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Abstract 
Orbital platforms spectral sensitivity can be a major limitation in ascertaining detailed identifica-
tion and mapping of arboreal ecosystems. Field-derived spectral signatures using a narrow-band 
sensor, for example, ASD (Analytical Spectral Devices, Boulder, CO, USA) FieldSpec® Pro cover a 
spectral FR (Full Range) of 350 - 2500 nm exceeding spectral sensitivities of commonly used or-
bital platforms. The plausibility of deriving a spectral library of trees or forests within a training 
set is venerable. On the other hand, diagnostic spectral features between tree species or types are 
inherently difficult to ascertain from orbital platforms. This is so especially when the spectral li-
brary is applied to a demarcated region beyond the extents of training set. Basic suborbital limita-
tions in detailed identification of trees and forests are presented in this study. We draw attention 
to spectral or temporal deficiencies and offer probable solutions depending on preferred or op-
timal spectral sensitivities. For example, Hyperion with 220 bands (400 - 2500 nm), one of the 
three primary instruments on the EO-1 spacecraft, has narrow bandwidths and covers the entire 
range of the spectral profiles collected for North Dakota tree species. With a 30 m spatial resolu-
tion, it is still useful in species identification in moderate stands of forest. Hyperion is a tasking 
satellite with limited passes over North Dakota (≈7% of total area) limiting its use as a platform of 
choice for statewide forest resource mapping. 
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1. Introduction 
Greater accuracy and consistency in mapping leaf and canopy reflectance and/or radiance is necessary to fully 
understand environmental or biophysical characteristics that may govern arboreal vibrancy or senescence. To 
date the full potential of remotely sensed data analysis for monitoring processes on the earth surface is still not 
fully employed [1] due to spectral sensitivity limitations on orbital platforms amongst other factors. As a conse-
quence forest dynamics and other arboreal analyses that would immensely benefit from a spectral Full Range 
(FR) of the electromagnetic radiation are hampered. Moreover, commercially available datasets and those in the 
public domain have spatial and temporal limitations, as such, an idealized orbital platform may offer a limited 
analysis of forest cover dynamics. 

There has been an increasing need in understanding a) arbor-related Carbon sequestration; and b) regional or 
global CO2 dominance and its impact on biospherical biota [2]-[9]. At the crux of these studies lie species iden-
tification and C sequestration linkages by analysis of volume growth rates and physiological differences in C 
uptake or yield. To address C sequestration per each individual tree species, spectral limitations are not only 
factors to consider in addition to spatial resolution but also pixel composition. There have been a number of im-
age analysis techniques accommodating mixing problems that have been proposed incorporating Spectral Mix-
ture Analysis (SMA) [1]. SMA seeks to address subpixel fractions by determining component targets that would 
contribute to an otherwise averaged reflectance or radiance. SMA also requires an increased spectral sensitivity 
with narrower Full Width at Half Maximum (FWHM), a parameter that aids in spectral matching of a target to a 
set library spectra. Improving SMA techniques can also in turn vastly improve interpretation and generation of 
land cover types [10]. In SMA, reflected radiance spectra are mixtures of “pure” (endmembers) spectra, which 
can be determined using a field spectroradiometer [11]. This cyclic argument therefore further illustrates that for 
SMA to be effective; it is also prudent to have correct in situ data. 

Croft et al., [12], collected leaf reflectance data using an ASD Fieldspec Pro spectroradiometer (400 - 2500 
nm) for over 300 leaf samples. From their study, they found out that broadleaf canopies had a high performing 
Maccioni Macc01 Index [13], ( ) ( )780 710 780 680R R R R− −  where nR  was directional reflectance at wavelength n 
nm. Spectral data were derived from MERIS (MEdium-spectral Resolution Imaging Spectrometer) orbital plat-
form. Taylor et al., [14] used an ASD Fieldspec Pro System to measure absolute reflectance of target plant ma-
terial under standardized laboratory conditions and in the field to characterize spectral signatures in the winter, 
during leaf-off conditions for woodland overstory, and in the summer under full-leaf conditions. They found that 
leaves from four different habitats produced similar spectral signatures in the visible spectrum (380 - 700 nm), 
with a characteristic peak of 5.6% - 7.1% absolute reflectance at 550 nm and a steep red edge at ~700 nm. Le 
Maire et al., [15] sought efficient hyperspectral indices for essential forest ecosystem parameters, for example, 
chrolophyll content of forest sun leaf (CHL, μg 2

