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0.1 SD. t is time (age or time after biomedical insult); γ, 
A and B are constants; A is an intercept and B a slope; γ 
represents a curvature (a shape of curve). If the value of 
γ becomes equal to one, Eq. (2) represents a lognormal 
distribution. Eq. (2) seems to represent a generalized 
lognormal distribution. 

Eq. (2) is considered to be fundamentally based on the 
Gaussian normal distribution. 

Eq. (1) that expresses death rate of a population is de-
rivable from the ‘probacent’-probability equation of sur-
vival probability, Eq. (2) [21]. If the value of its constant 
c is one, the Eq. (1) becomes essentially similar to the 
Weibull model [23]. 

The mathematical model of the ‘probacent’-probabi- 
lity equation, Eq. (2) of survival probability was con-
structed from experimental studies: to express relation-
ship among intensity of stimulus or environmental agent 
(such as drugs [24,25], heat [26]), and duration of expo-
sure and biological response in animals [24]. 

The model has been applied to data in the biomedical 
literature; to express carboxyhemoglobin levels of blood 
as a function of carbon monoxide concentration in air 
and duration of exposure [27]; to express a relationship 
among plasma acetaminophen concentration, time after 
ingestion and occurrence of hepatotoxicity in man  [28]; 
to express survival probability in patients with heart 
transplantation [29]; to predict survival probability in 
patients with malignant melanoma [30], and express 
relationship among age, height and weight, and percen-
tile in Saudi and US children of ages 6-16 years [31]. 

Mehta and Joshi successfully applied the ‘proba-
cent’-probability model to use model-derived data as an 
input for radiation risk evaluation of Indian adult popu-
lation in their studies [32]. 

The author [33] finds that Eq. (1) is applicable to the 
above described Sacher’s data [13] on the relationship 
between dose rates and survival times in mice irradiated 
daily during the duration of life. 

To my knowledge, however, there seem to be no gen-
eral mathematical models in the literature that express 
the quantitative relationship among dose rate of radiation, 
duration of exposure and mortality probability and /or to 
determine LD50 for humans in ionizing total body irradi-
ation. 

The purpose of this study is to derive a general ma-
thematical formula that expresses the relationship among 
dose rate, duration of exposure and mortality probability 
in total body irradiation in humans. 

The mathematical model of death rate that was de-
rived from the ‘probacent’-probability model [24] and 
employed in the author’s previous studies [21, 22, 23] is 
applied in this study to predict mortality probability as a 
function of dose rate and duration of exposure as well as 
to predict LD50 for humans in lethal radiation exposures.  

2. MATERIALS AND METHODS 

Data shown in a table of animal-model predictions of 
lethal radiation doses to humans published by Cerveny, 
MacVittie and Young [1] are used to construct predictive 
formulas expressing relationships among dose rate in 
rad/min, duration of exposure in minutes and mortality 
probability in percentage in ionizing total body irradia-
tion in humans. The data are based on an extensive study 
of mortality resulting from radiation exposure and a 
compilation of animal experimental data published by 
Jones, Morris, Wells and Young at the Oak Ridge Na-
tional Laboratory [2]. 

The data that are used in this study are LD5, LD 10, LD 

50, LD 90 and LD 95 of animal-model-predicted lethal radi-
ation doses in ionizing total body irradiation to humans 
without subsequent medical treatment that are shown in 
Table 1. The data are plotted on a log-log graph paper as 
illustrated in Fig. 1 for a better mathematical analysis.  

A close look at the data points suggests that all data 
points of each group of LD5-95 appear to fall on each of 
the five straight lines, respectively. The range of dose 
rate is from o.01 to 0.50 Gy/min (1 to 50 rad/min); the 
duration of exposure is from 2.3 to 360 minutes. 

It seems to the author that a  general formula of 
death rate , Eq.1 be applicable to the data points illu-
strated in Figure 1. The straight lines indicate that the 
constant c in Eq.1 is one.  

