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Abstract 
In this study, we develop an SIS model for two types of mosquitoes, a traditional one and one that 
is resistant to IRS and ITNs. The resistant mosquito develops behavioral adaptation to control 
measures put in place to reduce their biting rate. They also bite early before dusk and later after 
dark when people are outside the houses and nets. We determine the effect of the two types of 
mosquitoes on malaria transmission in Kenya. The basic reproduction number 0  is established 
as a sharp threshold that determines whether the disease dies out or persists in the population. 
Precisely, if 0  ≤ 1, the disease-free equilibrium is globally asymptotically stable and the disease 
always dies out and if 0  > 1, there exists a unique endemic equilibrium which is globally stable 
and the disease persists. The contribution of the two types of mosquitoes to the basic reproduc-
tion number and to the level of the endemic equilibrium is analyzed. 
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1. Introduction 
Malaria is one of the leading causes of morbidity and mortality in Kenya and it kills an estimated 34,000 child-
ren under five every year. Economically, it is estimated that 170 million working days in Kenya are lost each 
year because of malaria illness. 

http://kenya.usaid.gov/programs/health/72. 
After 1990, pyrethroids were promoted as insecticides of choice especially for Insecticides Treated Nets 

(ITNs) and Indoor Residual Spray (IRS) [1] [2], due to high efficacy, rapid rate of knockdown, strong mosquito 
excito-repellence and low mammalian toxicity [3]. 

In Kenya, ITNs have mainly been distributed to pregnant women and children under 5 years old by the Kenya 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2016.76050
http://dx.doi.org/10.4236/am.2016.76050
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/
http://kenya.usaid.gov/programs/health/72


J. Wairimu, M. Ronoh 
 

 
543 

Ministry of Health and non-governmental organizations [4] [5]. Currently, ITN coverage for children under 5 
years old has increased rapidly from 7% in 2004 to 67% in 2006; this increase has been associated with a 44% 
reduction in malaria deaths [6]. However there is an increasing case resistance of mosquitoes to pyrethroid. The 
likely zoonotic nature of P. falciparum and the behavioral changes of mosquitoes are many new features which 
indicate that malaria control is not yet achieved [7]-[9]. The gains made from ITNs and IRS therefore are 
threatened by the development of physiological or behavioral resistance in the malaria vectors, which is widely 
documented [10]. Anopheline mosquitoes exhibit two major mechanisms of pyrethroid resistance, they are: 

1) Increased level of metabolic detoxification of the insecticide, 
2) Reduced sensitivity in the target sites of the insecticide. The target site of the pyrethroids is the voltage- 

gated sodium channel. 
The second type of resistance is caused when a point mutation in the region II of the para-type sodium chan-

nel genes causes a change in affinity between the insecticide and its binding site or the sodium channel, and it 
induces a phenotype termed knock-down resistance (KDR) in a range of insecticides [11]-[14]. Insensitivity at 
the sodium channel target site also leads to cross-resistance between different classes of insecticides [15]. 

Reports from literature confirm that use of ITNs and IRS has led to a substantial reduction in mosquitoes, re-
duced malaria transmission and a 44% reduction in malaria deaths [16]-[18]. However, although there was a 
global reduction in overall malaria transmission, 57% of the population continued to live in areas where trans-
mission remained moderate to intense in Africa [19]. The ITNs and IRS intervention can reduce malaria trans-
mission by targeting mosquitoes when they feed upon sleeping humans and/or rest inside houses, livestock shel-
ters or other man-made structures. Despite high coverage, malaria spreading mosquitoes can maintain robust 
transmission because they develop resistance hence limiting the achievable impact [20] [21]. High and patchy 
resistance to pyrethroid insecticide has been confirmed in the endemic region of western Kenya, leaving the 
government with limited option but to seek other control measures [7]. 

In this study, we develop a mathematical model with two types of vectors, one which is sensitive to the insec-
ticides and a resistant type which adapts easily and survives despite the two types of intervention. We assume 
that the An. fambiae and the An. fenestus mosquito species are either sensitive or resistant to insecticides. 

