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Abstract 
In this paper, we describe a comparison of two spatial discretization schemes for the advection 
equation, namely the first finite difference method and the method of lines. The stability of the 
methods has been studied by Von Neumann method and with the matrix analysis. The methods 
are applied to a number of test problems to compare the accuracy and computational efficiency. 
We show that both discretization techniques approximate correctly solution of advection equation 
and compare their accuracy and performance. 

 
Keywords 
Advection Equation, Finite Difference Method, The Method of Lines, Von Neumann Method 

 
 

1. Introduction 
A currently active area of research is the numerical solution of nonlinear partial differential equations and non-
linear integral equations [1]-[7]. An advection equation is fairly in shape but it is one of the most difficult equa-
tions to approximate numerically. 

The nonlinear advection equation arises in various branches of physics, engineering and applied sciences. The 
importance of obtaining the exact or approximate solution of this equation is still a significant problem that 
needs new methods to discover exact or approximate solution. 

The linear advection equation is simple in form and yet it is one of the most difficult equations to solve accu-
rately by numerical means [8]. This equation is challenging to solve as it causes some discontinuities with nei-
ther dispersion nor dissipation. However, all efforts to use a fixed number of space intervals will result in both 
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dispersion and spurious oscillation. The use of traditional symmetric techniques is possible only if the terms of 
arbitrary second order artificial viscosity or damping are introduced to the equation. Directional (or upwind) 
methods have shown to be efficient for the purpose of finite difference analyses as it clears the oscillation prob-
lem, yet they will not remove it completely. The linear advection equation does provide a good case for testing 
methods to be used on systems of hyperbolic equations. Many schemes have been tested on it, generally by us-
ing propagating step, sine, Gaussian or triangular waveform [9]. These techniques were used to provide a ration-
al for choosing a spatial scheme for first-order hyperbolic equations. The optimal choice is not invariant, but 
depends on the application. 

In this paper, the advection equation is solved by finite difference method [10] [11] and the stability condi-
tions for the scheme are also discussed. Numerical finite difference scheme is developed for obtaining approx-
imate solution to an advection equation using the 3-point formula introduced in [12]. The same problem is con-
sidered using modified method of lines [13]-[15], with a new three-point difference [12]. Using this new differ-
ence leads to stable schemes for the two methods. Numerical results are shown and compared with analytical 
solutions. 

2. Finite Difference Method with a Good Spatial Discretization 
Let us consider the equation 

0u uv
t x

∂ ∂
+ =

∂ ∂
                                    (1) 

and v is a nonzero constant velocity, where ( ), ,u u x t x R= ∈  with the initial condition ( )0 ,0 .u u x=  The finite 
difference method begins with discretization the space variable x and the time variable t as follows  

0 , 0, ,jt t j t j T= + ∆ =  ; and , 0, , ,i
Lx a i x i M x
M

= + ∆ = ∆ = . 

The using of some of the finite difference schemes on advection equations can cause unstable solutions. To 
add stability, upstream (backward or forward) could be used for spatial discretization for the first-order differ-
ences. However, for a given spatial accuracy, these differences need to use extra grid points than centered dif-
ference. An artificial dissipation (or viscosity) term is normally introduced to a central differencing scheme for 
stability reasons but it is not easy to determine the magnitude of this term required for the stability and effect of 
this term on the solutions. 

The aim of new method is to develop a good formula with high accuracy for the numerical solution of the ad-
vection equation using the spatial discretization presented by Sharaf and Bakodah, [12], using 3-points formula, 
thus the approximate form of the first derivative is 
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Adopting a forward temporal difference scheme, this yields 
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                       (3) 

There are two standard methods of the finite-difference equation. In the first method, a finite Fourier series is 
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used. In the other method, the equation is expressed in matrix form, and the eigenvalues of the associated matrix 
are examined. In order to investigate the stability of this scheme by the first method (Von Neumann stability 
analysis), it is considered  

( )e .Ik ihj
i ju z=                                       (4) 

Replacing j
iu  in relation (2) from (3), it is obtained:  

1j jz gz+ =                                        (5) 

where 

( ) ( )cos sin .vkg kh i kh
h

= −                                (6) 

The stability condition 1g <  is fulfilled for all k as long as, 

( ) ( )
2

2 2cos sinvkg kh kh
h

 = +  
 

                           (7) 

2

1 1.vkg
h

 ≤ ⇔ ≤ 
 

                                 (8) 

That is, the method (2) is stable. 

