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Abstract 

The possible detection of gravitational waves by interferometric observations of distant light 
sources is studied. It is shown that a gravitational wave affects the interferometric pattern of stel-
lar light in a particular way. Michelson and Hanbury Brown-Twiss interferometers are considered, 
and it is shown that the latter is the most adequate for such a detection. 
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1. Introduction 
A gravitational wave (GW) could be detected indirectly by its interaction with the light emitted by astronomical 
objects. Thus, for instance, the passage of a GW produces a time delay in the signal received from distant 
sources (Estabrook and Wahlquist [1]). Similarly, the presence of a stochastic background of GWs can be 
inferred from a statistical analysis of pulsar timing (Hellings and Downs [2]). GWs can also interact with the 
polarization of electromagnetic waves (Hacyan [3] [4]). 

In this paper, we study the effect of GWs on the interferometry of stellar light. Two basic types of interfero- 
metric devices used in astronomy are considered: the Michelson (see, e.g., [5]) and the Hanbury Brown-Twiss [6] 
interferometers. The former uses the interference between two signals, and the latter uses the interference 
between intensities of light. An intensity interferometer has, in general, some advantages over a Michelson 
interferometer. It will be shown in the following that the passage of a GW could be more easily detected by 
intensity interferometry. 

Section 2 of the present paper is devoted to the analysis of an electromagnetic wave in the presence of a plane 
fronted GW. The analysis is based on previous works (Hacyan [3] [4]) in which the form of the electromagnetic 
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field is deduced using a short-wave length approximation. A general formula for the correlation of electric 
fields is obtained and the result is applied to interferometric analysis in Section 3; particular cases are worked 
out. 

2. The Electromagnetic Field  
The metric of a plane GW in the weak field limit is  

( ) ( )2 2 2d 2d d 1 d 1 d 2 d d ,s u v f x f y g x y= − + + + − +                       (1) 

where the two degrees of polarization of the GW are given by the potentials ( )f u  and ( )g u , which are 
functions of u only. The relation with Minkowski coordinates t and z is  

( ) ( )1 1,  .
2 2

u t z v t z= − = +  

In the following, quadratic and higher order terms in f and g are neglected, and we set 1c = . 
The direction of a light ray in the absence of a GW is k, with k ω= , the frequency of the (monochromatic) 

wave. We set  

( )sin cos ,sin sin , cos ,k ω θ φ θ φ θ=  

thus defining the angles θ  and φ . In the following, it will be convenient to define the functions  

( ) ( ) ( ); cos 2 sin 2 ,F u f u g uφ φ φ= +                              (2) 

( ) ( ) ( ); sin 2 cos 2 .G u f u g uφ φ φ= − +                             (3) 

In the short-wave length approximation, the electromagnetic potential is taken as  

e ,iSA aµ µ=  

where S is the eikonal function satisfying the equation , , 0g S Sµν
µ ν = . Then, ,K Sα α≡  is a null-vector defining 

the direction of propagation of the electromagnetic wave, and aα  is a four-vector such that 0a K µ
µ = . 

The electromagnetic vector is [4]  

( ) e ,iSE i a a t Kβ
α α β α

 = Ω +                                  (4) 

where tα  is a time-like four-vector and K tµµΩ = −  is the frequency measured by a detector with tα  tangent 

to its world-line. Choosing ( ) ( )1 2 1,1,0,0tα = , it follows that  

( ) ( ) ( )1; , 1 1 cos ; ,
2

u F uθ φ ω θ φ Ω = − +  
                           (5) 

and the eikonal function is  

( ) ( ) ( ); 1 cos ;  d .
2

S x k x k F u uω θ φ′ ′= ⋅ + + ∫  

As in Ref. [4], for a plane wave we use a gauge such that 0va = , which is equivalent to  

( )1 0,gw ω−− ⋅ =n k a  

where gwn  is the unit vector in the direction of propagation of the GW. 

The four vector aα  depends on the coordinate u through the functions ( )f u  and ( )g u . With the gauge 
0va = , a particular solution is [4]  
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( ) ( )

( ) ( )

1

0
1 11  
2 2

1 11
2 2

x y
u x y

v

v

x x y

y x y

a k a k a
k

a

a f u a g u a

a g u a f u a

 = + 

=

 = + + 
 

 = + − 
 

                               (6) 

where xa  and ya  are constants defining an electromagnetic plane wave in the absence of GWs. 
Let us use a tetrad ( )aeα  such that ( ) ( ) ( )a b abe e gα β

αβ η= , where ( ) ( )diag 1,1,1, 1abη = −  is the Minkowski matrix. 

