a 
significant number of groups of process sinks for each process sink selection step violates the condition (9), 
since the values of 1Ind  are significantly higher than 1. This is more evident in the cases of depleting target 
compounds (i.e., P2) and more process sinks than process sources (Sinks > Sources). Nevertheless, the values of 
the other two indices are extremely low. For instance, according to the values of 2Ind , the number of groups of 
process sinks with superior performance compared to the respective ordered groups of process sinks of the se-
quential algorithm are two to three orders of magnitude lower than the process sink selection steps (i.e., 2Ind  
ranges between 0.002 and 0.006). Similarly, according to the values of 3Ind , on average only 0.01% of the 
groups violating the condition (9) outperform the group of sinks selected by the sequential ordering algorithm at 
each selection step. This could also indicate that stricter conditions than the condition (9) should be identified 
for a more efficient screening of those groups of process sinks with the potential to outperform the ordered 
groups of process sinks with the same cardinality. If necessary and sufficient conditions can be identified, then 
obviously indices such as 2Ind  and 3Ind  will be redundant. 

A more detailed look into sub-cases of the lumped P2 case is provided in Figure 6 and Figure 7. More spe-
cifically, in Figure 6 the impact of the level of depletion is analyzed for the scenarios in the P2 case, which was 
one of the cases with relatively high values for 1Ind  and 2Ind . It is obvious that there are two opposite 
 

 
Figure 5. Trimmed mean values (5% - 95% interval) of Ind1 (left y-axis), Ind2 and Ind3 (right y-axis) for the 
lumped categories of Table 2.                                                                                     
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Figure 6. Trimmed mean values (5% - 95% interval) of Ind1 (left y-axis), Ind2 and Ind3 (right y-axis) for sub-cases 
with respect to different depletion levels for the P2 lumped category of Table 2. The numerical index refers to the level 
of remaining compound in the process sources with respect to the required amount in the process sinks (e.g., P2_10 
means that 10% of the required amount of the target compound in the process sinks is found in the process sources, the 
rest 90% being depleted in the intermediate process units).                                                        

 

 
Figure 7. Trimmed mean values (5% - 95% interval) of Ind1 (left y-axis), Ind2 and Ind3 (right y-axis) for various sub- 
cases of the P2 lumped case of Table 2.                                                                                     

 
trends as the level of depletion is decreasing (i.e., P2_10 means that only 10% of the required amount of the tar-
get compound in the process sinks exists in the process sources, while the rest 90% is depleted in the interme-
diate process units): the values of 1Ind  generally decrease while the values of 2Ind  and thus also of 3Ind  
increase. Comparing these trends with the P1 and P3 values of the indices in Figure 5, it can be inferred that the 
more balanced the amounts of the targeted compound for recycling are between process sinks and process 
sources, the higher the chance (although in absolute numbers still very low) to identify groups of process sinks 
outperforming those of the sequential ordering algorithm with the same cardinality. In the case of imbalance 
between these amounts, the case of depleted target compound (P2) is more sensitive with respect to the exis-
tence of such groups. 
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Other sub-cases of P2, such as those presented in Figure 7, do not appear to significantly reduce the 1Ind  
values, while 2Ind  and 3Ind  values remain generally very low. For the 2Ind  and 3Ind  values, the im-
pact of a high depletion level of the target compound is dominant compared to other factors; this is exemplified 
by the comparison between the cases P2_Sinks > Sources and P2_10_Sinks > Sources, considering also the val-
ues for P2_10 presented in Figure 6. A detailed list of the statistical evaluation for all the scenarios tested is 
provided in ESI (Part 2).  

3.2. Case Study-2: Gradual Process Retrofitting 
One particular case of interest for the application of the sequential ordering algorithm is when the realization of 
mass integration through direct recycling can be carried out only by a gradual retrofitting, namely reducing the 
fresh source of the target compound to one process sink at a time. In this case study, a pharmaceutical process 
producing an intermediate has to undergo mass integration by recycling of its most relevant solvent, the 
N-methylpyrrolidone, whose price is 2500 $/tonne. Table 3 provides the respective sets of the process sources 
and sinks. 

The recycling of the process sources to the sinks can be realized without serious problems that would interrupt 
the production of the main chemical, if one sink is disconnected from the rest of the process at a time, keeping 
all the other sinks in normal operation. Before any process sink is disconnected from the rest of the process, it 
discharges enough amount to a buffer tank to keep the process operating with the same load discharged into the 
process sources. Then, it is linked with the pipes of the process sources to receive the recycling load and, subse-
quently, reconnected with the rest of the process. The buffer tank is then used for the same purpose in the next 
process sink, and so on. Disconnection of the sink and reconnection with the process sources requires in total 3 
days. This means that realizing any direct recycling strategy for all 5 process sinks requires 15 days. 

