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Abstract
In this paper, we consider a class of generalized nonlinear Kirchhoff-Sine-Gordon equation
u, — BAU, + au, —¢(||Vu||2)Au +g(sinu)= f (x). By a priori estimation, we first prove the existence

and uniqueness of solutions to the initial boundary value conditions, and then we study the global
attractors of the equation.
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1. Introduction
In 1883, Kirchhoff [1] proposed the following model in the study of elastic string free vibration:

U, —aAu—M (||Vu||2)Au = f(x,u), where « is associated with the initial tension, M is related to the material

properties of the rope, and u(x,t) indicates the vertical displacement at the x point on the t. The equation is
more accurate than the classical wave equation to describe the motion of an elastic rod.
Masamro [2] proposed the Kirchhoff equation with dissipation and damping term:

U, —M (||Vu||2)Au+5|u|pu+7/ut =f(x) xeQt>0

u(x,t)=0 XeoQ,t>0
u(x,0)=u,(x),u, (x,0)=u,(x) XeQ
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where Q is a bounded domain of R"(n>1) with a smooth boundary oQ; he uses the Galerkin method to
prove the existence of the solution of the equation at the initial boundary conditions.

Sine-Gordon equation is a very useful model in physics. In 1962, Josephson [3] fist applied the Sine-Gordon
equation to superconductors, where the equation: u, —u, +sinu=0, u, is the two-order partial derivative of
u with respect to the variable t; u,, is the two-order partial derivative of the u about the independent variable x.
Subsequently, Zhu [4] considered the following problem: u, —au, —u,, +Ag(sinu)= f (x,t) (where Q isa
bounded domain of R®) and he proved the existence of the global solution of the equation. For more research
on the global solutions and global attractors of Kirchhoff and sine-Gordon equations, we refer the reader to

[5]-[11].
Based on Kirchhoff and Sine-Gordon model, we study the following initial boundary value problem:
U, — AU, +au, —¢(||Vu||2 )Au +g(sinu) = f(x)
u(x,t)=0 XedQ,t>0 (1.2)
u(x,0)=u,(x),u (x,0)=u,(x) xeQ

where Q is a bounded domain of R"(n>1) withasmooth boundary oQ; « is the dissipation coefficient;
B is a positive constant; and f (x) is the external interference. The assumptions on nonlinear terms g (sin u)
and ¢ ||Vu||2) will be specified later.

The rest of this paper is organized as follows. In Section 2, we first obtain the basic assumption. In Section 3,
we obtain a priori estimate. In Section 4, we prove the existence of the global attractors.
2. Basic Assumption

For brevity, we define the Sobolev space as follows:

H=L1(Q),V, =H;(Q).V, =H?*(Q)nH;(Q),
Ey = Ho (Q)xL* (Q) =V, x H,E, = (H?(Q) " H; (Q))x Hg (Q) =V, xV,.

In addition, we define (s,¢) and || are the inner product and norm of H.
Nonlinear function g(s) satisfying condition (G):

(1) g(s)eC*(R);
2) |g(S)|SC(l+|S|p);
dg (s)
©)) s
Function ¢(s) satisfies the condition (F):

4) ¢(s)eC([0,+=),R);

m, +2
5 1
5) 5

6) ®(s)= ] 4(r)dz;

se(l+|s|p_l), where ¢ >0,1< p s%,n >3,

dg(s)
ds

<m, <g(s)<m,0< < Cy;

d 2
my, —|[Auf” =0
(M) ¢(s)s=c®(s), Whereclzz(r:]nﬂ),m: dt
0

d
m, fauff <o

3. A Priori Estimates

Lemma 3.1. Assuming the nonlinear function g(s),4(s) satisfies the condition (G)-(F), (u,.u;)eV,xH ,
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a m, 2my-m-2
28" 3p
problem (1.1) satisfies (u,v)eV,xH and

%1(0) - a
o9, =1l o < 5 %eon s S oe)

where y1 _\, +® VUOZ—ﬁgVuoz_
L=t,(Q)>0, )=l e () )~ pe|[vu(o)]

feH v=u+eu,0<e< mln{ } then the solution (u,v) of the initial boundary value

Thus there exists a positive constant c(R;) and

)l =Fu @O O <e(R) (1),

Proof. Let v=u, +ecu, the equation u, — AU, +au, —¢(||Vu|| )Au+g(sin u)=f(x) can be transformed
into