In section 2 we develop the model and equations. In section 3 the basic properties of the model are shown for 
positive invariance and computation of the basic reproduction number is also done. Section 4, we show the local 
and global stability of the Disease Free Equilibrium and section 6 is the conclusion. 

2. The Model Formulation and Equations 
We shall subdivide the mosquito population in Western Kenya into the traditional (non resistant) group and the 
new resistant group. This new resistance type has been termed as a “super mosquito”, but for the sake of termi-
nology, we shall refer to them generally as “resistant” mosquito vectors. We shall use the subscripts “n” to 
represent non resistant traditional vectors, while, “r” represents the resistant vectors. 

In this model hS  will represent the susceptible human hosts while hI  will represent the infectious human 
population. The variable hN  representing the total human population will be given by h hS I+ . The non resis-
tant susceptible (infectious) vectors will be represented by nS  ( nI ), respectively, while the resistant vector 
population will be represented likewise as hS  ( hI ), for the susceptible (infectious) population respectively. 
The total non resistant vector, therefore is given by n n nN S I= +  and the resistant vector population by r rS I+ . 
We shall use vN , reservedly for the total resistant and non resistant vector populations respectively, hence 

v n rN N N= + . 
When there are no malaria deaths, the host population dynamics is given by h h h hN Nµ= Λ − , and the total  

human and mosquito population size ( )hN t  approaches a carrying capacity h

hµ
Λ  for any non zero initial pop-  

ulation size. 

The non-resistant vector population defined by ( )nN t  approaches a carrying capacity n

nµ
Λ , while the resis-

tant vector population approaches a carrying capacity r

rµ
Λ . 
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Model assupmtions: 
 the two types of vectors have different biting rates hence differentiated infectivity, 
 the two types coexist and no vector changes status during the entire life span, i.e. not resistance vector be-

comes non-resistant or vice versa, 
 The total vector and human populations are constant. 

The following parameter symbols will be used in the equations: 
 hΛ : The per capita rate of human birth, 
 ,n rΛ Λ : The per capita rate birth rate of traditional vector and resistant vector respectively, 
 mb : The proportion of infectious bites on hosts that produce a patent infection, 
 hb : The proportion of bites by susceptible vectors on infectious hosts that produce a patent infection, 
 , ,h n rµ µ µ : The per capita death rate for the human, traditional and resistant vectors, respectively, 
 hγ : Hosts rate of recovery, 
 ,n ra a : The man biting rates of traditional and resistant vector, respectively. 

The dynamics of our model will be governed by the following set of equations: 

( )

,

,

,

,

,

.

n r
h h m n h m r h h h h h

h h

n r
h m n h m r h h h h h

h h

h
n n h n n n n

h

h
n h n n n n

h

h
r r h n r r r

h

h
r h r r r r

h

I IS b a S b a S I S
N N

I II b a S b a S I
N N

I
S b a S S

N
I

I b a S I
N

I
S b a S S

N
I

I b a S I
N

γ µ

γ µ ν

µ

µ

µ

µ

 = Λ − − + −



= + − + +



= Λ − −


 = −


 = Λ − −

 = −














                       (1) 

The term hΛ  in the susceptible host’s compartment corresponds to a constant recruitment of susceptible 
hosts by natural birth. 

The transmission term n
m n h

h

I
b a S

N
 corresponds to frequency dependent infection of susceptible hosts by in-

fectious non resistant mosquitoes, on infection they move to the infectious compartment. 

The transmission term r
m r h

h

Ib a S
N

 corresponds to frequency dependent infection of susceptible hosts by in-

fectious resistant mosquitoes, on infection they also move to the infectious compartment. 
The infected hosts who recover h hIγ  become susceptible again as malaria has no permanent immunity. 
The last terms , h h h hS Iµ µ− −  represents per capita deaths of the susceptible, infected hosts respectively. 
In the susceptible vectors, ( ),n rΛ Λ  represent the recruitment of susceptible non-resistant, (resistant) mos-

quitoes, respectively, by birth. 