In this kind of problem, the sequential ordering algorithm can provide the optimal order of the sinks so that 
the sinks with the highest recycling are disconnected and reconnected first. In this way, fresh resources are saved 
during the intermediate period of realizing the mass integration strategy, although at the end of the procedure 
other sink orders would also recycle the same total amount. Therefore, it is convenient to integrate the process 
sinks following the cumulative curve to obtain the highest economic saving from the first step. 

The application of the algorithm results in the process sink ordering presented in Table 4, while Table 5 
 
Table 3. Process sinks and process sources of the case study-2.                                                         

 
Process sinks 

Required amount 
of target compound (kg/hr) 

Maximum allowable impurity 
(% w/w) 

Maximum allowable impurity  
(kg/hr) 

SK1 300 1 3 

SK2 250 2 5 

SK3 280 10 28 

SK4 150 20 30 

SK5 100 30 30 

 
Process sources 

Waste load  
(kg/hr) 

Impurity content 
(% w/w) 

Impurity content 
(kg/hr) 

SR1 100 5 5 

SR2 120 10 12 

SR3 180 20 36 

SR4 120 30 36 

SR5 150 50 75 

SR6 150 70 105 
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Table 4. Ordered process sinks according to the sequential ordering algorithm for the case study-2.                            

Ordered 
sinks 

Recycled amount 
per sink 
(kg/hr) 

Cumulative 
recycled 

amount (kg/hr) 

Cumulative solvent 
savings 

($) 

Sources connected to sink (kg/hr) 

SR1 SR2 SR3 SR4 SR5 SR6 

SK3 275 275 49500 100 120 55 0 0 0 

SK4 141.7 416.7 124506 0 0 125 16.7 0 0 

SK5 100 516.7 217512 0 0 0 100 0 0 

SK2 11.3 528 312552 0 0 0 3.3 8 0 

SK1 6 534 408672 0 0 0 0 6 0 

 
Table 5. Alternative ordering of process sinks (i.e., not based on the sequential ordering algorithm) for the case study-2.        

Ordered 
sinks 

Recycled amount 
per sink 
(kg/hr) 

Cumulative 
recycled amount 

(kg/hr) 

Cumulative  
solvent 

savings ($) 

Sources connected to sink (kg/hr) 

SR1 SR2 SR3 SR4 SR5 SR6 

SK1 60 60 10800 60 0 0 0 0 0 

SK3 230 290 63000 40 120 70 0 0 0 

SK2 25 315 119700 0 0 25 0 0 0 

SK4 128.3 443.3 199494 0 0 85 43.3 0 0 

SK5 90.7 534 295614 0 0 0 76.7 14 0 

 
presents an alternative solution (i.e., not obtained by the sequential ordering algorithm), resulting in the same 
overall recycled amount. It is worth noticing that, although the two solutions have different structure (i.e., 
source-to-sink connectivity), the same total amount is recycled from each process source. However, these two 
solutions have significantly different economic performance. The solution based on the sequential ordering al-
gorithm saves 113058 $ more in this intermediate period for realizing the full source-to-sink connectivity of the 
direct recycling solution. The reason for the better performance of the sequential ordering algorithm lies in the 
property of the monotonically decreasing gradient of its respective cumulative curve of the recycled amount. 

3.3. Case Study-3: Direct Recycling in Processes Considering Their Nonlinear Behavior 
Another possible application of the methodology is when the hypothesis of negligible impact on the process sink 
performance by the recycled impurities is not anymore valid. From modelling point of view, this means that a 
detailed model of the process sink is available, which can describe the impact of the impurities on the process 
sink output streams, this impact being nonlinear in the general case. In such cases, the calculation of the target 
for mass integration through direct recycling requires to solve a NLP optimization problem, whose solution can 
be hard to calculate. Besides the computational difficulties, another practical issue is related to the frequent use 
of advanced process simulators for rigorous modelling of the process units, which are not typically designed to 
handle NLP superstructure optimization. Moreover, in industrial practice, it is often required to verify and un-
derstand the impact of any process change (e.g., such as recycling impure process streams), even when rigorous 
process models are available. 

To tackle this problem, the sequential ordering algorithm offers an interesting alternative; the optimal order-
ing of process sinks obtained by solving the respective linear representation of the problem can be considered as 
the basis for a subsequent sequential procedure to calculate the optimum recycling target of the nonlinear repre-
sentation of the process. Thus, the steps of this new sequential procedure follow those of the ordering algorithm 
applied to the linear representation of the problem. However, because of the nonlinear relations among process 
streams and units, the impurity content of the process sources may change significantly when the recycling is 
realized; this in turn can cause the violation of the maximum allowable impurity constraints of the process sinks, 
if the recycling loads are not properly adjusted. This adjustment of the recycling loads is performed sequentially 
according to the order of the process sinks. This has the advantage of studying the nonlinear performance of on-
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ly one sink at a time, starting from the sinks with the highest recycling loads, which are more likely to have a 
greater impact on the overall process performance. 

