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Abstract
In this paper, we study the long time behavior of solution to the initial boundary value problem for
a class of Kirchhoff-Boussinesq model flow u, +au, — SAU, + A’u = div ( g (|Vu|2 )Vu) +Ah(u)+ f(x).

We first prove the wellness of the solutions. Then we establish the existence of global attractor.

Keywords

Kirchhoff-Boussinesq Model, Strongly Damped, Existence, Global Attractor

1. Introduction

In this paper, we are concerned with the existence of global attractor for the following nonlinear plate equation
referred to as Kirchhoff-Boussinesq model:

U, +au, — BAU, + AU = div(g (|Vu|2)Vu)+Ah(u)+ f(x) in QxR* (1.1)
u(x,0)=uy(x);u, (x,0)=u,(x), xeQ (1.2
u(xt),, =0.Au(xt), =0, (x)eQ (1.3)

where Q isabounded domainin R", and «, are positive constants, and the assumptions on g (|Vu|2), h(u)

will be specified later.
Recently, Chueshov and Lasiecka [1] studied the long time behavior of solutions to the Kirchhoff-Boussinesq
plate equation
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Uy + ku, + A% =div[ f, (Vu) ]+ A[ f,(u)] -, (u) (1.4)
with clamped boundary condition
ou(x,t)
u(xt),, =0, v (1.5)

oQ

with Q < R? where v is the unit outward normal on &Q. Here k >0 is the damping parameter, the mapping
f, :R? 5> R? and the smooth functions f, and f, represent (nonlinear) feedback forces acting upon the
plate, in particular,

fo(Vu)=|vu[’ vy, f(u)=u®+u.

When f,(Vu)= |Vu|m*l Vu= O'QVUF vu and f,(u)=0, also considering the (1.4) with a strong damping,
then (1.4) becomes a class of Krichhoff models arising in elastoplastic flow,

Uy —div{a(|Vu|Z)Vu} —Au, +A%u+h(u)+g(u)=f(x) (1.6)

which Yang Zhijian and Jin Baoxia [2] studied. In this model, Yang Zhijian and Jin Baoxia gained that under
rather mild conditions, the dynamical system associated with above-mentioned IBVP possesses in different
phase spaces a global attractor associated with problem (1.6), (1.2) and (1.3) provided that g and h satisfy the
nonexplosion condition,

fim inf G(s), (L.7)
fim inf%zo (1.8)
S|—>0 S

with 0<p<2, G(S):Jjg(r)dr, 1£m<(N/(N—2)+)(m<oo),and h=h, +h, and there exist constant
5,€(0,1),6, € (O,%),ﬂl >0 such that

(h, (v)) 20, (h(v).v)2 =6, (1, (v).v) + M, |- 19

Zhijian Yang, Na Feng and Ro Fu Ma [3] also studied the global attractor for the generalized double disper-
sion equation arising in elastic waveguide model

Uy —AU—Au, +A’U—Au, —Ag (u) = f (x). (1.10)
In this model, g satisfies the nonexplosion condition,
Iiminf@z-ﬂl, |g’(s)|sC(1+|s|p'l), seR (1.11)

where 4 (>0) is the first eigenvalue of the —A,and 1<p<ow as N=2; 1<p< p*z% as N>3.

T. F. Ma and M. L. Pelicer [4] studied the existence of a finite-dimensional global attractor to the following
system with a weak damping.

Uy +Ugoe —(o(uy ), +ku + f (u)=h in(0,L)xR" (1.12)
with simply supported boundary condition
u(0,t)=u(L,t)=u, (0,t)=u,(Lt)=0, t=0 (1.13)

and initial condition
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u(x,0)=uy(x), u(x0)=u(x), xe(0,L) (1.14)
where a(z):|z|p_2,p22,k>0,and f eC'(R), —p<f(s) J'f Jdr < f(s)s, p>0,VseR.

For more related results we refer the reader to [5]-[8]. Many scholars assume div(g (|Vu|2)Vu) = ||Vu||nH vu

to make these equations more normal; we try to make a different hypothesis (specified Section 2), by combining
the idea of Liang Guo, Zhaogin Yuan, Guoguang Lin [9], and in these assumptions, we get the uniqueness of
solutions, then we study the global attractors of the equation.