leafcm− ), sun leaf mass per area (LMA, gdry matter
2

leafm− ), canopy 
leaf area index (LAI, 2

leafm 2
soilm− ) and leaf canopy biomass (Bleaf, gdry matter 

2
soilm− ). These indices were then ap-

plied to two Hyperion images (50 plots) on the Fontainebleau and Fougères forests and portable spectroradi-
ometer measurements with some indices displaying a high relative correlation. Oumar et al., [16] derived field 
spectra that were resampled to Hyperion sensor to detect Thaumastocoris peregrinus damage. In their study, 
they explained the significance of normalized indices and spectral indices calculated from the visible and near-  
infrared bands in hyperspectral data as key ingredients in assessment of T. peregrinus damage. De Benedetto et 
al., [17] applied first principal components relating to five bands (green, yellow, red, rededge, near-infrared 
(NIR) PCs) of hyperspectral reflectance data. They felt that hyperspectral sensors were the most informative of 
soil and plant properties. The main aim of this study is twofold, a) to establish a spectral identification schema 
using an ASD FieldSpec® Pro spectroradiometer serving as a rudimentary step in forest or tree species target 
mapping, and b) to identify orbital platforms that may offer prime data for different forestry applications. 

2. Methods 
2.1. Spectral Library 
An ASD FieldSpec® Pro spectroradiometer with leaf clip assembly was used to generate the spectral library. In 
the very near infra-red (VNIR) wavelength range, 350 - 1000 nm, an individual detector for each measured wa-
velength, is positioned to receive light within a 1.4 nm bandwidth. The VNIR spectrometer has a spectral resolu-
tion of approximately 3 nm at around 700 nm. In the near infra-red (NIR) wavelength range, 900 - 2500 nm, 
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there are two detectors, which are exposed to different wavelengths of light as a grating oscillates. The first de-
tector measures light between about 900 - 1850 nm; the second covers the 1700 - 2500 nm region. The spectral 
resolution in the NIR range varies between 10 nm and 12 nm, depending on the scan angle at that wavelength. 

The spectral library was constructed during the first three weeks of July, which coincided with mature leafing 
and a full leaf canopy for typical North Dakota trees and forests. Spectral samples were obtained from Lincoln 
Oakes Nursery, Bismarck, which is run by North Dakota Association of Soil Conservation Districts and Towner 
State Nursery, Towner, which is run by North Dakota Forest Service (Figure 1). The schema of our methodol-
ogy is depicted on Figure 2. Replicate samples were collected in situ (when leaves were attached to the tree) 
and ex situ where the leaves were deliberately stressed to gauge change in spectral indices. Each sample was  
 

 
Figure 1. Leaf reflectance measurements using FieldSpec® Pro with leaf clip assembly for mature trees (left) 
and seedlings (right).                                                                               

 

 
Figure 2. Schematic flow diagram.                                                                   

Spectral
Library Set #1

•In Situ field measurements using ASD FieldSpec® Pro spectroradiometer.
•Data collected at following wavelength ranges:
• Very near infra-red (VNIR) at 350 - 1000 nm
• Near infra-red (NIR) detectors: Detector 1 range is at  ≈ 900 - 1850 nm & Detector 2 range is at  ≈ 

1700 - 2500 nm.

Spectral
Library Set #2

•Ex Situ Laboratory measurements using ASD FieldSpec® Pro spectroradiometer.
•Arboreal leaves catalogued and inventoried.

Spectral Angle 
Measurements

•Spectral angle determined between each pair of profiles to gauge variability.

Specral
Correlation 

Matrix

•Matrix was designed to establish linkages between genus and species of individual  samples from 
spectral library sets.
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scanned at least four different times on different leaves, with each scan being the average of 25 detector readings. 
Samples were wrapped in paper towels, bagged in plastic storage bags and stored overnight in a cooler. Stored 
samples were scanned, the following day, at least eight different times on different leaves. No observable dif-
ference was seen between spectral profiles taken from leaves on the plant, immediately taken from the plant or 
stored overnight. The spectral library generated contained 963 spectral profiles with the distribution shown in 
Table 1. 
 