As an example, the process depicted in Figure 8 is considered for treating compound B. In the continuously 
stirred 1 m3 reactor, the following reaction takes place at 150˚C and 1 bar: 

2 .A B C D+ ↔ +                                        (14) 
The kinetics follow the power law with respect to compound concentrations, with Arrhenius expressions for 

the kinetic constants both for the direct and reverse reactions. The evaporation at flash-1 takes place at 150˚C 
and 1 bar, the decanter operates at 50˚C and 1 bar, and the evaporation at flash-2 at 70˚C and 1 bar. The compo-
sitions of the streams for both the vapor-liquid and liquid-liquid phase separation at thermodynamic equilibrium 
are calculated with the Non-Random-Two-Liquid (NRTL) method. These kinetic expressions and thermody-
namic models introduce strong nonlinearities in the performance of the respective process units. A full stream 
table of the process is provided in ESI (Part 3). 

In this case study, it is desired to minimize the use of the fresh amount of compound A in the process sinks 1, 
2, 3 and 4 through the recycling of the process stream 16 (“process source”). The relevant process sinks and 
source data are provided in Table 6. 

First, the recycling target according to the linear representation of the problem is calculated resulting in 7.11 
kmol/hr. The respective cumulative curve is presented in Figure 9. Subsequently, the connections between the 
process source and the sinks are sequentially realized in a process simulator capturing the nonlinear process be-
havior, starting from the first ordered sink. Each time, the recycled flow is reduced in case of violation of the 
maximum allowable level of impurity of the respective sink. The global target found in this way is 6.95 kmol/hr 
and the respective cumulative curve is presented in Figure 9. Solving the respective overall NLP superstructure 
problem (i.e., with the help of a Sequential Quadratic Programming (SQP) procedure embedded in the process 
simulator) results in 6.97 kmol/hr and the equivalent cumulative curve is presented in Figure 9. In this case, the 
sequential procedure has provided a recycled target that is approximately 0.3% inferior compared to the rigorous 
solution (i.e., the sequential ordering algorithm adapted to the nonlinear problem formulation has an almost 
identical cumulative curve compared to the equivalent curve of the SQP solution). They both recycle approx-
imately 2% lower than the solution obtained by the linear problem formulation. Both deviations are only indica-
tive in a rather simple direct recycling problem. It is a matter of our on-going research to test the performance of 
the adapted sequential ordering algorithm in more complicated nonlinear problems with significantly more 
 

 
Figure 8. Process flowsheet of the case study-3.                                                                    



F. Marchione et al. 
 

 
172 

Table 6. Process sinks and process sources of the case study-3.                                                            

 
Process sinks 

Required amount 
of target compound (kmol/hr) 

Maximum allowable impurity 
(% mol/mol) 

Maximum allowable impurity  
(kmol/hr) 

SK1 13 20 2.6 

SK2 15 15 2.25 

SK3 10 5 0.5 

SK4 10 3 0.3 

 
Process sources 

Waste load 
(kmol/hr) 

Impurity content 
(% mol/mol) 

Impurity content 
(kmol/hr) 

SR1 100 79.5 79.5 

 

 
Figure 9. Cumulative curves based on the sequential ordering algorithm and a standard 
SQP superstructure solution for the case study-3. The dashed line refers to the linear 
representation of the problem, the black solid line to the nonlinear representation of the 
problem and the red solid line to the SQP superstructure solution.                                

 
process sources and sinks. This case study is only used to highlight a potential way to decompose a complicated 
NLP direct recycling problem with the help of the proposed sequential ordering algorithm for the process sinks. 

4. Conclusions 
The design of optimal mass integration networks often results in complicated superstructure formulations and 
solutions, which can be cumbersome to interpret and realize in practice. Therefore, in many cases a more struc-
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tured construction of the solution based on sequential approaches is advantageous. This work addresses this 
problem by proposing an algorithm for optimal ordering of the process sinks in direct recycling problems, which 
is compatible with the typical mass integration formulation and reaches the same recycling target in the case of 
the linear representation of the problem. The obtained order consists in selecting the optimal sink at a specific 
integration step given the selection of the previous steps and the remaining process sources. Such order is identi-
fied through a succession of preemptive goal programming problems, namely of optimization problems charac-
terized by more objectives at different priority levels. Indeed, the target for each sink is obtained by maximizing 
the total flow recycled from the available process sources to this sink and then minimizing the use of pure 
sources, starting from the purest one; the hierarchy is respected through a succession of linear optimization 
problems with a single objective function. 