Vi +(a—¢e)v+e(e—a)u+ peAu —ﬁAv—qﬁ(”Vu"z)Au +g(sinu) = f(x). (3.1)

Taking the inner product of the equations (3.1) with v in H, we find that
pe d

LA (o) + o)) -22 Lo -

— e’ ||Vu||2 —BAV,V) ( (||Vu|| )Au v) (f-g(sinu),v).

By using Holder inequality, Young’s inequality and Poincare inequality, we deal with the terms in (3.2) one
by as follows

(=Bav,v) = B(Vv, W) = g|vu| = 48|’ (3.3)
where A, is the first eigenvalue of —A with Dirichlet boundary conditionson Q.

Since O<¢ s% and (F) (6), (7), we get

ele—a uv>g( ull{lv ——\/7u
(e-aom)> Sl ([ ol +

3
a
2 —eVulf =M

||v||2]
VA (3.4)

and
2 ¢(”Vu"2) d 2 2 2
({19 Jawv) = S Sl vl vl o5
1d 2 2
zm@(uw" )+ czo(|vulf).
[tz

(- asinu)v) < (1] o (sinu)) < 2 +-—— @9)

where
g (sinu)| < UQ‘C(1+|Sin u|P)2 dsz < 2c|Q|%. (3.7)

Combined (3.1)-(3.6) type, it follows from that

O,
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dry e 2 2 : 2
ST (15l - pofvult o 28 -2
171+ 2010

426,80 |Vl ) + 2 (~pz ~1) Vo =,

According to condition (F) (5), this will imply m, ||Vu||2 < cI)(||Vu||2 ) <m, ||Vu||2 , then,

2(m+1)
m,

(1)(||Vu||2)—/349||Vu||2 >0, and since ¢, >
o ([Vulf )+ (~ge ~1)[Vulf = o (|vuf* ) - e |vulf +(m, ~2)Vuff
2 (|vu’)- gelvul’,
that is
2¢| ¢ (|vulf )+ (~pe-D)vul| | > 2| @(|vul )~ pe|wuf |
With (3.10), (3.8) can be written as
d a®
& ([l el | 2220 o

v o[l )- pelvl’ |<c.

3

Set a:a+221,8—2a—j1—2520,and o, =min{a, &}, then (3.11) is equivalent to (3.12)

d
ayl (t)+ay, (t)<c,,
where
(1) =" + ([l ) - g vul.

By using Gronwall inequality, we obtain

t)<y, (0)e st + 2 (1-gt),
yi(t) <y, (0)e +a1( e )

Let k, =min{L(m, - Bz)}.

So, we have
y O —a —a
o9l =1l oo < 20 ey S oe)

then

m"(uv)

too

2 C
I\/1><H < aj(l'
Hence, there exists c(R,) and t =t (Q)>0, such that

0, =700 <O <e(Re) 0>,

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Lemma 3.2. Assuming the nonlinear function g(s),¢(s) satisfies the condition (G)-(F),
a m, 2m,-m-2
4 Zﬂ 34

initial boundary value problem (1.1) satisfies (u,v)eV, xV, and

Y,(0) a
R R T ]

272

(Ug,uy) eV, xV,, f eV, v=u, +eu, O<g<m|n{ } then the solution (u,v) of satisfies the

where 'y, (0)= ||Vv )||2 +(m —ﬁg)"Au(O)"2 . Thus there exists a positive constant ¢(R,) and t, =t,(Q)>0,
such that

[wwfi,.., =[PV O “Jau®] <c(R)(t>1).
Proof. The equations (3.1) in the H and —Av =—Au, —eAu have inner product, we find that

d 2 2 d 2 2
SV Ha=e)vv[ +e(e-a)(u AV)—E—"AU” pe* Al
3.17)
+(=pAv,—AV) + ( (||Vu|| )Au Av) (f—g(sinu),-Av).

