

Global Attractors for a Class of Generalized Nonlinear Kirchhoff-Sine-Gordon Equation

Ruijin Lou, Penghui Lv, Guoguang Lin

Mathematical of Yunnan University, Kunming, China Email: 1145068367@qq.com, 18487279097@163.com, gglin@ynu.edu.cn

Received 29 December 2015; accepted 14 March 2016; published 17 March 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper, we consider a class of generalized nonlinear Kirchhoff-Sine-Gordon equation $u_u - \beta \Delta u_t + \alpha u_t - \phi \left(\left\| \nabla u \right\|^2 \right) \Delta u + g \left(\sin u \right) = f \left(x \right)$. By a priori estimation, we first prove the existence and uniqueness of solutions to the initial boundary value conditions, and then we study the global attractors of the equation.

Keywords

Kirchhoff-Sine-Gordon Equation, The Existence and Uniqueness of Solutions, Priori Estimates, Global Attractors

1. Introduction

In 1883, Kirchhoff [1] proposed the following model in the study of elastic string free vibration:

 $u_{tt} - \alpha \Delta u - M (\|\nabla u\|^2) \Delta u = f(x, u)$, where α is associated with the initial tension, M is related to the material properties of the rope, and u(x,t) indicates the vertical displacement at the x point on the t. The equation is more accurate than the classical wave equation to describe the motion of an elastic rod.

Masamro [2] proposed the Kirchhoff equation with dissipation and damping term:

$$\begin{cases} u_{tt} - M\left(\left\|\nabla u\right\|^{2}\right) \Delta u + \delta \left|u\right|^{p} u + \gamma u_{t} = f\left(x\right) & x \in \Omega, t > 0 \\ u\left(x, t\right) = 0 & x \in \partial\Omega, t \geq 0 \\ u\left(x, 0\right) = u_{0}\left(x\right), u_{t}\left(x, 0\right) = u_{1}\left(x\right) & x \in \Omega \end{cases}$$

How to cite this paper: Lou, R.J., Lv, P.H. and Lin, G.G. (2016) Global Attractors for a Class of Generalized Nonlinear Kirchhoff-Sine-Gordon Equation. *International Journal of Modern Nonlinear Theory and Application*, **5**, 73-81. http://dx.doi.org/10.4236/ijmnta.2016.51008

where Ω is a bounded domain of $R^n(n \ge 1)$ with a smooth boundary $\partial \Omega$; he uses the Galerkin method to prove the existence of the solution of the equation at the initial boundary conditions.

Sine-Gordon equation is a very useful model in physics. In 1962, Josephson [3] fist applied the Sine-Gordon equation to superconductors, where the equation: $u_{tt} - u_{xx} + \sin u = 0$, u_{tt} is the two-order partial derivative of u with respect to the variable t; u_{xx} is the two-order partial derivative of the u about the independent variable x. Subsequently, Zhu [4] considered the following problem: $u_{tt} - \alpha u_{tt} - u_{xx} + \lambda g(\sin u) = f(x,t)$ (where Ω is a bounded domain of R^3) and he proved the existence of the global solution of the equation. For more research on the global solutions and global attractors of Kirchhoff and sine-Gordon equations, we refer the reader to [5]-[11].

Based on Kirchhoff and Sine-Gordon model, we study the following initial boundary value problem:

$$\begin{cases} u_{tt} - \beta \Delta u_{t} + \alpha u_{t} - \phi \left(\left\| \nabla u \right\|^{2} \right) \Delta u + g \left(\sin u \right) = f \left(x \right) \\ u \left(x, t \right) = 0 & x \in \partial \Omega, t \ge 0 \\ u \left(x, 0 \right) = u_{0} \left(x \right), u_{t} \left(x, 0 \right) = u_{1} \left(x \right) & x \in \Omega \end{cases}$$

$$(1.1)$$

where Ω is a bounded domain of $R^n(n \ge 1)$ with a smooth boundary $\partial \Omega$; α is the dissipation coefficient; β is a positive constant; and f(x) is the external interference. The assumptions on nonlinear terms $g(\sin u)$ and $\phi(\|\nabla u\|^2)$ will be specified later.

The rest of this paper is organized as follows. In Section 2, we first obtain the basic assumption. In Section 3, we obtain a priori estimate. In Section 4, we prove the existence of the global attractors.