The term ,h h
h n n h r r

h h

I I
b a S b a S

N N
 
 
 

 corresponds to the transmission of malaria to an susceptible non-resistant, 

(resistant) vectors, respectively, by an infected host. 
Natural deaths affects all the groups as denoted by the parameter ( ),n n r rS Sµ µ  for the susceptible non- 

resistant, (resistant) vectors respectively, and ( ),n n r rI Iµ µ  for the infectious non-resistant, (resistant) vectors 
respectively. 

Both resistant and non resistant vectors, once infected, are assumed to remain infected till death as mosquitoes 
do not recover or develop immunity from the parasite [22] [23]. 

All the parameters in the model are non negative and the model equations are well posed. 
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Equation (1) is defined in feasible region 

( ){ }8, , , , , , ,  : , 0 ,   , 0, 0h h n n r r h v h h h h n n v r r v h vS I S I S I N N S N I N S N N S N N N N+Ω = ∈ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≥ ≥  

where 8
+  denotes the non-negative cone of 8  including its lower dimensional faces. It is clear that Ω is po-

sitively invariant with respect to (1). We denote the boundary and the interior of Ω by ∂Ω  and Ω


 respec-
tively. 

3. Well-Posedness of System 
We use the relation h h hS N I= −  and n n nS N I= − , and r r rS N I= −  to reduce Equation (1), and therefore 
study the system 

( ) ( ) ( )

( )

( )

,

,

.

.

n r
h m n h h m r h h h h h h

h h

h
n h n n n n n

h

h
r h r r r r r

h

h h h h h h

v v v v

I II b a N I b a N I I
N N
II b a N I I
N
II b a N I I
N

N N I

N N

γ µ ν

µ

µ

µ ν

µ

 = − + − − + +



= − −


 = − −



= Λ − −
 = Λ −











                  (2) 

3.1. A Compact Positively Invariant Set 
In this section we prove that the following set 

( ), , , , 0 ,0 ,0 ,n r
h n r h v h h n n r r n r v

n r

I I I N N I N I N I N N N N
µ µ

 Λ Λ
= ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 
 

  

is a positively invariant compact set for system (2) by barrier theorems (e.g. [24] [25]). Moreover   is a glob-
al attractor on the nonnegative orthant 5

+  
Now we show that the vector field induced by the system is either tangent or entering   on the boundary 
 . 

 0 0n r
h h m n h m r h

h h

I II I b a N b a N
N N

= ⇒ = + ≥ ; 

 when h hN I=  and h
h

h

N
µ
Λ

≥  we have ( )2 2 0h h h h h h hN I Nµ ν γ− = Λ − + + ≤  . 

 0 0h hN N= ⇒ >  and 0h
h h

h

N N
µ
Λ

≥ ⇒ ≤ ; 

 0 0v vN N= ⇒ >  and 0v
v v

v

N N
µ
Λ

≥ ⇒ ≤ ; 

 since n nI N≤  we have 0 0n nI I= ⇒ ≥ ; 

 since r rI N≤  we have 0 0r rI I= ⇒ ≥ ; 

 when n nN I=  and n
n

n

N
µ
Λ

≥  we have 2 0n n n n nN I Nµ− = Λ − ≤  ; 

 when r rN I=  and r
r

r

N
µ
Λ

≥  we have 2 0r r r r rN I Nµ− = Λ − ≤  ; 
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We denote the demographic equilibria by h
h

h

N
µ
Λ

= , n
n

n

N
µ
Λ

=  and r
r

r

N
µ
Λ

= . 