3. Modified of the Method of Lines 
In the Numerical Method of Lines (NMOL), the partial differential equation (PDE), to be solved, is transformed 
into a system of ordinary differential equations (ODEs) by discretizing all the independent variables but one [16]. 
The advection equation, depending on time t and one spatial variable x, either t or x can be discretized, and the 
integration will be carried out along the remaining undiscretized independent variable. 

The technique consists of converting the PDE into ODEs either by finite difference spline or by weighted-res- 
idual technique, then integrating the resulting ODEs [17]. Finite differencing in the spatial variable led to a set 
of timedependent ODEs. The advantage of using (NMOL) is that sophisticated software packages exist for the 
numerical solution of ordinary differential equations. These software packages contain iterative methods for 
handling non-linearities and feature automatic step-size adjustment and integration order selection to maintain a 
specified error and to solve the problem with near optimal efficiency. Several recently software packages for 
automated method of lines solution of arbitrarily defined PDEs have been very successful, particularly for para-
bolic and elliptic PDE systems. 

Such facilities can be improved for hyperbolic equations by incorporating an upwind weighted residual tech-
nique. This technique is similar and superior to the use of an artificial viscosity term, and it could be implement 
easily in any software package. Previous considerations of the (NMOL) to solve PDEs have been geared to pa-
rabolic equation and generally used centered, second-order differences. Using these differences on hyperbolic 
equations can lead to unstable solution. To add stability, upstream (backward or forward) first-order differences 
could be used for the spatial discretization. But these differences require the use of more grid points than central 
differences for a given spatial accord. An artificial dissipation (or viscosity) term is often added to a central dif-
ferencing scheme to add stability but it is difficult to determine the magnitude of this term required for the sta-
bility and the effect of this term on the solutions. Other stabilizing techniques that have been employed in the 
explicit finite difference procedures are generally not applicable to the method of lines approach because they 
involve manipulation of terms in both the time and space discretization. 

In this paper, a modified method of lines using a new three-point difference [12] is used. The use of this new 
differences leads to stable schemes with good accuracy. In order to apply the method of lines to the advection 
equation (1), the spatial derivative must be approximated. An equally spaced mesh ix i x= ∆  is used. As in the 
Ref. [12] a new difference scheme can be used in the calculation of xu  
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It leads to stable schemes with good accuracy. In this section the second method shall be used. The analysis of 
eigenvalues of the system gives the necessary conditions for the stability of discretization of the problem [18]. 
The stability corresponds to real and negative values. 

By considering equation (1) with the centered difference scheme of order two, then we get  

1u A u′ =                                       (10) 

where 1A  is  

1

0 1 0 0 . . 0
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                           (11) 

and [ ]T1 2 1nu u u u −=  .  
Mathematically the difference scheme is stable if there exists a real positive eigenvalues. However, where 1A  

is a tri-diagonal matrix, the corresponding eigenvalue sλ  of A can be calculated from the relation. 

( )π2 cos , 1 1
1s

sa bc s n
n

λ = + =
+

                            (12) 

where 0, 1 and 1a b c= = − = . Thus 

( )π2 1cos , 1 1
1s

s i n
n

λ = − =
+

                              (13) 

which are pure imaginary values. 
So, we consider the non-centered formula approximation  

[ ]1 1
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= − +
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with the matrix formula 2u A u′ =  where 
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Thus the eigenvalues are given by 

( )π4 2 3 cos , 1 1 .
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s s N
N

λ = − + =
+

                         (16) 
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These values are real and negative, so the difference scheme is stable. 

4. Numerical Examples  
4.1. Example 1 
We apply the Finite Difference Method with a good spatial discretization to solve linear advection equation to 
demonstrate the validity of this method. 

Consider the equation  

( ) ( ) 2, , , 0, 0t xu x t u x t x t x t= − > >                             (17) 

with the conditions 

( ) ( ) 41,0 2 sin , 0 1, 0, 2 sin .
12

u x x x u t t t= + < ≤ = − −  

With the analytic solution 

( ) ( ) ( )44 31 1 1, 2 sin .
12 3 12

u x t x t x x t x t= + − + − − −  

Using equation (3) we find 

( ) ( )21
1 1

1 1
2 2 2 2

j j j
i i i

vk vku u u ih jk
h h

+
+ −

   = − + + −   
   

 

let 

1, 2, , , 1, 2, , , 0.01, 0.01, 5, 100, 1.i n j m k h m n v= = = = = = =   

Table 1 shows the absolute error m e ae u u= −  for the finite difference method in different value of time. 

4.2. Example 2 
We apply the Modified of the Method of lines to solve linear advection equation to demonstrate the validity of 
this method. 