2. Basic Assumption

For brevity, we define the Sobolev space as follows:

$$H = L^{2}(\Omega), V_{1} = H_{0}^{1}(\Omega), V_{2} = H^{2}(\Omega) \cap H_{0}^{1}(\Omega),$$

$$E_0 = H_0^1(\Omega) \times L^2(\Omega) = V_1 \times H, E_1 = \left(H^2(\Omega) \cap H_0^1(\Omega)\right) \times H_0^1(\Omega) = V_2 \times V_1.$$

In addition, we define (\bullet, \bullet) and $\|\bullet\|$ are the inner product and norm of H. Nonlinear function g(s) satisfying condition (G):

- (1) $g(s) \in C^2(R)$;
- $(2) |g(s)| \le c(1+|s|^p);$

(3)
$$\left| \frac{\mathrm{d}g(s)}{\mathrm{d}s} \right| \le c \left(1 + \left| s \right|^{p-1} \right)$$
, where $c > 0, 1 \le p \le \frac{2n}{n-2}, n \ge 3$.

Function $\phi(s)$ satisfies the condition (F):

- (4) $\phi(s) \in C^1([0,+\infty),R);$
- (5) $\frac{m_1 + 2}{2} < m_0 \le \phi(s) \le m_1, 0 \le \frac{\mathrm{d}\phi(s)}{\mathrm{d}s} \le c_0;$
- (6) $\Phi(s) = \int_0^u \phi(\tau) d\tau;$

(7)
$$\phi(s)s \ge c_1\Phi(s)$$
, where $c_1 \ge \frac{2(m+1)}{m_0}$, $m = \begin{cases} m_0, \frac{d}{dt} \|\Delta u\|^2 \ge 0\\ m_1, \frac{d}{dt} \|\Delta u\|^2 < 0. \end{cases}$

3. A Priori Estimates

Lemma 3.1. Assuming the nonlinear function $g(s), \phi(s)$ satisfies the condition $(G)-(F), (u_0, u_1) \in V_1 \times H$,

 $f \in H$, $v = u_t + \varepsilon u$, $0 < \varepsilon \le \min\left\{\frac{\alpha}{4}, \frac{m_0}{2\beta}, \frac{2m_0 - m - 2}{3\beta}\right\}$, then the solution (u, v) of the initial boundary value problem (1.1) satisfies $(u, v) \in V_1 \times H$ and

$$\left\| \left(u, v \right) \right\|_{V_{1} \times H}^{2} = \left\| \nabla u \right\|^{2} + \left\| v \right\|^{2} \le \frac{y_{1}(0)}{k_{1}} e^{-\alpha_{1}t} + \frac{c_{2}}{\alpha_{1}k_{1}} \left(1 - e^{-\alpha_{1}t} \right),$$

where $y_1(0) = \|v(0)\|^2 + \Phi(\|\nabla u(0)\|^2) - \beta \varepsilon \|\nabla u(0)\|^2$. Thus there exists a positive constant $c(R_0)$ and $t_1 = t_1(\Omega) > 0$, such that

$$\|(u,v)\|_{V_1 \times H}^2 = \|\nabla u(t)\|^2 + \|v(t)\|^2 \le c(R_0)(t > t_1).$$

Proof. Let $v = u_t + \varepsilon u$, the equation $u_{tt} - \beta \Delta u_t + \alpha u_t - \phi (\|\nabla u\|^2) \Delta u + g(\sin u) = f(x)$ can be transformed into

$$v_{t} + (\alpha - \varepsilon)v + \varepsilon(\varepsilon - \alpha)u + \beta\varepsilon\Delta u - \beta\Delta v - \phi(\|\nabla u\|^{2})\Delta u + g(\sin u) = f(x). \tag{3.1}$$

Taking the inner product of the equations (3.1) with v in H, we find that

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|v\|^{2} + (\alpha - \varepsilon) \|v\|^{2} + \varepsilon (\varepsilon - \alpha) (u, v) - \frac{\beta \varepsilon}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\nabla u\|^{2}
-\beta \varepsilon^{2} \|\nabla u\|^{2} + (-\beta \Delta v, v) + (-\phi (\|\nabla u\|^{2}) \Delta u, v) = (f - g(\sin u), v).$$
(3.2)

By using Holder inequality, Young's inequality and Poincare inequality, we deal with the terms in (3.2) one by as follows

$$(-\beta \Delta v, v) = \beta (\nabla v, \nabla v) = \beta \|\nabla u\|^2 \ge \lambda_1 \beta \|u\|^2, \tag{3.3}$$

where λ_1 is the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions on Ω .

Since $0 < \varepsilon \le \frac{\alpha}{4}$ and (F) (6), (7), we get

$$\varepsilon \left(\varepsilon - \alpha\right) \left(u, v\right) \ge \frac{\varepsilon \left(\varepsilon - \alpha\right)}{\sqrt{\lambda_{1}}} \left\|\nabla u\right\| \left\|v\right\| \ge -\frac{\varepsilon \alpha}{\sqrt{\lambda_{1}}} \left(\frac{\sqrt{\lambda_{1}}}{\alpha} \left\|\nabla u\right\|^{2} + \frac{\alpha}{\sqrt{\lambda_{1}}} \left\|v\right\|^{2}\right) \\
\ge -\varepsilon \left\|\nabla u\right\|^{2} - \frac{\alpha^{3}}{4\lambda_{1}} \left\|v\right\|^{2}, \tag{3.4}$$