The total human population is given by d
d

h
h h h h h

N N I
t

µ ν= Λ − − . In the absence of the disease 0hν =  and 

the equation becomes d
d

h
h h h

N N
t

µ= Λ − , which can be written as 

d
.

d
h

h h h
N N
t

µ+ = Λ  

The Integrating factor for this linear differential equation is given by 

d. e e .h ht tI F µ µ∫= =  

Thus 

d e
e .

d

h

h

t
h t

h

N

t

µ
µ

   = Λ  

Integrating both sides we and applying the intial conditions ( 0t = ) we have 

( ) ( ) ( )e 0 , as ,h th h h
h h h

h h h

N t N t Nµ

µ µ µ
−  Λ Λ Λ

= + − →∞ ∞ → 
 

 

The Equation for the Traditional non reistant mosquito nN  is given by d
d

n
n n n

N
N

t
µ= Λ − , which can be 

written as 

d
.

d
n

n n n
N

N
t

µ+ = Λ  

The Integrating factor for this linear differential equation is given by 
d. e e .n nt tI F µ µ∫= =  

Thus 

d e
e .

d

n

n

t
n t

n

N

t

µ
µ

   = Λ  

Integrating both sides we and applying the intial conditions ( 0t = ) we have 

( ) ( ) ( )e 0 , as ,n tn n n
n n n

n n n

N t N t N tµ

µ µ µ
−  Λ Λ Λ

= + − →∞ → 
 

 

Finally, the equation for the resistant mosquito given by d
d

r
r r r

N N
t

µ= Λ − , can be written as 

d .
d

r
r r r

N N
t

µ+ = Λ  

The Integrating factor for this linear differential equation is given by 
d. e e .r rt tI F µ µ∫= =  
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Thus 

d e
e .

d

r

r

t
r t

r

N

t

µ
µ

   = Λ  

Integrating both sides we and applying the intial conditions ( 0t = ) we have 

( ) ( ) ( )e 0 , as ,r tr r r
r r r

r r r

N r N t N tµ

µ µ µ
−  Λ Λ Λ

= + − →∞ → 
 

 

Thus the feasible set for the model system (1) is given by  , which is a positively invariant set. Hence the 
model is well posed and biologically meaningful. 

3.2. Basic Reproduction Number 

( ) 1

1 1

1
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n r

h n n h
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b a

b a
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µ
µ γ µ ν

−
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 
 
 Λ =

Λ + + 
 

Λ 
 Λ + + 

  

( )
( )

2 2 2 2

0 2 2 .h m h n n r r r n

h h h h n r

b b a aµ µ µ

γ µ ν µ µ

Λ + Λ
=

Λ + +
                                 (3) 

which can be simplified as 

( ) ( )
2 2

0
h m h n n r r

h h h h n h h h r

b b a aµ
γ µ ν µ γ µ ν µ

 Λ Λ
= + 

Λ + + + +  
                         (4) 

The expression 0  is caled the basic reproduction number, with a biological meaning that is can be inter-  

preted from terms under the square root sign. The first term n m

h

b b
Λ

, represents the number of secondary human 

infections caused by one infected resistant and one none resistant mosquito vector. The term 
( )

2

2
n n

h h h n

a
γ µ ν µ

Λ
+ +
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represents the number of secondary mosquito infections caused by one infected human to an non-resistant vector, 

while 
( )

2

2
r r

h h h r

aλ
γ µ ν µ+ +

 represents the number of secondary infections to a resistant mosquito vector by a hu-  

man host. The square root sign represent the two generations that the disease has to undergo from a mosquito to 
a human being and to a mosquito again or vice versa for the infection to take place. It is a number that deter-
mines the threshold for disease spread, as well as a control tool that whose parameters can be targeted for 
control. 

4. Stability of Disease-Free Equilibrium Solution 
Jacobian evaluated at disease-free equilibrium solution: 

11

0 0
0 0 0

0 0 0 0

0 0 0 0 .