By using Holder inequality, Young’s inequality and Poincare inequality, we get the following results

(—ﬁAv,—Av) = B(Av,Av) = /)’||Av||2 > 11,8||Vv||2 (3.18)

(o) (ur-tv)2 ||Au||||w||>__[f Jauf + ||vv||j
f VA VA (3.19)

>~ auff —EIIVVIIZ :

According to condition (F) (5), (6), we obtain
(—¢(||Vu||2)Au,—Av)=¢(||Vu|| ) (Au, Av) (||Vu|| )[ Au,Au, ) +(Au, sAu) |

(|| ) ¢ md. : (3:20)
Sl + g IVl Ylaulf > S fauff +m Jaul

( [Vf |+ Vg (sin u)||)2
2a

(f—g(sinu),~av) <[] (|VE]+|Va (sinu)]) < |Vv||

2
(191]+2ef0f

2c

(3.21)

< g||Vv||2 +
2

where
[Va(sinu)| =g’ (sinu)cosuvul < g’ (sinu)||Vu]
1 (3.22)
<R (_[Q‘c(1+|sin u|p_1)‘2 dsz < 2Rlc|Q|% :

By (3.18)-(3.22), (3.17) can be written
d 2 2 8 2
SV = pe))jau] Ha +24,f-2¢ _;_J"VV"
(3.23)

2
("Vf [ +2cR, |Q|$j
+2e(my — e —1)||Au||2 < =,
(94

@
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Noticing O<e < Zm%/;n—Z this will imply

2¢(my - Be 1) Aulf = &(m— ge)|Au[’. (3.24)
Substituting (3.24) into (3.23), we can get the following inequality
d 3
a["Vv"2 +(m- ﬂg)||Au||2 J + [a +2A,B8-2¢ —;—ﬂij"Vv"z +e(m- [i’g)||Au||2 <c,. (3.25)

3

Let b= a+2/11ﬁ_28_2a_11 >0,and @, =min{b,¢}, then (3.25) type can be changed into

d 2 2 2 2
LIV (m=pe)llaul” [ e [ [ + (m - pe)]aul] | <, (326)
then
%)& (D) +ayy, () <cy, (3.27)

where y, (t) = ||Vv||2 +(m- [)’g)||Au||2 .
By using Gronwall inequality, we obtain

Y, ()< v, (0)e ™ + 2 (1-e ), (3.28)

a,

taking k, =min{L,(m— Be)} , we have

oo, =lulf e < e 81 ), 629
then
fim|(uv)f , < a‘j( . (3.30)
Hence, there exists ¢(R,) and t, =t,(Q)>0, such that
[y, ., =[au@f +vvOf <c(R)(E>t,). .
Theorem 3.1. Assuming the nonlinear function g(s),¢(s) satisfies the condition (G)-(F),
(Up,u) eV, xV,, f eV,v=u,+eu, O0<e< min{%,?—;,zm%ﬂm_z} , S0 the initial boundary value problem

(1.1) exists a unique smooth solution (u,v)e L” ([o,+oo);v2 le) .
Proof. By Lemma 3.1-Lemma 3.2 and Glerkin method, we can easily obtain the existence of solutions of equ-
ation (u,v) el” ([0,+oo);v2 le), the proof procedure is omitted. Next, we prove the uniqueness of solutions in

detail.
Assume u,v are two solutions of equation, we denote w=u-Vv, then, the two equations subtract and ob-
tain

W, — BAW, +aw, —(/5(||Vu||2 )Au + ¢(||Vv||2 )Av =—g(sinu)+g(sinv). (3.31)

We take the inner product of the above equations (3.31) with w, in H, we have
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S (g w ) o [+ (g (vl a6 7] v (3:32)

=(-g(sinu)+g(sinv),w).
We deal with the terms in (3.32) one by as follows

(=B, w, ) = B(Vw,, vw, ) = B[vw[ > 48w ], (333)

and
(~o(IvulFau-+ o9 av. )

_ (_¢(||w||2 Jau+ (vl )av—g([vulf ) v+ (v )av, vw) s
= —p(Ivulf )(au-av,w) ( #(Ivulf )+ o (|vvff )) AV, W) '
= jouff + ({0l o I9F ).
By (3.32)-(3.34), we can get the following inequality
T R - -
= ( (||Vu||2 ) —¢(||VV||2 ))(Av, w,)+(-g(sinu)+g(sinv),w).