In this study, the sequential ordering algorithm has undergone a thorough statistical test (case study-1) to 
identify the frequency of conditions under which, at a certain step, the algorithm has selected the group of sinks 
with the highest target for recycling (global optimality) among all the groups with the same cardinality. It has 
been shown that in the vast majority of the cases the algorithm identifies a globally optimum group of process 
sinks for each step of process sink selection: the most challenging cases are those where the process sinks are 
more than the process sources in inert or slightly decreasing target compound scenarios. Of course, the condi-
tional optimality is always guaranteed at each process selection step, while ensuring that at the end of the 
process sink ordering procedure the maximum amount of the target compound is recycled. It would be, however, 
useful to define simple, yet stricter algebraic conditions than those proposed herein, to efficiently identify these 
groups of process sinks that need to be tested for outperforming the process sinks of the same cardinality se-
lected by the sequential ordering algorithm.  

Two more case studies were conducted to demonstrate the usefulness of ordering the process sinks. In the 
case study of gradual retrofitting (case study-2), ordering the process sinks resulted in significant economic sav-
ings, compared to a solution with an equivalent recycling target but with different ordering strategy. In the case 
study considering the nonlinear characteristics of the process units with respect to the recycled impurity amounts 
(case study-3), the sequential ordering algorithm provides an interesting alternative for decomposing the overall 
NLP problem. The solutions may be by definition suboptimal compared to the overall NLP problem, but are 
significantly easier to compute, especially in practical applications where commercial process simulators are 
used, which are cumbersome to introduce into the NLP superstructure formulation. Although the potential is 
demonstrated in a simple case study, it is evident that further work is needed to optimally tune the use of the se-
quential ordering algorithm in this kind of problems of larger size. In this direction, one should try to minimize 
the optimality gap compared to the overall NLP problem and interpret the deviation from the solutions obtained 
by the linear problem representation. 

The sequential ordering algorithm can be properly adapted and extended to cover more aspects of the process 
integration framework, including heat integration, property integration, and mass exchange networks. This will 
result in a unified framework for sequential process integration, which can be used in parallel with the super-
structure problem formulations to enhance the realization and interpretability of the obtained solutions in com-
plicated integration problems. 
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Supplement. Electronic Supplementary Information (ESI) 
S.1. Global Optimality of a Group of Ordered Process Sinks 
As mentioned in the manuscript (Section 2.3), the sequential ordering algorithm does not guarantee global opti-
mality for a given cardinality of ordered process sinks (i.e., with the exception of the first and last step of the al-
gorithm, namely when only the first sink or all sinks are ordered). In the manuscript, we stated one simple con-
dition (Equations (9)) that can be used to identify groups of process sinks that may outperform, from a global 
optimality perspective, those selected by the sequential ordering algorithm for the same cardinality. We present 
the following two examples to illustrate the application of this condition.  

Example-1 
Let us consider the sets of process sinks and sources in Table S1. Applying the sequential ordering algorithm 

(i.e., not presented here in detail), the optimal ranking at the second selection step is SKsel = {SK1, SK3}. The 
respective recycled amount is 142.8 mol/sec and the amount of impurity is 32.1 mol/sec. 

The sum of the required amounts of the target compound at the process sinks SK2 and SK3 exceeds the cor-
responding recycled amount at the ordered sinks SK1 and SK3 of the sequential algorithm, namely: 

( ) ( )2 3 1 3/1185 142.8G SK G SK R R+ = > = +  

Therefore, the couple of process sinks {SK2, SK3} is a potential group that outperforms the selected group of 
sinks by the ordering algorithm (i.e., { }SKsel SK1,SK3= ). Indeed, it can be easily verified, for instance, that: 

2 3/2 1 3/1145.6 142.8R R R R+ = > = +  

Example-2 
Let us consider the sets of process sinks and sources in Table S2. This set comprises the same set of process 

sinks and sources like in example-1, the sources having now different loads. Applying the sequential ordering 
algorithm (i.e., not presented here in detail), the optimal ranking at the second selection step is SKsel =  { }SK1,SK2 . The respective recycled amount is 190.4 mol/sec and the amount of impurity is 31.1 mol/sec. 

The sum of the required amounts of the target compound at the process sinks SK3 and SK1 exceeds the cor-
responding recycled amount at the ordered sinks SK1 and SK3 of the sequential algorithm, namely: 

( ) ( )3 1 1 2/1240 190.4G SK G SK R R+ = > = +  
Therefore, the couple of sinks {SK3, SK1} is a potential group that outperforms the selected group of sinks 

by the ordering algorithm (i.e., { }SKsel SK1,SK2= ). In this case, it can be easily verified that the maximum 
amount that can be recycled to {SK3, SK1} is 190 mol/sec. 