0 0 0 0

0 0 0 0

h h m n m r

m n m r

h n n h
n

n h

h n n h
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r
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µ
µ
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µ
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µ
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 − 
 Λ

− − Λ 
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−=  
Λ 

 Λ − −
Λ 

 Λ − Λ 

  

Characteristic polynomial: 

( )( )( )( )3
3 2 2 1 1 0 0,m h m n m r A A A Aλ µ λ µ λ µ λ λ λ+ + + + + + =                    (5) 

where 

3 ,h n rA µ µ= Λ  

( )2 2
2 ,r n h r n h r n h h h hA µ µ µ µ µ µ γ µ ν= Λ + Λ + Λ + +  

( )
( )

2 2 2 2
1

2 2 ,
r h n n h m r n h r n h h h h

r n h h h h h r r h m n

A b a b

b a b

µ µ µ µ µ µ γ µ ν

µ µ γ µ ν µ µ

= − Λ + Λ + Λ + +

+ + + Λ − Λ
 

( )( )( )2 2 2
0 01 ,h h h h n rA γ µ ν µ µ= Λ + + −  

it is easy to show that 

( )
2 2 2 2

2 0 2 21 n r n n r n r r

n h h h r n

a a
A

µ µ µ µ
γ µ ν µ µ

 Λ + Λ
= − −   Λ + + 

  

which is positive if 0 1< . 

( )( )1 0
1 .r n r n
n r

A µ µ µ µ
µ µ

= + − +  

This means all the roots of the polynomial equations are negative, hence the system is locally asymptotically 
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stable. 

Global Stability of the DFE 
The local dynamics of a general SIS and SI model is determined by the reproduction number 0 . If 0 1≤ , 
then each infected individual in its entire period of infectiousness will produce less than one infected individual 
on average. This means that the disease will be wiped out of the population. If 0 1> , then each infected indi-
vidual in its entire infectious period having contact with susceptible individuals will produce more than one in-
fected individual implying that the disease persists in the population. If 0 1= , and this is defined as the disease 
threshold, then one individual infects one more individual. For 0 1≤  the disease free equilibrium is locally 
asymptotically stable while for 0 1>  the disease free equilibrium becomes unstable. By using the theory of 
Lasalle-Lyapunov function V, we will show the global asymptotic stability. The disease free equilibrium point is 
( ) ( ), , 0,0,0h n rI I I = . 

Theorem 
If 0 1≤ , then the disease-free equilibrium ( ) ( ), , 0,0,0h n rI I I =  of the system is globally asymptotically 

stable on  . 
Proof 
We construct the following Lasalle-Lyapunov function ( ), ,h n rV I I I  on the positively invariant compact set 

 . Thus on  , ( ), ,h n rV I I I  is continuous and non negative. 
We define 

( ) 2 2, , .h n m n h r m r
h n r h h n r

n r

a b a b
V I I I I I I

µ µ
µ µ

Λ Λ
= Λ + +  

The system of ordinary differential equations given by Equation (2) can be written as 

( ) ( ) ( )
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,

,

.
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This can be written as ( )I A I=  where 
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If we define 

T
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v

µ µ
µ µ
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= Λ 
 

 

then the derivative along the trajectories is given by ( )TV v A I=  as 
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h h h h

n r

m n h n
h m n

n

m r h r
h m r

r

h m n h n r h m r h r n
h h h h h h h h

h h h h n r

h m n

b b a b b a

b ab a

b ab a

b b a b b a

bb a

µ µ µ µ
γ µ ν

µ µ
µ
µ
µ
µ

µ µ µ µ
γ µ ν γ µ ν

γ µ ν µ µ







 
 
 
 
 Λ + Λ
−Λ + + + 
 
 Λ

= Λ − 
 
 Λ
 Λ −
  

 Λ + Λ
−Λ + + + Λ + +  

Λ + +  

= Λ −

( ) ( )

( )

2 2 2 2

2 2

2
0

1

m n h n

n

m r h r
h m r

r

h m n h n r h m r h r n
h h h h

h h h h n r

m n h n
h m n

n

m r h r
h m r

r

h h h h

a

b ab a

b b a b b a

b ab a

b ab a

µ
µ
µ
µ

µ µ µ µ
γ µ ν

γ µ ν µ µ

µ
µ
µ
µ

γ µ ν

 
 