and

$$\left(-\phi\left(\left\|\nabla u\right\|^{2}\right)\Delta u, v\right) = \frac{\phi\left(\left\|\nabla u\right\|^{2}\right)}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left\|\nabla u\right\|^{2} + \varepsilon\phi\left(\left\|\nabla u\right\|^{2}\right) \left\|\nabla u\right\|^{2}
\geq \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \Phi\left(\left\|\nabla u\right\|^{2}\right) + c_{1}\varepsilon\Phi\left(\left\|\nabla u\right\|^{2}\right).$$
(3.5)

$$(f - g(\sin u), v) \le ||v|| (||f|| + ||g(\sin u)||) \le \frac{\alpha}{2} ||v||^2 + \frac{(||f|| + 2c|\Omega|^{\frac{1}{2}})^2}{2\alpha},$$
 (3.6)

where

$$||g(\sin u)|| \le \left(\int_{\Omega} |c(1+|\sin u|^p)|^2 dx\right)^{\frac{1}{2}} \le 2c|\Omega|^{\frac{1}{2}}.$$
 (3.7)

Combined (3.1)-(3.6) type, it follows from that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\left\| v \right\|^{2} + \Phi \left(\left\| \nabla u \right\|^{2} \right) - \beta \varepsilon \left\| \nabla u \right\|^{2} \right] + \left(\alpha + 2\lambda_{1}\beta - \frac{\alpha^{3}}{2\lambda_{1}} - 2\varepsilon \right) \left\| v \right\|^{2} \\
+ 2c_{1}\varepsilon\Phi \left(\left\| \nabla u \right\|^{2} \right) + 2\varepsilon \left(-\beta \varepsilon - 1 \right) \left\| \nabla u \right\|^{2} \le \frac{\left(\left\| f \right\| + 2c \left| \Omega \right|^{\frac{1}{2}} \right)^{2}}{\alpha} = c_{2}. \tag{3.8}$$

According to condition (F) (5), this will imply $m_0 \|\nabla u\|^2 \le \Phi(\|\nabla u\|^2) \le m_1 \|\nabla u\|^2$, then, $\Phi(\|\nabla u\|^2) - \beta \varepsilon \|\nabla u\|^2 > 0$, and since $c_1 \ge \frac{2(m+1)}{m_0}$,

$$c_{1}\Phi\left(\left\|\nabla u\right\|^{2}\right)+\left(-\beta\varepsilon-1\right)\left\|\nabla u\right\|^{2} \geq \Phi\left(\left\|\nabla u\right\|^{2}\right)-\beta\varepsilon\left\|\nabla u\right\|^{2}+\left(m_{0}-1\right)\left\|\nabla u\right\|^{2}$$

$$\geq \Phi\left(\left\|\nabla u\right\|^{2}\right)-\beta\varepsilon\left\|\nabla u\right\|^{2},$$
(3.9)

that is

$$2\varepsilon \left[c_1 \Phi \left(\left\| \nabla u \right\|^2 \right) + \left(-\beta \varepsilon - 1 \right) \left\| \nabla u \right\|^2 \right] > \varepsilon \left[\Phi \left(\left\| \nabla u \right\|^2 \right) - \beta \varepsilon \left\| \nabla u \right\|^2 \right]. \tag{3.10}$$

With (3.10), (3.8) can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\|v\|^{2} + \Phi\left(\|\nabla u\|^{2} \right) - \beta \varepsilon \|\nabla u\|^{2} \right] + \left(\alpha + 2\lambda_{1}\beta - \frac{\alpha^{3}}{2\lambda_{1}} - 2\varepsilon \right) \|v\|^{2} + \varepsilon \left[\Phi\left(\|\nabla u\|^{2} \right) - \beta \varepsilon \|\nabla u\|^{2} \right] \le c_{2}.$$
(3.11)

Set $a = \alpha + 2\lambda_1 \beta - \frac{\alpha^3}{2\lambda_1} - 2\varepsilon \ge 0$, and $\alpha_1 = \min\{a, \varepsilon\}$, then (3.11) is equivalent to (3.12)

$$\frac{\mathrm{d}}{\mathrm{d}t} y_1(t) + \alpha_1 y_1(t) \le c_2, \tag{3.12}$$

where

$$y_1(t) = ||v||^2 + \Phi(||\nabla u||^2) - \beta \varepsilon ||\nabla u||^2.$$
 (3.13)

By using Gronwall inequality, we obtain

$$y_1(t) \le y_1(0)e^{-\alpha_1 t} + \frac{c_2}{\alpha_1}(1 - e^{-\alpha_1 t}).$$
 (3.14)

Let $k_1 = \min\{1, (m_0 - \beta \varepsilon)\}$.