Then, if ( ) ( )a aeα α∂ = ∂ , the tetrad is defined by  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

2

3

4

1 11
2 2

1 11
2 2

1
2

1 .
2

x y

x y

u v

u v

f u g u

g u f u

 ∂ = − ∂ − ∂ 
 

 ∂ = − ∂ + + ∂ 
 

∂ = −∂ + ∂

∂ = ∂ + ∂

                              (7) 

Accordingly the tetrad components of aα  and Kα  are  

( ) ( ) ( )( )4 4, , , ,x yna a a a a= −                                   (8) 

and  

( )

( ) ( )

( ) ( )

( )( )

( )( )

1 11
2 2

1 11
2 2 .

1 1
2
1 1
2

x y

x y

n

u v

u v

f u k g u k

g u k f u k
K

k F u k

k F u k

  − −  
  

  − + +  
  =

 
 − − +  

 
 

 − +   

                           (9) 

Notice in particular that ( )4K = −Ω , and ( )
( ) ( ) 0mn
m nK Kη = , as it should be. 

The electric field in tetrad components is  

( ) ( ) ( ) ( ) ( )( )4 4 e ,iS
n n nE i K a a K= − +                              (10) 

and of course ( )4 0E = . 

Correlations   

For an electromagnetic plane wave with wave vector ( )K uα , we find after some lengthy but straightforward 
algebra (keeping only terms of first order)  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

*
0

; ;
3

1; ; 1 1 cos ; ;
2

1 cos ; ; e ,

mn
m n

i S x k S x k

E x k E x k S F u F u

iS G u G u

η θ φ φ

θ φ φ ′ −

  ′ ′= − + +   
′+ + − 


          (11) 
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where  

( )222
0 ,x yS a aω= +  

( )2 * *
3 y x x yiS a a a aω= −  

are Stokes parameters ( 3 0S =  for linear and 3 0S S=  for circular polarizations).  

3. Interferometry   
Consider two detectors with space-time coordinates 1x  and 2x , each receiving two plane electromagnetic 
waves with wave-vectors 1k  and 2k , and use the shorthand notation  

( )
( ) ( ) ( ) ( )

{ }

*

; ; 0

; ;

exp ,

mn
a j b jm n

a j b j aj aj bj bj

E x k E x k

E E S i i

η

≡ ≡ ℜ + ℑ +ℜ − ℑ†
                       (12) 

where  

( ) ( )1 1 cos ; ,
2aj j a jF uθ φℜ = − +                            (13) 

( ) ( ) ( )3

0

; ( 1 cos ; ,aj a j j a j
SS x k G u
S

θ φℑ = − + +                       (14) 

the subindexes a, b and j refer to the labels 1 and 2 of x and k. 
A Michelson interferometer permits to measure the average intensity  

† † † †
1;1 1;1 1;2 1;2 2;1 2;1 2;2 2;2

† † † †
1;1 2;1 2;1 1;1 1;2 2;2 2;2 1;2 ,

I E E E E E E E E

E E E E E E E E

≡ + + +

+ + + +
                    (15) 

where the second term is the interference term. 
A Hanbury Brown-Twiss interferometer permits to measure the interference between intensities:  

( ) ( )† † † †
1 2 1;1 1;1 1;2 1;2 2;1 2;1 2;2 2;2

† † † †
1;1 1;2 2;2 2;1 1;2 1;1 2;1 2;2 ,

I I E E E E E E E E

E E E E E E E E

≡ + +

+ +
                    (16) 

where the second term is the interference between the two intensities. 
Define  

11 12 21 22±ℜ = ℜ ±ℜ +ℜ ±ℜ  

11 21 12 22.±ℑ = ℑ − ℑ ± ℑ ℑ  

With this notation, we have for a Michelson interferometer:  

( ) ( ) ( )( ) ( ) ( )02 2 1 cos 2 cos 2 sin 2 sin 2 ,I S + + − − + − = +ℜ + ℑ ℑ −ℜ ℑ ℑ              (17) 

and for a Hanbury Brown-Twiss interferometer:  