Table S1. Process sinks and sources of example-1.                                                                  

 
Process sinks 

Required amount 
of target compound (mol/sec) 

Maximum allowable impurity 
(% mol/mol) 

Maximum allowable impurity  
(mol/sec) 

SK1 150 10 15.0 

SK2 95 17 16.2 

SK3 90 19 17.1 

SK4 80 2.5 2.0 

 
Process sources 

Waste load 
mol/sec 

Impurity content 
(% mol/mol) 

Impurity content 
(mol/sec) 

SR1 100 15 15 

SR2 90 40 36 

SR3 120 50 60 
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Table S2. Process sinks and sources of example-2.                                                                 

 

Process sinks 

Required amount  
of target compound (mol/sec) 

Maximum  
allowable impurity 

(% mol/mol) 

Maximum  
allowable impurity  

(mol/sec) 

SK1 150 10 15.0 

SK2 95 17 16.2 

SK3 90 19 17.1 

SK4 80 2.5 2.0 

 
Process sources 

Waste load 
mol/sec 

Impurity content 
(% mol/mol) 

Impurity content 
(mol/sec) 

SR1 180 15 27 

SR2 30 40 12 

SR3 30 50 15 

S.2. Statistical Evaluation of All Categories of Scenarios for the Optimality  
Performance of the Sequential Ordering Algorithm 

Tables S3-S5 present the statistical evaluation of the indices Ind1, Ind2, and Ind3, respectively, according to 
their definition in the manuscript for each category of scenarios. Diverse categories of scenarios were identified 
based on factors and their levels of differentiation described in Table 2 of the manuscript. The number of sce-
narios for each individual category refers to combinations of all the factors not characterizing the specific sce-
nario. 

For instance, the number of scenarios for the P2_10 problems refers to the case of a 10% remaining (i.e., 90% 
depleting) target compound in the process sources, the P2_30 problems refers to the case of a 30% remaining 
(i.e., 70% depleting) target compound in the process sources, and so on. Thus, summing up the number of sce-
narios for the problems for P2_10 up to P2_90 (i.e., 6900 for each type of these problems) results in the total 
number of scenarios for the P2 (all problems) case, namely 34500 scenarios. 

 
Table S3. Statistical evaluation of Ind1 according to the mean, median, standard deviation over the whole scenarios interval, 
as well as the trimmed mean over the 5% - 95% percentiles interval.                                                          

Categories of scenarios 
Ind1 

Mean Median Standard deviation Trimmed mean over 
[5% - 95%] percentiles 

All problems (75,900 scenarios) 69 2 244 22 

P1 (all problems, 6,900 scenarios) 47 2 176 16 

P2 (all problems, 34,500 scenarios) 113 4 319 53 

P3 (all problems, 34,500 scenarios) 28 1 139 7 

Sinks > sources (33,000 scenarios) 119 9 320 59 

Sinks < sources (42,900 scenarios) 30 1 153 5 

LH problems (25,300 scenarios) 60 2 229 17 

Rand problems (25,300 scenarios) 70 2 248 23 

Totrand problems (25,300 scenarios) 76 3 253 28 

P2_10 problems (6900 scenarios) 179 9 433 103 

P2_30 problems (6900 scenarios) 154 7 385 85 

P2_50 problems (6900 scenarios) 111 5 288 58 
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P2_70 problems (6900 scenarios) 72 4 211 33 