So, we have

$$\left\| \left(u, v \right) \right\|_{V_1 \times H}^2 = \left\| \nabla u \right\|^2 + \left\| v \right\|^2 \le \frac{y_1(0)}{k_1} e^{-\alpha_1 t} + \frac{c_2}{\alpha_1 k_1} \left(1 - e^{-\alpha_1 t} \right), \tag{3.15}$$

then

$$\overline{\lim_{t \to \infty}} \left\| \left(u, v \right) \right\|_{V_1 \times H}^2 \le \frac{c_2}{\alpha_1 k_1}. \tag{3.16}$$

Hence, there exists $c(R_0)$ and $t_1 = t_1(\Omega) > 0$, such that

$$\|(u,v)\|_{V_1 \times H}^2 = \|\nabla u(t)\|^2 + \|v(t)\|^2 \le c(R_0)(t > t_1).$$

Lemma 3.2. Assuming the nonlinear function $g(s), \phi(s)$ satisfies the condition (G)-(F),

 $\left(u_0, u_1\right) \in V_2 \times V_1, f \in V_1, v = u_t + \varepsilon u, 0 < \varepsilon \le \min\left\{\frac{\alpha}{4}, \frac{m_0}{2\beta}, \frac{2m_0 - m - 2}{3\beta}\right\}, \text{ then the solution } \left(u, v\right) \text{ of satisfies the } \left(u, v\right) = u_t + \varepsilon u, 0 < \varepsilon \le \min\left\{\frac{\alpha}{4}, \frac{m_0}{2\beta}, \frac{2m_0 - m - 2}{3\beta}\right\}$

initial boundary value problem (1.1) satisfies $(u,v) \in V_2 \times V_1$ and

$$\left\| \left(u, v \right) \right\|_{V_2 \times V_1}^2 = \left\| \nabla v \right\|^2 + \left\| \Delta u \right\|^2 \le \frac{y_2(0)}{k_2} e^{-\alpha_2 t} + \frac{c_3}{\alpha_2 k_2} \left(1 - e^{-\alpha_2 t} \right),$$

where $y_2(0) = \|\nabla v(0)\|^2 + (m - \beta \varepsilon) \|\Delta u(0)\|^2$. Thus there exists a positive constant $c(R_1)$ and $t_2 = t_2(\Omega) > 0$, such that

$$\|(u,v)\|_{V_1 \times V_1}^2 = \|\nabla v(t)\|^2 + \|\Delta u(t)\|^2 \le c(R_1)(t > t_1).$$

Proof. The equations (3.1) in the H and $-\Delta v = -\Delta u_t - \varepsilon \Delta u$ have inner product, we find that

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\nabla v\|^{2} + (\alpha - \varepsilon) \|\nabla v\|^{2} + \varepsilon (\varepsilon - \alpha)(u, -\Delta v) - \frac{\beta \varepsilon}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\Delta u\|^{2} - \beta \varepsilon^{2} \|\Delta u\|^{2} + (-\beta \Delta v, -\Delta v) + (-\phi (\|\nabla u\|^{2}) \Delta u, -\Delta v) = (f - g(\sin u), -\Delta v).$$
(3.17)

By using Holder inequality, Young's inequality and Poincare inequality, we get the following results

$$(-\beta \Delta v, -\Delta v) = \beta (\Delta v, \Delta v) = \beta \|\Delta v\|^2 \ge \lambda_1 \beta \|\nabla v\|^2, \tag{3.18}$$

$$\varepsilon \left(\varepsilon - \alpha\right) \left(u, -\Delta v\right) \ge \frac{\varepsilon^{2} - \varepsilon \alpha}{\sqrt{\lambda_{1}}} \left\| \Delta u \right\| \left\| \nabla v \right\| \ge -\frac{\varepsilon \alpha}{\sqrt{\lambda_{1}}} \left(\frac{\sqrt{\lambda_{1}}}{\alpha} \left\| \Delta u \right\|^{2} + \frac{\alpha}{\sqrt{\lambda_{1}}} \left\| \nabla v \right\|^{2} \right)$$

$$\ge -\varepsilon \left\| \Delta u \right\|^{2} - \frac{\alpha^{3}}{4\lambda_{1}} \left\| \nabla v \right\|^{2}.$$
(3.19)