Consider the following advection equation 
0t xu u+ =  

with the conditions  
 

Table 1. Absolute errors of the finite difference method, where { }0.01,0.02,0.03,0.04,0.05t∈ . 

exact approximateu u−  t 
 

i  0.05 0.04 0.03 0.02 0.01 

0.000811146 0.00051992 0.000277333 0.000098253 4.675 × 10−7 10 

0.00357781 0.00221805 0.00114473 0.00039252 1.93417 × 10−6 20 

0.00831948 0.00510019 0.00260313 0.000882787 4.40083 × 10−6 30 

0.0150361 0.00916632 0.00465253 0.00156905 7.8675 × 10−6 40 

0.0237278 0.0144165 0.00729293 0.00245132 0.0000123342 50 

0.0343945 0.0208506 0.0105243 0.00352959 0.0000178008 60 

0.0470361 0.0284687 0.0143467 0.00480385 0.0000242675 70 

0.0616528 0.0372709 0.0187601 0.00627412 0.0000317342 80 

0.0782445 0.047257 0.0237645 0.00794039 0.0000402008 90 

0.0968111 0.0584271 0.0293599 0.00980265 0.0000496675 100 
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( )
( )

,0 sin π , 0 1
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= − ≥
 

and the analytic solution 

( ) ( ), sin π .u x t x t= −  

Substituting in equation (9) we find 
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Hence, we can write 
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So, to confirm the accuracy and efficiency of the method, the absolute error exact approximateu u−  are used 
(Table 2). 

4.3. Example 3 
Consider the equation  

0t xu u u+ =  
and  

( ), 0u x x=  
with the analytic solution  

 
Table 2. Absolute errors of the modified of the method of lines where 10N = . 

exact approximateu u−
 

t 

0.00101545 0.01 
0.00233093 0.02 

0.00397634 0.03 

0.00598185 0.04 

0.00837779 0.05 

0.01119470 0.06 

0.01446333 0.07 
0.01821444 0.08 
0.02247890 0.09 

0.02728780 0.10 
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( ) 2, 0.5 4 .u x t t t x = − + +  
 

In this example we apply the Modified of the Method of lines and the finite difference method to solve linear 
advection equation to demonstrate the validity of them and compare between them. 

Table 3 shows the absolute error m e ae u u= −  for the finite difference method equation (2), and the me-
thod of lines. 

4.4. Example 4 
Consider the advection equation 

0t xu uu+ =  
with the condition 

( ),0u x x=  
and the exact solution 

( ), .
1

xu x t
t

=
+

 

This problem is solved for 0.1,0.2,0.3, ,0.8t =  , with 0.1x∆ = . 
Table 4 shows the absolute error .m e ae u u= −  
 

Table 3. Comparison of the absolute error between finite difference method and the method of lines, for example 1 with 
0.5t = . 

The method of lines Finite difference method ix  
0.0003747 0.02067970 0.1 

0.0016946 0.01054830 0.2 
0.00400098 0.00921847 0.3 

0.00709063 0.00851550 0.4 

0.0106622 0.00790683 0.5 

0.0144267 0.00863854 0.6 

0.0181591 0.00712179 0.7 

0.0217072 0.06114460 0.8 

0.0249812 0.07981530 0.9 

0.0279372 0.11121000 1.1 

 
Table 4. Comparison of the absolute error between finite difference method and the method of lines, for example 2 with 

0.5t = . 

The method of lines Finite difference method ix  
112.56842 10−×  0.00196377 0.1 
113.65622 10−×  0.00392755 0.2 
114.02893 10−×  0.00589132 0.3 
114.05249 10−×  0.00785510 0.4 
113.90807 10−×  0.00981887 0.5 
113.69000 10−×  0.01283950 0.6 
113.44423 10−×  0.00119615 0.7 
113.19589 10−×  0.08608410 0.8 
112.95723 10−×  0.09607220 0.9 
112.73389 10−×  0.12879500 1.0 
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5. Conclusions 
From the studied test examples, it has been found that, the modified method of lines gives better results than the 
finite difference method. Although the modified method of lines is used to approximate the first order hyperbol-
ic differential equation. Thus equations are one of the most difficult classes of PDEs to integrate numerically. To 
overcome this, a modified MOL scheme is suggested. The results are in good agreement with the exact solution 
as shown in Table 1, Table 2. The presented method is attractive for hyperbolic, parabolic and elliptic equa-
tions. 

The methods introduced in this paper for solving the linear and nonlinear advection equation are based on fi-
nite difference method. The best choice of the numerical method for a given problem depends on the stability 
condition. 
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