Further, by mid-value theorem and Young’s inequality, we get

(#(IvulF )= (1wl ) av. w) <o ()| (vl + [V v vl

(3.36)
g

C
< Co [Vl + V) Pwiavilin] < o, [vwiliv ] < 55-ved

Since ||g(sinv)—g(sinu)||2:jg(g(sl?nv\a:gir(]sljnu)j ~(sinv—sinu)2 dx:Lz(g’(y))z(sinv—sinu)2 dx,

might as well set y = @sinv+(1-8)sinu (0<0<1).
||g(sinv)—g(sinu)||2£f [ (1+|95|nv+(1 9) smu| )} sinv—sinu)” dx

_cz(1+2"‘1) jg(sinv—sinu) dx < cZfu-v|*,

where ¢, = c(1+2p‘1).
Then, we obtain

(~afsinu)+ o (sinv)w) <. oo | = + 5 @3
2
Substituting (3.36), (3.37) into (3.35), we can get
d
gl sl <25 o+ (e 2w (339)
C,+C
Let k =max {(c5 +4C,), A‘Alms} , then (3.38) can be changed to
(3.39)

d
el )<k -+ ml[vwf ).



R.]. Lou et al.

By using Gronwall inequality, we obtain
[w (t)||2 + m||Vw(t)||2 <|w (0 || +m|[Vw(0 ||2 ekt = (3.40)
There has

[, ()] +m[vw(t)[* <o. (3.41)

0.vu1)=0

That show that w, (t)
) 0 the uniqueness is proved. [

Soastoget w(t)=0,u

4. Global Attractor

Theorem 4.1. [12] Set E, be a Banach space, and {S(t)}(tzo) are the semigroup operator on E,.

S(t):E, —E,S(t+s)=S(t)S(s)(vt,s>0),5(0)=1; here I is a unit operator. Set S(t) satisfy the follow
conditions.

1) S(t) isbounded, namely VR > O,||u||El <R;itexistsaconstant c(R), so that
s (®)ul,, <c(R)(te[0.+0)):

2) It exists a bounded absorbing set B, — E,, namely, VB c E,; it exists a constant t,, so that
S(t)Bc B, (t=1t));

here B, and B are bounded sets.
3) When t>0, S (t) is a completely continuous operator.
Therefore, the semigroup operators S(t) exist a compact global attractor A.
Theorem 4.2. [12] Under the assume of Theorem 3.1, equations have global attractor

-~ o(8)=NUS OB,

s>0t>s

where B, _L(u V) eV, xV, || u,v)
V, xV, ands tisfies

(1) S(t)A=At>0;

2 tIiﬁrgdist(S(t)B,A)=0,here B <V, xV, anditisabounded set,
d'St(S(t)B’A)ZESﬂg S(t)x—ylvzxvl.

Proof. Under the conditions of Theorem 3.1, it exists the solution semigroup S(t), here
E, =V, xV,,S(t):E, > E,.
(1) From Lemma 3.1-Lemma 3.2, we can get that VB cV, xV, is a bounded set that includes in the ball

{"(U,V) L/va1 < R} !

IS (1) w00, o, =10, + I, < Dol +[voll, +¢ < R® +c, (t20,(up,% ) < B).

This shows that S(t)(t>0) is uniformly bounded in V, xV,.
(2) Furthermore, for any (u,,Vv,) €V, xV,, when t>max{t,t,}, we have

s (©)(uvo)[; ., =Iulk, + VI, <c(R)+c(R,).

So we get B, is the bounded absorbing set.

(3) Since V, xV, -V, xH is compact embedded, which means that the bounded set in V, xV, is the com-
pact set in V, xH , so the semigroup operator S(t) is completely continuous. |
Hence, the semigroup operator S(t) exists a compact global attractor A. The proving is completed.

va —||u||v2 +||v||v <c(R )+C(Rl)}; B, is the bounded absorbing set of
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