( ) ( )2
1 2 02 1 2 cos .I I S + −= +ℜ + ℑ                             (18) 

Define also the complex functions  

( ) ( ) ( )h u f u ig u= +  

and  

2 2e cos .
2

ii i
i

φ θ−Θ =  
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Then  

( ) ( ) ( ){ }1 2 1 2 ,e h u h u±ℜ = −ℜ + Θ ±Θ                           (19) 

and  

( ) ( ) ( ) ( ) ( )( ) ( )2

1

3
2 1 1 2 1 2 1 2

0

2 d 2 .
u

u

Sx x k k e h u u i h u h u
S

ω±

   ′ ′ℑ = − ⋅ ± +ℜ − − Θ ±Θ  
   

∫    (20) 

In the absence of GWs, 0±ℜ = , and  

( ) ( ) ( )2 1 2 1 1 22 t tω+ℑ → − − + − ⋅ +r r k k  

( ) ( )2 1 1 2 ,−ℑ → − ⋅ −r r k k  

implying that 1 2I I  is time independent. It thus follows that the time variation of 1 2I I  is due entirely to the 
presence of a GW. This time dependence can be made explicit setting  

( )1 22 tω+ +ℑ = − ∆ + ∆ ⋅ + + ∆ℑr k k  

− −ℑ = −∆ ⋅∆ + ∆ℑr k  

where 2 1t t t∆ = − , 2 1r = −r r∆ , 2 1= −k k k∆ , and ±∆ℑ  are small terms due to the GW. This implies that the 
terms ±ℜ  and ±∆ℑ  are of first order in the potentials f and g of the GW. 

It should be noticed that the field correlation I  contains terms such as ( )1 2cos ⋅ +  x k k∆ , which are  

highly oscillatory and hinder a precise measurement with a Michelson interferometer. On the other hand, such 
terms do not appear in the correlation of the intensities:  

( ) ( ) ( )2
1 2 02 1 2 cos sin .I I S + − = +ℜ + ⋅∆ + ∆ℑ ⋅∆   x k x k∆ ∆                (21) 

The time dependence is included only in the terms +ℜ  and −∆ℑ , which are entirely due to the passage of 
the GW. The term with ( )1 2x k k∆ ⋅ +  is not present in this last formula. 

3.1. Temporal Coherence   
As a particular application of the above formulas, we can calculate the temporal coherence of a single signal in the 
presence of a GW. This can be obtained setting ( )1 ,x t r= , ( )2 ,x t rτ= + , and 1 2k k k= ≡ . Then 0− −ℜ = = ℑ  
and accordingly  

( ) ( )( )02 2 1 cos 2I S + += +ℜ + ℑ                           (22) 

and  

( )2
1 2 04 1 .I I S += +ℜ                                (23) 

Explicitly, in this particular case,  

( ) ( ) ( ){ }, 2 ,t e h t h tτ τ+ℜ = − ℜ + + Θ                            (24) 

which is the only relevant term for the time correlation of the intensity correlation, and is entirely due to the 
GW. 

3.2. Sinusoidal Waves and Pulses   

In the particular case of a sinusoidal monochromatic GW of frequency gwω , we can set  

( ) 0e ,gwi uh u h ω=                                  (25) 

where 0 0 eih h α≡  is a complex constant and α  a constant phase. 
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As for a pulse of GW, it can be approximated by a delta function: ( ) ( )0 0h u h u uδ= − . In this case, only ±ℑ  
is changed after 0u u> . We have  

( ) ( ) ( ){ } ( )0 0 0 1 2 0 1 22 ; , ,u u u u e h w u u uω± ±ℑ > = ℑ < + ℜ Θ ±Θ              (26) 

where ( )0 1 2; ,w u u u  is a function such that 1w =  if 1 0 2u u u< <  and 0w =  otherwise. Thus, a pulse of 

gravitational wave would produce a change both in I  and 1 2I I . 

4. Conclusion  
The main conclusion from the present results is that the passage of a GW produces a time-dependent 
perturbation in the intensity interference of a distant light sources, an interference which would otherwise have a  
static pattern. Thus, a time variation of 1 2I I  will denote the passage of a gravitational wave. A similar effect 

would be more difficult to observe with I , a direct signal interferometer, due to the presence of highly 
oscillating terms, as shown above. 
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