 
 Λ 
 
 

Λ Λ − 
 
   Λ + Λ
  Λ + + − +    Λ + +    
 

Λ = Λ − 
 

Λ Λ − 
  

 Λ + + − 

=

( ) ( ) ( )01 1h h h h

m n h n m n h n
h m n h m n

n n

m r h r m r h r
h m r h m r

r r

b a b ab a b a

b a b ab a b a

γ µ ν

µ µ
µ µ
µ µ
µ µ

   
    Λ + + −    
   Λ Λ

Λ − ≤ Λ −   
   
   Λ Λ

Λ − Λ −   
      



 

We define the set ( ) ( ){ }, , | , , 0h n r h n rE I I I V I I I= ∈ = . The largest invariant set is contained in the set E  

for which 0hI =  or 0nI =  or 0rI = . Thus 0V <  when 0 1<  and 1hΛ < . If 0hI =  or 0 1=  and 
0nI = , 0rI =  then 0V = . Thus by Lasalle’s invariance principle the disease free equilibrium is globally 

asymptotically stable on  . 
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5. The Endemic Equilibrium, EE 
5.1. Local Stability of the Endemic Equilibrium, EE 
Theorem 

The endemic equilibrium *
hI , *

nI  and *
rI  is locally asymptotically stable on  . 

Proof 
The system of equations 5 can also be expressed as follows when we let ( )h h h hδ γ µ ν= + +  

( ) ( )

( )

( )

,

,

.

n r
h m n h h m r h h h h

h h

h
n h n n n n n

n

h
r h r r r r r

r

I II b a N I b a N I I
N N
II b a N I I
N
II b a N I I
N

δ

µ

µ


= − + − =


 = − =



= − =








                      (7) 

The Jacobian computed at the endemic equilibrium using the relations given by Equation (6) can be expressed 
as: 

( )

* * * *

* * *

* *
* * *

* *

**

* *

, , 0 .

0

m n n m r r h h h h

h h n r

n n h n h
h n r

h n n

h r hr r

h r r

b a I b a I I I
N I I I

I b a I
J I I I

I N I

b a II
I N I

δ δ

µ

µ

  +
−  
  
 
 = −
 
 
 − 
 

 

To determine the stability of the endemic equilibrium ( )* * *, ,h n rI I I , we use the Routh-Hurwitz stability criteria 
on the characteristic equation of a third degree polynomial given by ( ) 3 2

1 2 3P a a aλ λ λ λ= + + + . We say that 
( )* * *, ,h n rJ I I I  is Hurwitz iff 1 2 3, , 0a a a >  and 1 2 3 0a a a− > . 
The coefficient ( )( )* * *

1 trace , ,h n ra J I I I= − , 2a  = sum of the determinants of all the principal minors of  

( )* * *, ,h n rJ I I I  and ( )( )* * *
3 determinant , ,h n ra J I I I= − . 

The trace of J will be given as 
* * * *

1 * * * 0m n n m r r h n h h r h

h h n n r r

b a I b a I b a I b a Ia
N I N I N I

 +
= + + > 
 

 

* * * * * * *

* * * * *

2 ** * **

** * * *

2 * * *

* *

0

0

m n n m r r h h m n n m r r h h h n h

h h n h h r n n

h r hn n h n h h r hr r

r rh n n h r r

m h n m h n r h r m h n r h
n h

h n h n h n

b a I b a I I b a I b a I I b a I
N I I N I I N I

a
b a II b a I b a II
N II N I I N I

b b a b b a a I I b b a a I I
N N N N I I

δ δ

µ µ

µ δ

   + +
− − −   
   = + +

−− −

= + − +
* 2 2 *2

* * * *
n m h r h n r h

r h
h rh r r h n r n r

b b a b a a I
N NN N I I N N I I

µ δ+ − +

 