P2_90 problems (6900 scenarios) 51 2 181 19 

P3_10 problems (6900 scenarios) 20 1 125 4 

P3_30 problems (6900 scenarios) 22 1 122 4 

P3_50 problems (6900 scenarios) 28 1 146 6 

P3_70 problems (6900 scenarios) 32 1 147 8 

P3_90 problems (6900 scenarios) 39 2 154 13 

P1, sinks > sources (3000 scenarios) 86 8 249 39 

P1, sinks < sources (3900 scenarios) 17 1 72 5 

P2, sinks > sources (3000 scenarios) 189 24 403 119 

P2, sinks < sources (3900 scenarios) 56 2 217 15 

P3, sinks > sources (3000 scenarios) 56 4 202 20 

P3, sinks < sources (3900 scenarios) 7 1 43 2 

P1, LH problems (2300 scenarios) 33 2 120 13 

P1, rand problems (2300 scenarios) 47 2 180 15 

P1, totrand problems (2300 scenarios) 61 3 215 21 

P2, LH problems (2300 scenarios) 111 4 316 51 

P2, rand problems (2300 scenarios) 113 4 320 52 

P2, totrand problems (2300 scenarios) 116 5 320 55 

P3, LH problems (2300 scenarios) 14 1 90 3 

P3, rand problems (2300 scenarios) 32 1 153 8 

P3, totrand problems (2300 scenarios) 39 1 163 11 

P2_10, sinks > sources (3000 scenarios) 297 54 533 212 

P2_10, sinks < sources (3900 scenarios) 88 2 308 28 

P2_30, sinks > sources (3000 scenarios) 250 30 480 170 

P2_30, sinks < sources (3900 scenarios) 81 2 269 28 

P2_50, sinks > sources (3000 scenarios) 190 28 366 130 

P2_50, sinks < sources (3900 scenarios) 51 2 189 15 

P2_70, sinks > sources (3000 scenarios) 120 15 274 72 

P2_70, sinks < sources (3900 scenarios) 35 1 135 10 

P2_90, sinks > sources (3000 scenarios) 86 9 243 42 

P2_90, sinks < sources (3900 scenarios) 23 1 103 6 

P3_10, sinks > sources (3000 scenarios) 43 2 186 11 

P3_10, sinks < sources (3900 scenarios) 3 0 20 1 

P3_30, sinks > sources (3000 scenarios) 45 3 178 14 

P3_30, sinks < sources (3900 scenarios) 4 1 33 1 

P3_50, sinks > sources (3000 scenarios) 57 4 214 18 

P3_50, sinks < sources (3900 scenarios) 6 1 34 1 

P3_70, sinks > sources (3000 scenarios) 64 4 212 25 

P3_70, sinks < sources (3900 scenarios) 8 1 48 2 

P3_90, sinks > sources (3000 scenarios) 74 7 215 34 

P3_90, sinks < sources (3900 scenarios) 13 1 66 4 
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Table S4. Statistical evaluation of Ind2 according to the mean, median, standard deviation over the whole scenarios interval, 
as well as the trimmed mean over the 5% - 95% percentiles interval.                                                     

Categories of scenarios 
Ind2 

Mean Median Standard deviation Trimmed mean over 
[5% - 95%] percentiles 

All problems (75,900 scenarios) 0.037 0.000 0.489 0.002 

P1 (all problems, 6,900 scenarios) 0.049 0.000 0.391 0.006 

P2 (all problems, 34,500 scenarios) 0.056 0.000 0.670 0.006 

P3 (all problems, 34,500 scenarios) 0.016 0.000 0.212 0.000 

Sinks > sources (33,000 scenarios) 0.063 0.000 0.718 0.006 

Sinks < sources (42,900 scenarios) 0.018 0.000 0.160 0.000 

LH problems (25,300 scenarios) 0.034 0.000 0.249 0.002 

Rand problems (25,300 scenarios) 0.055 0.000 0.711 0.005 

Totrand problems (25,300 scenarios) 0.023 0.000 0.386 0.000 

P2_10 problems (6900 scenarios) 0.007 0.000 0.073 0.000 

P2_30 problems (6900 scenarios) 0.049 0.000 0.597 0.004 

P2_50 problems (6900 scenarios) 0.096 0.000 1.118 0.011 

P2_70 problems (6900 scenarios) 0.072 0.000 0.646 0.012 

P2_90 problems (6900 scenarios) 0.057 0.000 0.463 0.009 

P3_10 problems (6900 scenarios) 0.001 0.000 0.020 0.000 

P3_30 problems (6900 scenarios) 0.008 0.000 0.091 0.000 

P3_50 problems (6900 scenarios) 0.011 0.000 0.087 0.000 

P3_70 problems (6900 scenarios) 0.025 0.000 0.371 0.001 

P3_90 problems (6900 scenarios) 0.037 0.000 0.265 0.004 

P1, sinks > sources (3000 scenarios) 0.079 0.000 0.552 0.013 

P1, sinks < sources (3900 scenarios) 0.026 0.000 0.187 0.002 

P2, sinks > sources (3000 scenarios) 0.097 0.000 0.990 0.013 

P2, sinks < sources (3900 scenarios) 0.025 0.000 0.197 0.001 

P3, sinks > sources (3000 scenarios) 0.025 0.000 0.300 0.001 

P3, sinks < sources (3900 scenarios) 0.009 0.000 0.101 0.000 

P1, LH problems (2300 scenarios) 0.048 0.000 0.246 0.008 

P1, rand problems (2300 scenarios) 0.060 0.000 0.355 0.010 

P1, totrand problems (2300 scenarios) 0.039 0.000 0.522 0.001 

P2, LH problems (2300 scenarios) 0.050 0.000 0.327 0.007 

P2, rand problems (2300 scenarios) 0.084 0.000 0.991 0.009 

P2, totrand problems (2300 scenarios) 0.035 0.000 0.508 0.002 

P3, LH problems (2300 scenarios) 0.015 0.000 0.131 0.000 

P3, rand problems (2300 scenarios) 0.026 0.000 0.322 0.002 

P3, totrand problems (2300 scenarios) 0.008 0.000 0.119 0.000 
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P2_10, sinks > sources (3000 scenarios) 0.009 0.000 0.095 0.000 