2. Preliminaries

For brevity, we use the follow abbreviation:
L =12(Q), H =H"(Q), H=U" =l [ =1

with p>1,and V, = HZNH?, where H* arethe L?-based Sobolev spaces and Hg are the completion of
Cy(Q) in H* for k>0. The notation () for the H-inner product will also be used for the notation of
duality pairing between dual spaces.

In this section, we present some materials needed in the proof of our results, state a global existence result,
and prove our main result. For this reason, we assume that

(H) geC(Q),

lim inf G(Ss) >-C (2.1)
‘S‘%oc |S|
jiminf S9(8)=£C) ¢ (22)
‘S‘*}w |S| 2

where G(s)= fg )dz, 0<p<2,andwhen N2,

|g'(s)|sc(1+|s|rr;1j, seQ, (2.3)

where 1<m<ow as N=2; 1§m§m*z6N_'\; as 3<N<4;and m=1 as N=>5.

(Hy) heC' and ||h’(u)||w<@, 2,(>0) is the first eigenvalue of the —A.

Now, we can do priori estimates for Equation (1.1).
Lemma 1. Assume (H,), (H,) hold, and (uo,ul) eV,xH, feH . Then the solution (u,v) of the problem
(1.1)-(1.3) satisfies (u,v)eV,xH ,and

) @4
where v=u,+¢&u, 0<,9<m|n{4 ;10{ j/lg} and
H, (0) = V| +[Aug|” - Be|[Vuy | +, ( (|Vu0| )+C,])dX,VO =U, +&U, , thus there exists E, and
t, :g( )>0, such that
||(u,v)Esz =|auff + |V < (t>1,). (2.5)

Remark 1. (2.1) and (2.1) imply that there exist positive constants C, and C,] , such that

G(s)>-C,, sg(s)-pG(s)=C,. (2.6)
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Proof of Lemma 1.
Proof. Let v=u, +e&u, then v satisfies

Vo +(a—g)v+(&* —as)u— BAV+ BeAu + AU = div(g (|Vu|2)Vu)+Ah(u)+ f(x). 2.7)
Taking H-inner product by v in (2.7), we have

1d, 2 2 2 2 2
Ea"v" +(a—¢)|v| +(s —ag)(u,v)+ﬂ||Vv|| +ﬁg(Au,v)+(A ,v) 8

= (div(g(|Vu|2)Vu),v)+(Ah(u),v)+(f (x),v).

2
Since v=u,+e&u and O<g<min{%,2i,%}, by using Holder inequality, Young’s inequality and
[04

Poincare inequality, we deal with the terms in (2.8) one by one as follow,

3
(ar— &)V == v (2.9)
2 2
(6" —az)(uv) 2~ jiag [Aufiv]=- gZz MIF - laulf
(2.10)
& o
- Eauff - o
and
Pe d 2 2 2
Be(Au,v) = Be(Au,u, +eu) = —7a||Vu|| - Be*|Vu|| (2.11)
(Azu, v) =(Au,Av) = (Au, Au, + eAu) = %%"Au"z + e||Au||2 (2.12)

(div(g(|Vu|2)Vu),v) =—(g(|vu*)vu, vy +avu)

—|.g (|Vu|2)VuVutdx—g(g(|Vu|2)Vu,Vu) (2.13)
- _%%J'QG (|Vu|2)dx—g(g (|Vu|2 )Vu,Vu).

By (2.9)-(2.13), it follows from that
1d 2 2 2 2
S| M+l = pelvul + [ (6(1wuf )+, Jox|
3
o M+l = e vl +2(9(Vuf )vu,vu)+ gvf (2.14)

<(ah(u),v)+(f(x),v).

By (2.6), we can obtain
g(g (|Vu|2 )Vu,Vu) = gjﬂg (|Vu|z)|Vu|2 dx > g_[Q(pG (|Vu|z)—én )dx
= gpIQ(G (|Vu|2 ) +C, )dx - ng‘QCUdX - gfgéqu.

Substituting (2.15) into (2.14), we receive

(2.15)
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1d
S M +aul = pelvuf + (6 ([uf* )+, )ox|

3
+%||v||2 +7€||Au||2 — g |Vulf +ep jQ(G (Ivuf)+c, )dx) + BV
<(Ah(u),v)+(f(x),v)+&] C,dx+zp[ C,dx.