2 0a >  iff 
2 * * * * 2 2 *2

* * * * * *
m h n m h n r h r m h n r h n m h r h n r h

n h r h
h n h rh n h n h r r h n r n r

b b a b b a a I I b b a a I I b b a b a a I
N N N NN N I I N N I I N N I I

µ δ µ δ= + + + + > +  

* * 2 *
*

3 * * *det m n n m r r h n r h n r r n
h h h

h n rn r n r r r

b a I b a I b a a I a aa J b I
N N NN N I I I N

µ µ
δ

     +
= − = − +     

    
 



J. Wairimu, M. Ronoh 
 

 
552 

3 0a >  iff 
* * 2 *

*
* * * .m n n m r r h n r h n r r n

h h h
h n rn r n r r r

b a I b a I b a a I a a
b I

N N NN N I I I N
µ µ

δ
     +

> +     
    

 

To prove the Routh-Hurwitz stability criteria we compute 1 2 3a a a−  to obtain 

2 3 * 2 2 * 2 2 * * * 2 2 * *2 2 2 *2 *

2 * 2 * 2 * *2 2 * *2 2 * *2

2 2 * * * 2 2 * 2 3 *

2 * *2 2 * 2

m h n n m h n r r m r n h n r m n r h r m h r n n h

h n h h n h h n n h h n n h h r r h

m h r h n r m h n r n m h r r

h r r h h r h h r h

b b a I b b a a I b a a I I I b a a I I b b a a I I
N N I N N I N N I I N N I I N N I I

b b a I I I b b a a I b b a I
N N I I N N I N N I

+ + + +

+ + +
2 2 * *2 *

* * * * *

* * * 2 3 * 2 *2 *

* * * * *2 *

2 2 *3 3 2 *3

* 2 *2 *2

h m r n n h m n h n n

h n r n h r h h

m n h r r m r h n n m r h r r h m n h m h n r h r

h h h h h h h n n h n n h

h m r n h h n r h

h n r n n r n r

b b a a I I b a I
N N N I I I N I

b a I b a I b a I b b a I b b a a I I
N I N I N I N N I N N I I

b b a a I b a a I
N N N I N N I I

µ δ

µ δ µ δ µ δ

+ −

− − − + +

+ + −
* * 2 2 *

* * *

2 * 2 2 *2 * 2 3 * 3 2 *3

2 *2 2 * 2 *2 *

h n h n h h r h r h h m n r h

n n r r h n r

h m r n h m h r n h n h m r h h r n h

h n r n r h r h r h r r n r n

b a I b a I b b a a I
N I N I N N I

b b a a I b b a a I I b b a I b a a I
N N N I N N I I N N I N N I I

µ δ µ δ
− +

+ + + +

 

1 2 3 0a a a− >  iff 

2 3 * 2 2 * 2 2 * * * 2 2 * *2 2 2 *2 * 2 2 * * *

2 * 2 * 2 * *2 2 * *2 2 * *2 2 * *2

2 2 * 2 3 *

2 * 2

m h n n m h n r r m r n h n r m n r h r m h r n n h m h r h n r

h n h h n h h n n h h n n h h r r h h r r h

m h n r n m h r r

h r h h r h

b b a I b b a a I b a a I I I b a a I I b b a a I I b b a I I I
N N I N N I N N I I N N I I N N I I N N I I

b b a a I b b a I
N N I N N I

+ + + + +

+ +
2 2 * *2 2 3 * 2 *2 * 2 2 *3

* * * * * *2 * *

3 2 *3 2 2 * 2 * 2 2 *2 *

2 *2 *2 * 2 *2

h m r n n h h m n h m h n r h r h m r n h

h n r n h r h n n h n n h h n r n

h n r h h m n r h h m r n h m h r n h n

h n r nn r n r h n r r h r

b b a a I I b b a I b b a a I I b b a a I
N N N I I I N N I N N I I N N N I

b a a I b b a a I b b a a I b b a a I I
N N N IN N I I N N I N N I

+ + + +

+ + + +
2 3 * 3 2 *3

2 * 2 *2 *

* * * * * *

* * * * * *

h m r h h r n h

h r h r r n r n

m n h n n m n h r r m r h n n m r h r r h n h n h h r h r h

h h h h h h h h n n r r

b b a I b a a I
I N N I N N I I

b a I b a I b a I b a I b a I b a I
N I N I N I N I N I N I
µ δ µ δ µ δ µ δ µ δ µ δ

+ +

> + + + + +

 

The requirements of Routh-Hurwitz stability criteria are satisfied hence this proves that the endemic equili-
brium is locally asymptotically stable  . 