Table 1. Genus spectral angle summary table.                                                                   

  Spectral Angle 

Genus Profile Count Minimum Maximum Mean Standard Deviation 

Lonicera 1 0 0 0 0 

Viburnum 1 0 0 0 0 

Maackia 4 0 0.0143 0.00715 0.008256 

Rhus 4 0 0.0426 0.0213 0.024595 

Aesculus 4 0 0.0458 0.0229 0.026442 

Cornus 4 0 0.0562 0.0281 0.032447 

Celtis 729 0 0.1135 0.03924 0.020444 

Juglans 784 0 0.0967 0.045702 0.024575 

Malus 256 0 0.1103 0.052649 0.030762 

Betula 1296 0 0.1431 0.061658 0.030358 

Amelanchier 9 0 0.1184 0.062177 0.050557 

Populus* 5184 0 0.1864 0.067441 0.034013 

Syringa 324 0 0.1505 0.068763 0.03724 

Fraxinus* 26569 0 0.2864 0.076918 0.038314 

Robinia 4 0 0.1564 0.0782 0.090297 

Tilia* 4225 0 0.2022 0.081321 0.037765 

Quercus 841 0 0.1856 0.084055 0.046886 

Prunus 1849 0 0.2258 0.087483 0.044309 

Juniperus 1369 0 0.3544 0.093106 0.064838 

Salix 625 0 0.2358 0.100163 0.068426 

Ulmus 1024 0 0.3189 0.100658 0.069814 

Shepherdia 169 0 0.3039 0.10112 0.076908 

Acer 15625 0 0.2833 0.112302 0.062858 

Gleditsia 256 0 0.3081 0.117027 0.085051 

Picea 2809 0 0.383 0.119263 0.084207 

Caragana 100 0 0.2988 0.124922 0.085244 

Elaeagnus 576 0 0.2938 0.126828 0.099521 

 859476 0 0.7785 0.142895 0.094547 

Pinus 4900 0 0.593 0.14878 0.119217 

Larix 144 0 0.4245 0.15054 0.13318 

Hippophae 121 0 0.4781 0.169353 0.130857 
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2.2. Analysis of Spectral Library Variation 
To examine the variability of spectral profiles, the spectral angle (α) between each pair of profiles was calcu-
lated using the formula shown below [18]: 

1 1

2 2

1 1

cos

n

i i
i

n n

i i
i i

t r

t r
α − =

= =

 
 
 =              

∑

∑ ∑
                                  (1) 

where t is test spectrum and r is a reference spectrum. Spectral angle algorithm measures the cumulative differ-
ences in reflectance between the test and reference spectrum at each available wavelength. The smaller the spec-
tral angle, the more closely related are the two spectra. 

2.3. Spectral Correlation Matrix 
A simulated correlation matrix was derived to analyze spectral characteristics and to primarily test the degree of 
relationship between tree species. This was done by computing the spectral angle between samples and generat-
ing an invariant spectral angle (spectral angle equal to zero) along the diagonal since the diagonal represents 
differences between similar pairs. The main desideratum was to establish linkages between genera and species 
and diminishing outliers or asynchronous data by adoption of a plausible parametric function. The correlation 
matrix reliability was further enhanced by incorporating 25 iterations of each sample spectral profile over the 
entire FR and thereafter using multiple repeat readings for the entire 963 sets of spectral profiles. 

3. Results and Discussion 
3.1. Spectral Library 
Each spectral profile in the library is represented along the x-axis and repeated down the y-axis (Figure 3). The 
result is that the diagonal pairs have the same test and reference spectra, so the calculated spectral angle is al-
ways zero (represented by a dark blue color). Spectral angle in this library ranged from 0 to 0.778462. The larg-
est spectral angles, occurring primarily between coniferous and deciduous leaves are shown in a reddish-brown 
color. The larger, labeled boxes on the diagonal delineate spectra that belong to leaves from the same genus. The 
smaller boxes within genus boundaries delineate spectra that belong to the same species. 