By using Holder inequality, Young’s inequality, and (H,), we obtain
20002 a2
(F Qv <[t M==[t]+5 M
|(Ah(u),v)|=|(Vh u Vv |sj |h' ||Vu||Vv|dx
<o, o< O 2

Then, we have

d a 3¢
IV s = pefvuf + (6 ([uf* )+, Jox [« S+ Jauf

2 2 h, i 2
3857 |[Vulf +24p jQ(G(|vU| )+Cn)dx+2{ﬁ—"2(’+22"w}||w||

4.2 =
<[ +2¢ [.C,dx+2¢p[ C,dx.

A

Because of 0<¢<—1, we get
ap
3
Slaul =3pe vl > Jauff - pz|vul.
Substituting (2.20) into (2.19) gets
d
SN [l = pelulf + [ (6([vuf )+, Jox |

2+ oaulf - 2 [Vulf + 260 Jo((IvuF)+c, Jox

[ . J"V [ ST - 2e], €, 20nf 2,0

Taking «, =min {% g, 25,0} =min{e, 2¢p} , then

d 4 N
S MO+ ()< [ +2¢] C,dx+2p] C,dx=C,

where H,(t)= ||v||2 + ||Au||2 - fe ||Vu||2 + IQ(G (|Vu|2)+ C”)dx , by using Gronwall inequality,we obtain

C
H,(t)<H,(0)e™ + 2 (1-e™").
=0+ S oo )

-1 _
From (H,): |g'(s)|§C(1+|s|mzj, and 1<m<ow as N=2; 1<m<m’'=

as 3<N<4;

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

m=1
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m+3

as N>5, we have IG(|VU|Z)dXSC"VU" , according to Embedding Theorem, then H} —L,.,, let
k:min{l,[l pe J} 1- ﬂg>0 then we have
4 A
0 — C —
e ] 221
Then
C
!Lr‘g" (u,v) |L/ » Sk—;l. (2.25)
So, there exists E, and t, =t (Q )>0 such that
(V) =80+ M < By (). (2.26)

|
Lemma 2. In addition to the assumptions of Lemma 1, if (Hg): f e H'(Q), heC?(Q), then the solution
(u,v) of the problem (1.1)-(1.3) satisfies (u,v)e H®xH*, and

Y Y e @)
2 22

where v=u +eu, 0<e< mln{ A j};} and H, (0)=|[Vv,| +|VAu,| - Be-[Au,|, thus there exists

E, and t,=t,(Q)>0, such that
=|vau + |V <E, (t>1,). (2.28)

(A

Proof. Taking H-inner product by —Av =—Au, —&Au in (2.7), we have

H3xH!

SV + (o) + (6% - ) (0,-4v) + o () (82, -av) + ] 229)

- (e (w0l ) ) -} (). ) (1 ) -

Using Holder inequality, Young’s inequality and Poincare inequality, we deal with the terms in (2.29) one by
one as follow,

3

(a-2) [ =2 v (2.30)

(£2 ) (u,-Av) = (&2 - ae)(Vu, V) = =5 v aul| vy
(2.31)

2= ZZZ [V’ - gIvaul = - vauf - v
and
ﬂg d 2 2

Be(Au,—Av) = Be(Au,—Au, — Au) = ||Au|| Be|ay| (2.32)
(A%u,—Av) = (VAU,VAV) = (VAU, VAU, + £VAU) = %a"vmnz +e|vau[’. (2.33)

Substituting (2.30)-(2.33) into (2.29), we can obtain that
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1d 7

> gt IV VAl = peaul )+ v + v aul = pe [aulf + pav?
(2.34)

< (div(g (|Vu|2 )Vu),—Av) +(Ah(u),—Av)+( f(x),-Av).