P2_10, sinks < sources (3900 scenarios) 0.006 0.000 0.049 0.000 

P2_30, sinks > sources (3000 scenarios) 0.087 0.000 0.888 0.009 

P2_30, sinks < sources (3900 scenarios) 0.020 0.000 0.143 0.001 

P2_50, sinks > sources (3000 scenarios) 0.177 0.000 1.664 0.030 

P2_50, sinks < sources (3900 scenarios) 0.034 0.000 0.268 0.003 

P2_70, sinks > sources (3000 scenarios) 0.124 0.000 0.942 0.030 

P2_70, sinks < sources (3900 scenarios) 0.032 0.000 0.229 0.003 

P2_90, sinks > sources (3000 scenarios) 0.090 0.000 0.657 0.019 

P2_90, sinks < sources (3900 scenarios) 0.032 0.000 0.214 0.003 

P3_10, sinks > sources (3000 scenarios) 0.000 0.000 0.004 0.000 

P3_10, sinks < sources (3900 scenarios) 0.001 0.000 0.026 0.000 

P3_30, sinks > sources (3000 scenarios) 0.013 0.000 0.131 0.000 

P3_30, sinks < sources (3900 scenarios) 0.004 0.000 0.035 0.000 

P3_50, sinks > sources (3000 scenarios) 0.016 0.000 0.113 0.000 

P3_50, sinks < sources (3900 scenarios) 0.007 0.000 0.060 0.000 

P3_70, sinks > sources (3000 scenarios) 0.040 0.000 0.552 0.004 

P3_70, sinks < sources (3900 scenarios) 0.012 0.000 0.095 0.000 

P3_90, sinks > sources (3000 scenarios) 0.057 0.000 0.337 0.010 

P3_90, sinks < sources (3900 scenarios) 0.022 0.000 0.190 0.001 

 
Table S5. Statistical evaluation of Ind3 according to the mean, median, standard deviation over the whole scenarios interval, 
as well as the trimmed mean over the 5% - 95% percentiles interval.                                                    

Categories of scenarios 
Ind3 

Mean Median Standard deviation Trimmed mean over 
[5% - 95%] percentiles 

All problems (75,900 scenarios) 0.002 0.000 0.019 0.0000 

P1 (all problems, 6,900 scenarios) 0.003 0.000 0.025 0.0001 

P2 (all problems, 34,500 scenarios) 0.002 0.000 0.016 0.0000 

P3 (all problems, 34,500 scenarios) 0.002 0.000 0.021 0.0000 

Sinks > sources (33,000 scenarios) 0.002 0.000 0.019 0.0001 

Sinks < sources (42,900 scenarios) 0.002 0.000 0.020 0.0000 

LH problems (25,300 scenarios) 0.001 0.000 0.011 0.0000 

Rand problems (25,300 scenarios) 0.004 0.000 0.030 0.0001 

Totrand problems (25,300 scenarios) 0.001 0.000 0.011 0.0000 

P2_10 problems (6900 scenarios) 0.000 0.000 0.006 0.0000 

P2_30 problems (6900 scenarios) 0.001 0.000 0.014 0.0000 

P2_50 problems (6900 scenarios) 0.002 0.000 0.018 0.0001 

P2_70 problems (6900 scenarios) 0.002 0.000 0.014 0.0002 
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P2_90 problems (6900 scenarios) 0.003 0.000 0.022 0.0002 