Figure 4 shows a generalized form of Figure 3 derived by averaging the spectral angle values for each test/ 
reference pair combination within a genus. With this technique variation within a genus and amongst different 
 

 
Figure 3. Spectral library spectral angle correlation matrix.                        
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genera can be more easily assessed. Table 1 describes the variation in spectral angle amongst profiles from the 
same genus. Genera such as Poplar (Populus), Ash (Fraxinus) and Linden (Tilia) have a low average spectral 
angle, indicating that one Poplar, Ash or Linden tree looks much like another. Pines (Pinus) have a much higher 
spectral angle. The conifers, pines, spruce and, to a lesser extent, junipers are easily distinguishable from deci-
duous trees, and less distinguishable amongst themselves. Table 1 is color coded as colors depicted on Figure 4. 
Various instrumentation calibrations were performed, for example, instrument optimization to adjust instrument 
sensitivity was performed automatically for every sample measurement. This is a necessary step to ensure that 
changing levels of down welling irradiance do not cause the instrument detectors to saturate. Dark current, 
amount of electrical current generated by electrons within the instrument, was eliminated from base profiles by 
periodic optimization. The spectral response of the target (leaves) was then automatically computed by dividing 
its spectral response by that of the reference sample (for example spectralon). 

Figure 5 shows variation in spectral angle within test/reference genera pairing that is typically low as shown 
by the standard deviation value. Notable exceptions are the pines (Pinus) and spruces (Picea) needles which are 
very difficult to scan with the leaf clip as evidenced by the large standard deviation. 

Figure 6(a) was used to elucidate optimum orbital scanners whose imagery would provide the best spectral  
 

 
Figure 4. Average spectral angles for genera.                                      

 

 
Figure 5. Variation in spectral angles for genera.                                       



S. G. Jenkins et al. 
 

 
199 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 6. (a) Genus reflectance variation by wavelength; (b) Spectral coverage of Landsat 7; 
(c) Spectral coverage of ASTER; (d) Spectral coverage of EO-1 ALI; (e) Spectral coverage of 
EO-1 Hyperion.                                                                    

 
resolution. Figure 6(a) was created by averaging the reflectance value for each profile in a genus at each wave-
length. Variation in reflectance at each wavelength can be seen in the variation of hue between the genera. Re-
gions of the spectrum which contain variation among the genera will be useful wavelengths at which to harness 
reflectance information. The Landsat series of orbital imagers are a commonly used orbital land imaging devices 
with a significant history. The relatively high revisit frequency (16 days) and its large survey area, with a swath 
of 185 km, make Landsat images attractive mapping tools [19]. The drawbacks of Landsat images for forest 
mapping in North Dakota are the relatively coarse spatial resolution, Landsat pixels measure 30 m × 30 m, and 
the large gaps in spectral information and broad sensitivity of the detectors. The black rectangles on Figure 6(b) 
represent the spectral ranges of the Landsat ETM+ bands. Variation between reflectance values in each genus 
within a Landsat band will increase the spectral angle when between two pixels representing trees on the ground. 
The range of wavelength sensitivity of the Landsat bands, particularly in the infrared range means that, in a 
spectral profile, variation in reflectance between similar wavelengths will be lost when averaged over all the 
spectral ranges in the Landsat band. Figure 6(c) shows the spectral range of the Advanced Spaceborne Thermal 
Emission and Reflection radiometer (ASTER) bands. Variation within each ASTER band will contribute to a 
low α value (from Equation (1)). The ASTER sensor contains narrow bands in the infrared range, but much 
wider bands in the visible and near-infrared (NIR) bands. The spatial resolution of the ASTER sensor varies 
between 15 m (visible and very NIR) and 90 m (NIR), so while the NIR bands may be applicable to genera and 
species identification; they will be of limited use in identifying much of North Dakota’s smaller forest acreages. 
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Figure 6(d) shows the spectral range of EO-1’s Advanced Land Imager (ALI) bands. Unlike the ASTER sensor, 
the ALI sensor contains narrow band widths in the visible light range, but much wider band widths in the infra-
red region. A combination of ASTER NIR bands and ALI visible wavelength bands would offer the best spec-
tral combination to maximize Ash tree identification. Figure 6(e) shows the spectral range of EO-1’s Hyperion 
bands. The 220 bands of Hyperion are narrow and cover the entire range of the spectral profiles collected for 
ND tree species. With a 30 m spatial resolution it is still useful in species identification in moderate stands of 
forest. Hyperion is clearly capable of detecting variation contained in the spectral library developed; however 
since the EO-1 satellite is a tasking satellite with limited passes over certain portions of the Earth and the swath 
width of the Hyperion sensor is just 7.6 km, Hyperion coverage of North Dakota is only approximately 7%, se-
verely curtailing its applicability. 