By using Holder inequality, Young’s inequality, and (H;), (Hs), we obtain

((6). =) = (7 (), ) < V1 |- o] < 2 ot + & oo @3)

|(Ah(u),—Av)| - ‘(V ~(h'(u)Vu),Av)‘ = ‘(h"(u)|Vu|2 + h'(u)Au,Av)‘

< ‘(h”(u)|Vu|2 ,Av)‘ + |(h'(u)Au, Av)|
, 2 , (2.36)
<[h (W), -[vull -Javi+ [ (), -[vul-Jav]
2 @) A7l ool
B B

By using Gagliardo-Nirenberg inequality, and according the Lemma 1, we can get

<P avf +
4

Vu|, <C, [|Au % Vu % =C,. Then, we have
[vul, <C, Ay ]

(an(a).-av) < Zpavff . (I @), W) vul. ), @

By using the same inequality, we can obtain
(div(g (|Vu|2 )Vu),—Av)

= ‘[2g’(|Vu|2 )|Vu|2 +9 (|Vu|2 )} Au, Av

<

C, (1+ |Vu|m”)Au, Av‘

< |(C4Au,Av)|+C4

(|Vu|m+l Au,Av)‘ (2.38)

m+1
4(m+1

< C[aull-fav +C. [V uln laul, -Jav

i 2 2 .
<l +5Ce Jaulf +5C [Vuliney -laulf

By using Gagliardo-Nirenberg inequality, and according the Lemma 1, we can get

(m+1)n-2m-1 1 4n-1
amap =Cq , |Aul|, <C,|VAul4n |Au[#. Then, by using Young’s

o 2m+l “4
[Vl < Csllaulsemarn [Vl
inequality, we have

m-+1)

4 4n
<+ vl |
4 4n

‘(div(g (|Vu|z)Vu) , —Av)

3 (2.39)
4n-1 =2(2 . 4ntan 2
A [chcg C | au % j +Z ez ouf
where ¢ =" then
2
‘(div(g (|Vu|2)Vu),—Av) §§||Av||2 +§||VAU||2 +Cq(n,&,8,C,,Cy.C,. | Aul). (2.40)
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Substituting (2.35), (2.37), (2.40) into (2.34), we receive

(Il + ol - peluff )+ ol + 22 vl ~2p6 Jauf + ol
, (2.41)
< z(_"w F+C. +c8j.
o
Because of 0<e¢< i we get
4p
3
S auff ~2p ot = o el @)
Taking ¢, =min {% g} =¢, then
d 2 2 ]
EHZ(t)+a2H2(t)SZ(;"Vf" +C4+C8j.=C9 (2.43)
where H, (t)= ||Vv||2 + ||VAu||2 .y ||Au||2 , by Gronwall inequality, we have
—a C —a
H,(t)<H,(0)e tJra—z(l—e Y. (2.44)
Let k, = min{l,(l—ﬁj} =l—& >0, so we get
A A
2 Hy(0) o, Co (4 g
[ = VAU + 9] Si—ze t +F0962(1—e Y. (2.45)
Then
fim (), < (2.46)
tooo it /lIH3xH? k,cz,
So, there exists E, and t, =t,(Q)>0, such that
||(u,v)|iI3le = ||VAu||2 +||Vv||2 <E(t>t). (2.47)
]

3. Global Attractor
3.1. The Existence and Uniqueness of Solution
Theorem 3.1. Assume that (H,)g e C*(Q),

lim inf is) >-C

‘S‘%w m+3 T

sl
lim inf $9(8)=C()
‘S‘—)oc |S|T

>-C

where G(s)zj;g(r)dr, 0<p<2 and 4 (>0) isthe first eigenvalue of the —A,and when N >2,

lg'(s)| < C[1+|s|mz_lj, seQ,
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where 1<m<ow as N=2; 1§msm*56_’\; as 3<N<4; m=1 as N=5.

(H,)(Up,uy) e H3xHY, feH, heC? and |jn'(u)|, < V24
Then the problem (1.1)-(1.3) exists a unique smooth solution

(uu)e |_°°([o,+oo); H® (Q)x Hl(Q)).

Remark 2. We denote the solution in Theorem 3.1 by S (t)(u,,u;)=(u(t),u,(t)). Then S(t) composes a

continuous semigroup in H3x H*.
Proof of Theorem 3.1.