P3_10 problems (6900 scenarios) 0.000 0.000 0.011 0.0000 

P3_30 problems (6900 scenarios) 0.002 0.000 0.022 0.0000 

P3_50 problems (6900 scenarios) 0.002 0.000 0.023 0.0000 

P3_70 problems (6900 scenarios) 0.003 0.000 0.024 0.0000 

P3_90 problems (6900 scenarios) 0.003 0.000 0.024 0.0001 

P1, sinks > sources (3000 scenarios) 0.004 0.000 0.025 0.0003 

P1, sinks < sources (3900 scenarios) 0.003 0.000 0.024 0.0000 

P2, sinks > sources (3000 scenarios) 0.002 0.000 0.014 0.0001 

P2, sinks < sources (3900 scenarios) 0.002 0.000 0.017 0.0000 

P3, sinks > sources (3000 scenarios) 0.002 0.000 0.022 0.0000 

P3, sinks < sources (3900 scenarios) 0.002 0.000 0.021 0.0000 

P1, LH problems (2300 scenarios) 0.002 0.000 0.016 0.0001 

P1, rand problems (2300 scenarios) 0.006 0.000 0.037 0.0004 

P1, totrand problems (2300 scenarios) 0.002 0.000 0.012 0.0000 

P2, LH problems (2300 scenarios) 0.001 0.000 0.010 0.0000 

P2, rand problems (2300 scenarios) 0.003 0.000 0.022 0.0001 

P2, totrand problems (2300 scenarios) 0.001 0.000 0.013 0.0000 

P3, LH problems (2300 scenarios) 0.001 0.000 0.011 0.0000 

P3, rand problems (2300 scenarios) 0.005 0.000 0.034 0.0000 

P3, totrand problems (2300 scenarios) 0.001 0.000 0.008 0.0000 

P2_10, sinks > sources (3000 scenarios) 0.000 0.000 0.004 0.0000 

P2_10, sinks < sources (3900 scenarios) 0.000 0.000 0.007 0.0000 

P2_30, sinks > sources (3000 scenarios) 0.001 0.000 0.008 0.0000 

P2_30, sinks < sources (3900 scenarios) 0.001 0.000 0.017 0.0000 

P2_50, sinks > sources (3000 scenarios) 0.002 0.000 0.012 0.0003 

P2_50, sinks < sources (3900 scenarios) 0.002 0.000 0.022 0.0000 

P2_70, sinks > sources (3000 scenarios) 0.002 0.000 0.013 0.0004 

P2_70, sinks < sources (3900 scenarios) 0.002 0.000 0.015 0.0000 

P2_90, sinks > sources (3000 scenarios) 0.004 0.000 0.025 0.0004 

P2_90, sinks < sources (3900 scenarios) 0.002 0.000 0.020 0.0001 

P3_10, sinks > sources (3000 scenarios) 0.000 0.000 0.007 0.0000 

P3_10, sinks < sources (3900 scenarios) 0.001 0.000 0.013 0.0000 

P3_30, sinks > sources (3000 scenarios) 0.001 0.000 0.018 0.0000 

P3_30, sinks < sources (3900 scenarios) 0.002 0.000 0.025 0.0000 

P3_50, sinks > sources (3000 scenarios) 0.003 0.000 0.027 0.0000 

P3_50, sinks < sources (3900 scenarios) 0.002 0.000 0.019 0.0000 

P3_70, sinks > sources (3000 scenarios) 0..4 0.000 0.027 0.0001 

P3_70, sinks < sources (3900 scenarios) 0.003 0.000 0.022 0.0000 

P3_90, sinks > sources (3000 scenarios) 0.003 0.000 0.024 0.0003 

P3_90, sinks < sources (3900 scenarios) 0.003 0.000 0.024 0.0000 
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S.3. Stream Table of Case Study-3 
The stream flows and temperatures for the case study-3 of the manuscript are presented in Table S6. The data 
refer to a base case before process integration through direct recycling. Full model information (e.g., molecular 
structures of compounds A, B, C, and D, reaction kinetic model and NRTL parameters) can be provided by the 
authors upon request. 

 
Table S6. Flows and temperatures of the streams presented in Figure 8 of the manuscript for Case Study-3. A, B, C and D 
refer to compounds participating in the reaction and Sol1 and Sol2 refer to the two solvents used in the process. Empty cell 
designate the absence of the compounds in the respective streams.                                                           

Streams Temperature 
(˚C) 

A 
kmol/hr 

B 
kmol/hr 

C 
kmol/hr 

D 
kmol/hr 

Sol1 
kmol/hr 

Sol2 
kmol/hr 

1 20 13.0      

2 20 15.0 10.0  10.0   

3 20 10.0 5.0  10.0 30.0 10.0 

4 20 10.0   20.0 10.0 10.0 

5 20  10.0     

6 20 13.0 10.0     

7 20 20.5 15.0  5.0   

8 150 17.3 11.8 3.2 11.3   

9 132 19.3 13.0 3.2 16.1 1.0 1.0 

10 150 0.1 0.0 0.0 7.0 0.9 0.6 

11 150 19.3 13.0 3.2 9.1 0.2 0.4 

12 20 7.5 5.0    5.0 

13 20 7.5 5.0    5.0 

14 20 22.5 12.5  25.0 35.0 15.0 

15 50 2.0 1.1  4.8 1.0 1.0 

16 50 20.5 11.4  20.2 34.0 14.0 

17 20 5.0 2.5  10.0 5.0 5.0 

18 20 5.0 2.5  10.0 5.0 5.0 

19 70 0.0 0.0  1.0 3.8 1.1 

20 70 5.0 2.5  9.0 1.2 3.9 
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