According to condition (F) (5), (6), we obtain

$$\left(-\phi\left(\left\|\nabla u\right\|^{2}\right)\Delta u, -\Delta v\right) = \phi\left(\left\|\nabla u\right\|^{2}\right)\left(\Delta u, \Delta v\right) = \phi\left(\left\|\nabla u\right\|^{2}\right)\left[\left(\Delta u, \Delta u_{t}\right) + \left(\Delta u, \varepsilon \Delta u\right)\right]
= \frac{\phi\left(\left\|\nabla u\right\|^{2}\right)}{2} \frac{d}{dt} \left\|\Delta u\right\|^{2} + \varepsilon\phi\left(\left\|\nabla u\right\|^{2}\right)\left\|\Delta u\right\|^{2} \ge \frac{m}{2} \frac{d}{dt} \left\|\Delta u\right\|^{2} + \varepsilon m_{0} \left\|\Delta u\right\|^{2}.$$
(3.20)

$$\left(f - g\left(\sin u\right), -\Delta v \right) \le \left\| \nabla v \right\| \left(\left\| \nabla f \right\| + \left\| \nabla g\left(\sin u\right) \right\| \right) \le \frac{\alpha}{2} \left\| \nabla v \right\|^2 + \frac{\left(\left\| \nabla f \right\| + \left\| \nabla g\left(\sin u\right) \right\| \right)^2}{2\alpha}$$

$$\le \frac{\alpha}{2} \left\| \nabla v \right\|^2 + \frac{\left(\left\| \nabla f \right\| + 2c \left| \Omega \right|^{\frac{1}{2}} \right)^2}{2\alpha},$$

$$(3.21)$$

where

$$\|\nabla g(\sin u)\| = \|g'(\sin u)\cos u\nabla u\| \le \|g'(\sin u)\| \|\nabla u\|$$

$$\le R_1 \left(\int_{\Omega} \left| c\left(1 + \left|\sin u\right|^{p-1}\right) \right|^2 dx \right)^{\frac{1}{2}} \le 2R_1 c |\Omega|^{\frac{1}{2}}.$$
(3.22)

By (3.18)-(3.22), (3.17) can be written

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\left\| \nabla v \right\|^{2} + (m - \beta \varepsilon) \left\| \Delta u \right\|^{2} \right] + \left(\alpha + 2\lambda_{1}\beta - 2\varepsilon - \frac{\alpha^{3}}{2\lambda_{1}} \right) \left\| \nabla v \right\|^{2} + 2\varepsilon \left(m_{0} - \beta \varepsilon - 1 \right) \left\| \Delta u \right\|^{2} \le \frac{\left(\left\| \nabla f \right\| + 2cR_{1} \left| \Omega \right|^{\frac{1}{2}} \right)^{2}}{\alpha} = c_{3}. \tag{3.23}$$

Noticing $0 < \varepsilon \le \frac{2m_0 - m - 2}{3\beta}$, this will imply

$$2\varepsilon (m_0 - \beta \varepsilon - 1) \|\Delta u\|^2 \ge \varepsilon (m - \beta \varepsilon) \|\Delta u\|^2. \tag{3.24}$$

Substituting (3.24) into (3.23), we can get the following inequality

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\left\| \nabla v \right\|^2 + \left(m - \beta \varepsilon \right) \left\| \Delta u \right\|^2 \right] + \left(\alpha + 2\lambda_1 \beta - 2\varepsilon - \frac{\alpha^3}{2\lambda_1} \right) \left\| \nabla v \right\|^2 + \varepsilon \left(m - \beta \varepsilon \right) \left\| \Delta u \right\|^2 \le c_3. \tag{3.25}$$

Let $b = \alpha + 2\lambda_1\beta - 2\varepsilon - \frac{\alpha^3}{2\lambda_1} \ge 0$, and $\alpha_2 = \min\{b, \varepsilon\}$, then (3.25) type can be changed into

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\left\| \nabla v \right\|^2 + \left(m - \beta \varepsilon \right) \left\| \Delta u \right\|^2 \right] + \alpha_2 \left[\left\| \nabla v \right\|^2 + \left(m - \beta \varepsilon \right) \left\| \Delta u \right\|^2 \right] \le c_3, \tag{3.26}$$

then

$$\frac{\mathrm{d}}{\mathrm{d}t} y_2(t) + \alpha_2 y_2(t) \le c_3, \tag{3.27}$$

where $y_2(t) = \|\nabla v\|^2 + (m - \beta \varepsilon) \|\Delta u\|^2$.

By using Gronwall inequality, we obtain

$$y_2(t) \le y_2(0)e^{-\alpha_2 t} + \frac{c_3}{\alpha_2}(1 - e^{-\alpha_2 t}),$$
 (3.28)

taking $k_2 = \min\{1, (m - \beta \varepsilon)\}\$, we have

$$\left\| \left(u, v \right) \right\|_{V_2 \times V_1}^2 = \left\| \Delta u \right\|^2 + \left\| \nabla v \right\|^2 \le \frac{y_2(0)}{k_2} e^{-\alpha_2 t} + \frac{c_3}{\alpha_2 k_2} \left(1 - e^{-\alpha_2 t} \right), \tag{3.29}$$

then

$$\overline{\lim}_{t \to \infty} \left\| \left(u, v \right) \right\|_{V_2 \times V_1}^2 \le \frac{c_3}{\alpha_2 k_2}. \tag{3.30}$$