Proof. By the Galerkin method and Lemma 1, we can easily obtain the existence of Solutions. Next, we prove

the uniqueness of Solutions in detail. Assume u,v are two solutions of (1.1)-(1.3), let w=u-v,

W(x,0)=w,(x)=0,w,(x,0)=w,(x)=0 and the two equations subtract and obtain
W, + W, — SAW, + A’W = div[g (|Vu|z)Vu -9 (|Vv|2 )Vv} +A(h(u)=h(v)).
Taking H-inner product by w, in (3.1), we get

R e T R

- (dlv{g (|Vu|2)Vu —g(|VV|Z)VV]WI)+(A(h(u)—h(v)),wt).
By (Hy), (H2)

(A (0() =) w)| = (0 (0) = (), ) = (1 (2w, 2w )

. (ML), .
e, -l e + LT oy

‘(div[g(|Vu|z)Vu— (|Vv| )Vv} ) (Oda( (|VU0| )VU )de Wj‘

( 1( (VU F)IvULf + g (Ivu,f ))d@VW,VWI)‘

0

m+1

d oOvVw, Vw, )

0

( 14V, ™)
(Vw

< Cyo |(VW, VW, )|+ C,

(I VU, dovw, vw, )‘

m+1

<afwff + S 2 lawl +Co VU, [ a0 v, V]

4(m+1)

2 ,3 2 | CH iy 2 2
<+ £ +| S S P, o) | v

where min{u,v} <¢& <max{u,v},U, =6u+(1-6)v,0< 6 <1.
By using Gagliardo- Nirenberg inequality, and according the Lemma 1,we can get
4(m+1)n-2m-1

<Cy ||AU9||4 m+1 i [VU,[ 4mon =C,,. Then, we have

‘(div[ (|Vu| )Vu g(|Vv| )Vv} )

Substituting (3.3), (3.5) into (3.2)

[vu

9"4 m+1)

<a||W " +C13 C.Cip. B, "AW" )

then

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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d
E(”W[ I +||AW||2)+ Blvw]’ < {(" €. ) +013] |Aw]f + 26w (3.6)
Takin = {(”h " ) ]
g B =max 2a ;.

Then

d

ol +lawf’ ) < B awf +w). (37)
By using Gronwall inequality, we obtain

o]+ o < (Jaw(O)f + | (O)f )™ (38)
So, we can get |w, ||2 + ||AW||2 <0 because of w,(x)=0,w,(x)=0.
That shows that
] =0, " =0.
That is
w(x,t)=0.
Therefore
u=v.

We get the uniqueness of the solution. So the proof of the Theorem 3.1. has been completed. [

3.2. Global Attractor

Theorem 3.2. [10] Let X be a Banach space, and {S(t)}(tzo) are the semigroup operator on X.
S(t):X = X,S(t+s)=S(t)S(s)(Vt,s=0),5(0)=1, here I is a unit operator. Set S(t) satisfy the follow
conditions.

1) S(t) isbounded, namely VR >0,|uf, <R, itexistsaconstant C(R),so that

||S (t)u"X £C(R)(t e[0,+oo));
2) It exists a bounded absorbing set B, = X , namely, VB c X , it exists a constant t;, so that
S(t)BcBy(t>ty);
here B, and B are bounded sets.
3) When t>0, S(t) isacompletely continuous operator.

Therefore, the semigroup operators S(t) exist a compact global attractor A.
Theorem 3.3 Under the assume of Theorem 3.1, equations have global attractor

=o(B,)=US(t)B,

>0 t>s

where B, ={(U,V)e H®x H* | (u, v)|H - =|ulf s + VI < Eq +E}, B is the bounded absorbing set of

H3®xH' and satisfies
1) S(t)A=At>0;
2) lim dist(S(t)B,A)=0,here Bc H®xH" and it is a bounded set,
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dist((t)B, A) =supinf S (1) X~y

Proof. Under the conditions of Theorem 3.1, it exists the solution semigroup S(t), here X = H3xH',
S(t):H xH' > H¥x H*.

(1) From Lemma 1-Lemma 2, we can ge that VB c H®*xH" is a bounded set that includes in the ball

{||("J’V)"l—|3xl—|1 < R} !

3 (8) (0o ¥ )y =0 +Ms <ol + ol + € <R €. (120, (u ) < B)

HY =
This shows that S (t)(t>0) is uniformly bounded in H®xH*.
(2) Furthermore, for any (u,,V,) e H®xH*, when t>max{t,t,}, we have
2
8 (6)(uorvo s, =Iulls + Ml < Eo + 4

So we get B, is the bounded absorbing set.

(3) Since H®xH' >V, xH is compact embedded, which means that the bounded set in V,xH" is the
compact set in V,xH , so the semigroup operator S(t) exist a compact global attractor A. Theorem 3.3 is
proved. [
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