3.2. Applications: Selecting a Training Dataset 
When using remotely sensed data to ascertain land cover or land use categories, it is also essential to provide 
some estimate of data accuracy. To accomplish this estimation training datasets were derived, for which on-the- 
ground data already existed. Images containing both high proportions of Ash tree-crowns and high proportions 
of other likely tree-crowns were processed as training datasets. On-the-ground data were obtained from various 
sources including City of Fargo Parks and Recreation department. The Parks and Recreation forest database is 
maintained as a record of street tree management. Records include the street address and the genus and species 
of each tree. The database was geocoded using the street address of each tree, yielding a point data layer, Far-
go_Street_Trees. Figure 7(a) shows a summary of the Fargo_Street_Trees data layer. Figure 7(b) shows a  
 

 
(a) 

 
(b) 

Figure 7. (a) Fargo street trees by genus. (b) Make-up of Fraxinus street trees by species.        
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summary of the Fargo_Street_Trees_Fraxinus data layer. Ash trees are seen throughout the cities of Fargo and 
West Fargo where they have been planted over the last half century as new and replacement trees (Figure 8(a)). 
The other notable genus present as Fargo street trees is Ulmus. The bulk of the elms in Fargo are seen in the 
older suburbs around downtown and towards the north (Figure 8(a)). A third category of trees in the database 
did not have a recorded genus. These are distributed in a manner more like the distribution of Ash trees than 
Elms and probably represent ash trees or other genera in the proportions shown in the rest of the database 
(Figure 8(a)). 
 

 
(a) 

 
(b) 

Figure 8. (a) City of Fargo tree inventory; (b) City of Fargo Fraxinus densities.                
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Table 2. Determining training data extents.                                                                        

File Northern Extent Southern Extent Eastern Extent Western Extent Centroid (Longitude, 
Latitude) 

Training_Data_Target_01 46.919500 46.905612 −96.770016 −96.794248 −96.782279, 46.912921 

Training_Data_Target_02 46.863251 46.851421 −96.799174 −96.813933 −96.80588, 46.857319 

Training_Data_Target_03 46.841892 46.835658 −96.811610 −96.814912 −96.813458, 46.83868 

Training_Data_Target_04 46.897152 46.893342 −96.782442 −96.787731 −96.785371, 46.895122 

 
A data layer (Fargo_Street_Trees_Fraxinus) containing the location of Fraxinus tree species in Fargo was 

produced from the Fargo_Street_Trees data layer, by selecting Fraxinus from the genus attribute table and ex-
porting the selected points Density tool with input parameters for: Population field set to None, Output cell size 
set to 100 feet, Neighborhood geometry set to a circle of radius 1000 feet and areal units of acres selected. The 
Ash density as a percentage of total tree density was educed by dividing Fargo_Street_Trees_Fraxinus_Density 
raster layer by the Fargo_Street_Trees_Density raster layer using ArcGIS® Spatial Analyst Raster Calculator 
tool to yield Pct_Fraxinus_Street_Trees (Figure 8(b)). Selecting areas containing both high proportions of ash 
tree-crowns and high proportions of other tree-crowns was achieved by selecting areas from the Fargo_Street_ 
Trees_Fraxinus_Density raster with pixel values greater than 8.17 trees/acre, a value that approximates one tree 
per average city block, and areas from the Pct_Fraxinus_Street_Trees raster with pixel values between 0.3 and 
0.7, using the Spatial Analyst Raster Calculator tool. This aids in discriminating highly forested regions with 
sufficient Ash trees for training and distinction analyses (Figure 8(b)). The weighted raster was converted to a 
polygon feature class using Raster to Polygon tool and the polygons with the top-four largest areas were ex-
ported as individual shapefiles. Coordinates of each polygon centroid was determined. The extent and centroid 
of each of the four shapefiles was used as base areal extents to derive training data limits (Table 2). In this in-
ductive manner, extents of a training dataset can then be used to further distinguish tree species. 

4. Conclusion 
From this study, in the event of assessing polydominant forest types and to determine species-dominance due to 
forcing external parameters; spectral and spatial resolutions must be at absolute optima in order to tease out crit-
ical relationships. In such a scenario, an analyst may be able to surmise with a greater likelihood of how, for 
example, a forest type may transit with respect to climate, insects and/or disease. Furthermore, an increased 
spectral resolution at an orbital platform may provide a test-bed for modeling studies incorporating temporal in-
formation. While orbital and sub-orbital limitations exist, it is still prudent to assess best available platform for 
elucidating forest species with minimal error. 
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