Hence, there exists $c(R_1)$ and $t_2 = t_2(\Omega) > 0$, such that

$$\|(u,v)\|_{V_2 \times V_1}^2 = \|\Delta u(t)\|^2 + \|\nabla v(t)\|^2 \le c(R_1)(t > t_2).$$

Theorem 3.1. Assuming the nonlinear function $g(s), \phi(s)$ satisfies the condition (G)-(F),

$$(u_0, u_1) \in V_2 \times V_1, f \in V_1, v = u_t + \varepsilon u, \quad 0 < \varepsilon \le \min\left\{\frac{\alpha}{4}, \frac{m_0}{2\beta}, \frac{2m_0 - m - 2}{3\beta}\right\}, \text{ so the initial boundary value problem }$$

(1.1) exists a unique smooth solution $(u,v) \in L^{\infty}([0,+\infty);V_2 \times V_1)$.

Proof. By Lemma 3.1-Lemma 3.2 and Glerkin method, we can easily obtain the existence of solutions of equation $(u,v) \in L^{\infty}([0,+\infty);V_2 \times V_1)$, the proof procedure is omitted. Next, we prove the uniqueness of solutions in detail.

Assume u, v are two solutions of equation, we denote w = u - v, then, the two equations subtract and obtain

$$w_{tt} - \beta \Delta w_t + \alpha w_t - \phi \left(\left\| \nabla u \right\|^2 \right) \Delta u + \phi \left(\left\| \nabla v \right\|^2 \right) \Delta v = -g \left(\sin u \right) + g \left(\sin v \right). \tag{3.31}$$

We take the inner product of the above equations (3.31) with w_i in H, we have

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|w_t\|^2 + \left(-\beta \Delta w_t, w_t\right) + \alpha \|w_t\|^2 + \left(-\phi \left(\|\nabla u\|^2\right) \Delta u + \phi \left(\|\nabla v\|^2\right) \Delta v, w_t\right) \\
= \left(-g \left(\sin u\right) + g \left(\sin v\right), w_t\right).$$
(3.32)

We deal with the terms in (3.32) one by as follows

$$\left(-\beta \Delta w_{t}, w_{t}\right) = \beta \left(\nabla w_{t}, \nabla w_{t}\right) = \beta \left\|\nabla w_{t}\right\|^{2} \ge \lambda_{1} \beta \left\|w_{t}\right\|^{2}, \tag{3.33}$$

and

$$\left(-\phi\left(\left\|\nabla u\right\|^{2}\right)\Delta u + \phi\left(\left\|\nabla v\right\|^{2}\right)\Delta v, w_{t}\right)
= \left(-\phi\left(\left\|\nabla u\right\|^{2}\right)\Delta u + \phi\left(\left\|\nabla u\right\|^{2}\right)\Delta v - \phi\left(\left\|\nabla u\right\|^{2}\right)\Delta v + \phi\left(\left\|\nabla v\right\|^{2}\right)\Delta v, w_{t}\right)
= -\phi\left(\left\|\nabla u\right\|^{2}\right)\left(\Delta u - \Delta v, w_{t}\right) + \left(-\phi\left(\left\|\nabla u\right\|^{2}\right) + \phi\left(\left\|\nabla v\right\|^{2}\right)\right)\left(\Delta v, w_{t}\right)
= \frac{m}{2} \frac{d}{dt} \left\|\nabla w\right\|^{2} + \left(-\phi\left(\left\|\nabla u\right\|^{2}\right) + \phi\left(\left\|\nabla v\right\|^{2}\right)\right)\left(\Delta v, w_{t}\right).$$
(3.34)

By (3.32)-(3.34), we can get the following inequality

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|w_t\|^2 + \lambda_1 \beta \|w_t\|^2 + \alpha \|w_t\|^2 + \frac{m}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\nabla w\|^2
= \left(\phi \left(\|\nabla u\|^2\right) - \phi \left(\|\nabla v\|^2\right)\right) \left(\Delta v, w_t\right) + \left(-g\left(\sin u\right) + g\left(\sin v\right), w_t\right).$$
(3.35)

Further, by mid-value theorem and Young's inequality, we get

$$\left(\phi\left(\|\nabla u\|^{2}\right) - \phi\left(\|\nabla v\|^{2}\right)\right)\left(\Delta v, w_{t}\right) \leq \left|\phi'(\eta)\right|\left(\|\nabla u\| + \|\nabla v\|\right)\|\nabla w\|\|\Delta v\|\|w_{t}\| \\
\leq c_{0}\left(\|\nabla u\| + \|\nabla v\|\right)\|\nabla w\|\|\Delta v\|\|w_{t}\| \leq c_{4}\|\nabla w\|\|w_{t}\| \leq \frac{c_{4}}{2\lambda_{t}}\|\nabla w\|^{2} + \frac{\lambda_{1}c_{4}}{2}\|w_{t}\|^{2}.$$
(3.36)