5.2. Global Stability of the EE 
Theorem 

The endemic equilibrium is globally asymptotically stable on   if 0 1> . 
Proof 
We will prove the global stability of the Endemic Equilibrium by using the following Lyapunov function 

proposed by Cai and Li (2007). Thus we have: 

( )
* * *

* * * * * * * * *
1 , , log log logh n r

h n r h h h n n n r r r
h n r

I I IV I I I I I I I I I I I I
I I I

     
= − − + − − + − −     

    
 

Then the derivative of 1V , obtained by direct calculation along the solution of ( ), ,h n rI I I    is given by 

* * *
1d

d
h h n n r r

h n r
h n r

I I I IV I II I I
t I I I

     − − −
= + +     

    
                            (8) 

Substituting the expressions of the model system ( ), ,L A CI I I    into the equation 7 above we get 
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( ) ( )

( ) ( )

*
1

* *

d
d

h h n r
m n h h m r h h h h

h h h

n n h hr r
h n n n n n h r r r r r

n n r r

I I IV Ib a N I b a N I I
t I N N

I I I II Ib a N I I b a N I I
I N I N

δ

µ µ

  −
= − + − −  

  
      − −

+ − − + − −      
     

 

1d
d
V
t

 can be written as 

1d
d
V F G
t
= −                                       (9) 

where F represents the positive terms of the equation above and G represents the negative terms of the said equ-
ation. The expression of F and G are as follows: 

* *
*

* *
* *

m n n h m r r h
m n n m r r h h h n h

h h

h n h n h r h r
n n h r h r r

n r

b a I I b a I IF b a I b a I I b a I
N N

b a I I b a I II b a I I
N N

δ

µ µ

= + + + + +

+ + + + +

 

* *

* *

.

m n n h m r h r m n n h m r r r h n n h
h h

h h h h n

h n h n h r r h h r h r
n n r r

n r r

b a I I b a I I b a I I b a I I b a I I
G I

N N I I N

b a I I b a I I b a I I
I I

I N I

δ

µ µ

= + + + + +

+ + + + +

 

Thus from equation 8 if F G<  then we obtain that 1d 0
d
V
t
≤ . We have that 1d 0

d
V
t
=  if and only if *

h hI I= , 

*
n nI I=  and *

r rI I= . 

We define the set ( )* * * 1
1

d, , | 0
dh n r
VE I I I
t

 = ∈ = 
 

 . Therefore the largest compact invariant set is the singleton  

set 1E  which is the endemic equilibrium. By Lasalle Invariance principle 1E  is globally asymptotically stable 
on  . 

NB: In an upcoming article, we include a human protection factor and the development of mosquito resistance 
during their life time. Wa also allow some resistant vectors to become sensitive to insecticides. 

6. Conclusion 
In this study, we formulated a malaria model representing the transmission of malaria by two types of vectors; 
the traditional mosquito which is sensitive to insecticides in ITNS and IRS, and a resistant type which is able to 
survive despite the control measures aimed at shortening their life span and limiting the biting rate. The basic 
reproduction number is determined as a contribution of the two types of vectors. The model is shown to be posi-
tively invariant, hence well posed. The Disease Free Equilibrium and the Endemic equilibrium are shown to be 
locally and globally asymptotically stable when 0 1<  and 0 1> , respectively. The development of resis-
tance in sensitive mosquitoes and the loss of resistance in resistant mosquitoes will be done in an upcoming ar-
ticle. 
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