Since $\|g(\sin v) - g(\sin u)\|^2 = \int_{\Omega} \left(\frac{g(\sin v) - g(\sin u)}{\sin v - \sin u}\right)^2 \cdot (\sin v - \sin u)^2 dx = \int_{\Omega} (g'(\gamma))^2 (\sin v - \sin u)^2 dx$, might as well set $\gamma = \theta \sin v + (1 - \theta) \sin u \ (0 \le \theta \le 1)$.

$$||g(\sin v) - g(\sin u)||^{2} \le \int_{\Omega} \left[c \left(1 + \left| \theta \sin v + (1 - \theta) \sin u \right|^{p-1} \right) \right]^{2} (\sin v - \sin u)^{2} dx$$

$$\le c^{2} \left(1 + 2^{p-1} \right)^{2} \int_{\Omega} (\sin v - \sin u)^{2} dx \le c_{5}^{2} ||u - v||^{2},$$

where $c_5 = c(1+2^{p-1})$. Then, we obtain

$$\left(-g\left(\sin u\right) + g\left(\sin v\right), w_{t}\right) \le c_{5} \left\|w\right\| \left\|w_{t}\right\| \le \frac{c_{5}}{2\lambda} \left\|\nabla w\right\|^{2} + \frac{c_{5}}{2} \left\|w_{t}\right\|^{2}. \tag{3.37}$$

Substituting (3.36), (3.37) into (3.35), we can get

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| w_{t} \right\|^{2} + m \left\| \nabla w \right\|^{2} \right) \leq \frac{c_{4} + c_{5}}{\lambda_{1}} \left\| \nabla w \right\|^{2} + \left(c_{5} + \lambda_{1} c_{4} \right) \left\| w_{t} \right\|^{2}. \tag{3.38}$$

Let $k = \max \left\{ \left(c_5 + \lambda_1 c_4 \right), \frac{c_4 + c_5}{\lambda_1 m} \right\}$, then (3.38) can be changed to

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big(\|w_t\|^2 + m \|\nabla w\|^2 \Big) \le k \Big(\|w_t\|^2 + m \|\nabla w\|^2 \Big). \tag{3.39}$$

By using Gronwall inequality, we obtain

$$\|w_{t}(t)\|^{2} + m\|\nabla w(t)\|^{2} \le \|w_{t}(0)\|^{2} + m\|\nabla w(0)\|^{2} e^{kt} = 0.$$
(3.40)

There has

$$\|w_t(t)\|^2 + m\|\nabla w(t)\|^2 \le 0.$$
 (3.41)

That show that $w_t(t) = 0, \nabla w(t) = 0$.

So as to get $w(t) \equiv 0, u = v$, the uniqueness is proved.

4. Global Attractor

Theorem 4.1. [12] Set E_1 be a Banach space, and $\{S(t)\}(t \ge 0)$ are the semigroup operator on E_1 . $S(t): E_1 \to E_1$, $S(t+s) = S(t)S(s)(\forall t, s \ge 0)$, S(0) = I; here I is a unit operator. Set S(t) satisfy the follow conditions.

1) S(t) is bounded, namely $\forall R > 0, \|u\|_{E_t} \le R$; it exists a constant c(R), so that

$$||S(t)u||_{E_1} \le c(R)(t \in [0,+\infty));$$

2) It exists a bounded absorbing set $B_0 \subset E_1$, namely, $\forall B \subset E_1$; it exists a constant t_0 , so that

$$S(t)B \subset B_0(t \ge t_0);$$

here B_0 and B are bounded sets.

3) When t > 0, S(t) is a completely continuous operator.

Therefore, the semigroup operators S(t) exist a compact global attractor A.

Theorem 4.2. [12] Under the assume of Theorem 3.1, equations have global attractor

$$A = \omega(B_0) = \bigcap_{s>0} \overline{\bigcup_{t>s} S(t) B_0},$$

where $B_0 = \left\{ (u, v) \in V_2 \times V_1 : \left\| (u, v) \right\|_{V_2 \times V_1}^2 = \left\| u \right\|_{V_2}^2 + \left\| v \right\|_{V_1}^2 \le c \left(R_0 \right) + c \left(R_1 \right) \right\}; \ B_0 \text{ is the bounded absorbing set of } V_2 \times V_1 \text{ and satisfies}$

- (1) S(t)A = A, t > 0;
- (2) $\lim_{t\to\infty} \operatorname{dist}(S(t)B, A) = 0$, here $B \subset V_2 \times V_1$ and it is a bounded set,

$$\operatorname{dist}(S(t)B, A) = \sup_{x \in B_{t}} \inf_{y \in A} ||S(t)x - y||_{V_{2} \times V_{1}}.$$

Proof. Under the conditions of Theorem 3.1, it exists the solution semigroup S(t), here $E_1 = V_2 \times V_1$, $S(t) : E_1 \to E_1$.

(1) From Lemma 3.1-Lemma 3.2, we can get that $\forall B \subset V_2 \times V_1$ is a bounded set that includes in the ball $\left\{ \left\| (u,v) \right\|_{V_2 \times V_1} \leq R \right\}$,

$$\left\|S\left(t\right)\left(u_{0},v_{0}\right)\right\|_{V_{2}\times V_{1}}^{2}=\left\|u\right\|_{V_{2}}^{2}+\left\|v\right\|_{V_{1}}^{2}\leq\left\|u_{0}\right\|_{V_{2}}^{2}+\left\|v_{0}\right\|_{V_{1}}^{2}+c\leq R^{2}+c,\left(t\geq0,\left(u_{0},v_{0}\right)\in B\right).$$

This shows that $S(t)(t \ge 0)$ is uniformly bounded in $V_2 \times V_1$.

(2) Furthermore, for any $(u_0, v_0) \in V_2 \times V_1$, when $t \ge \max\{t_1, t_2\}$, we have

$$||S(t)(u_0, v_0)||_{V_{\lambda} \to V_{\lambda}}^2 = ||u||_{V_{\lambda}}^2 + ||v||_{V_{\lambda}}^2 \le c(R_1) + c(R_2).$$

So we get B_0 is the bounded absorbing set.

(3) Since $V_2 \times V_1 \to V_1 \times H$ is compact embedded, which means that the bounded set in $V_2 \times V_1$ is the compact set in $V_1 \times H$, so the semigroup operator S(t) is completely continuous.

Hence, the semigroup operator S(t) exists a compact global attractor A. The proving is completed.

Acknowledgements

The authors express their sincere thanks to the anonymous reviewer for his/her careful reading of the paper, giving valuable comments and suggestions. These contributions greatly improved the paper.

Funding

This work is supported by the National Natural Sciences Foundation of People's Republic of China under Grant 11161057.

References

- [1] Kirchhof, G. (1883) Vorlesungen fiber Mechanik. Teubner, Stuttgarty.
- [2] Masamro, H. and Yoshio, Y. (1991) On Some Nonlinear Wave Equations 2: Global Existence and Energy Decay of Solutions. *J. Fac. Sci. Univ. Tokyo. Sect. IA*, *Math.*, **38**, 239-250.
- [3] Josephson, B.D. (1962) Possible New Effects in Superconductive Tunneling. Physics Letters, 1, 251-253. http://dx.doi.org/10.1016/0031-9163(62)91369-0
- [4] Zhu, Z.W. and Lu, Y. (2000) The Existence and Uniqueness of Solution for Generalized Sine-Gordon Equation. *Chinese Quarterly Journal of Mathematics*, **15**, 71-77.
- [5] Li, Q.X. and Zhong, T. (2002) Existence of Global Solutions for Kirchhoff Type Equations with Dissipation and Damping Terms. *Journal of Xiamen University: Natural Science Edition*, **41**, 419-422.
- [6] Silva, M.A.J. and Ma, T.F. (2013) Long-Time Dynamics for a Class of Kirchhoff Models with Memory. *Journal of Mathematical Physics*, 54, Article ID: 021505.
- [7] Zhang, J.W., Wang, D.X. and Wu, R.H. (2008) Global Solutions for a Class of Generalized Strongly Damped Sine-Gordon Equation. *Journal of Mathematical Physics*, **57**, 2021-2025.
- [8] Guo, L., Yuan, Z.Q. and Lin, G.G. (2014) The Global Attractors for a Nonlinear Viscoelastic Wave Equation with Strong Damping and Linear Damping and Source Terms. *International Journal of Modern Nonlinear Theory and Application*, **4**, 142-152. http://dx.doi.org/10.4236/ijmnta.2015.42010
- [9] Teman, R. (1988) Infiniter-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, 15-26. http://dx.doi.org/10.1007/978-1-4684-0313-8
- [10] Ma, Q.F., Wang, S.H. and Zhong, C.K. (2002) Necessary and Sufficient Congitions for the Existence of Global Attractors for Semigroup and Applications. *Indiana University Mathematics Journal*, 51, 1541-1559. http://dx.doi.org/10.1512/jumj.2002.51.2255
- [11] Ma, Q.Z., Sun, C.Y. and Zhong, C.K. (2007) The Existence of Strong Global Attractors for Nonlinear Beam Equations. *Journal of Mathematical Physics*, **27A**, 941-948.
- $\label{eq:continuous} \ensuremath{\text{[12]}} \ensuremath{\text{ Lin, G.G. (2011)}} \ensuremath{\text{Nonlinear Evolution Equation. Yunnan University Press, 12.}$