2.1. Formula of Lethal Doses, LD5-95 

The following five equations, (3)-(7) are constructed on 
the basis of the animal-model-predicted LD5 to LD95 for 
humans [1].  

log D5 = 2.01805 – 0.88209 x log T        (3) 

log D10 = 2.06134 – 0.88766 x log T       (4) 

log D50 = 2.21767 – 0.90913 x log T       (5) 

log D90 = 2.33089 – 0.9203 x log T        (6) 

log D95 = 2.35353 – 0.92068 x log T       (7) 

here D5, D10, D50, D90 and D95 are dose rates in rad/min 
in LD5, LD10, LD50, LD90and LD95,  respectively. Dose 
rate D (rad/min) is a function of duration of exposure T 
(minute). 

If the duration of exposure, time T is given or at any 
given time T, the dose rate D50 and LD50 (a product of 
D50 x T ) can be expressed by Eqs.8 and 9, respectively. 

D50  = 102.21767 - 0.90913 x log T          (8) 

LD50 = 102.21767 – 0.90913 x log T x T       (9) 

If the dose rate D is given or with a known dose rate 
D, the duration of exposure, time T that would cause 50 % 
mortality probability, LD50 (a product of D50 x T ) can be  
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Table 1. Comparison of Formula-derived and animal-model-predicted lethal radiation doses to humans. 

Lethal Dose Rate (Gy/minute) 
Dose  0.01 0.02 0.05 0.10 0.20 0.50 
LD5 Formula-       

Derived * 194.0 176.9 156.4 142.7 130.0 115.0 
Model-       

Predicted ** 194 177 156 143 130 115 
LD10 Formula-       

Derived 210.0 192.3 171.3 156.9 143.8 128.0 
Model-       

Predicted 210 192 171 157 144 128 
LD50 Formula-       

Derived 275.0 256.6 234.1 218.4 203.9 186.0 
Model-       

Predicted 275 257 234 218 204 186 
LD90 Formula-       

Derived 341.0 321.1 296.7 279.3 263.1 243.0 
Model-       

Predicted 341 321 297 279 263 243 
LD95 Formula-       

Derived 360.0 339.1 313.4 295.2 278.1 257.0 
Model-       

Predicted 360 339 313 295 278 257 
*Formula-derived lethal radiation doses are calculated from Eqs. (3)-(7), obtaining total doses (rad) by dose rate (rad/minute), D 
multiplied by duration of exposure, time T(minute). (see text). **Model-predicted lethal radiation doses are obtained from Ref-
erence [1]. P > 0.995.  

 

 
Figure 1. Relationship among dose rate of radiation, duration of exposure and lethal radiation dose 
(LD5-95) in total radiation body irradiation to humans. The abscissa represents duration of exposure 
in minutes (log scale). The ordinate represents dose rate in rad/min (log scale). Data points indicate 
lethal doses of LD5-95 and appear to fall on the five formula-predicted straight lines in each group, 
respectively (see text). 
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expressed by Eqs. (10) and (11), respectively. 

T = 10 (1/0.90913) x (2.21767 – log D)         (10) 

LD50 = 10(1/0.90913) x (2.21767 – log D) x D       (11) 

Therefore, LD50  is dependent on both dose rate and 
duration of exposure. 

If the duration of exposure, time T is given as 10 or  
 

100 minutes, dose rates that would cause 5, 10, 50, 90 
and 95 % of mortality probability can be calculated by  
Eqs. (3)-(7), respectively as aforementioned. Table 2 
shows formula-predicted relationship between dose rates, 
LD values, mortality probabilities or ‘probacent’ in cases  
of the durations of 10 or 100 minutes. Data points in 
those two cases are illustrated in Figure 2. ‘Probacent’  

Table 2. Formula-predicted relationship between dose rate and mortality probability or ‘probacent’ in cases of duration of exposure, 
10 and 100 minutes in total body irradiation. 

Duration of exposure 10 minutes 100 minutes 
Dose rate(rad/min) 13.7 14.9 20.3 25.7 27.1  1.79 1.93 2.51 3.09 3.25 
Lethal dose (LD5-95) LD5 LD10 LD50 LD90 LD95  LD5 LD10 LD50 LD90 LD95 
Mortality probability 5% 10% 50% 90% 95%  5% 10% 50% 90% 95% 

‘Probacent’ (P)** 33.55 37.18 50.0 62.82 66.45  33.55 37.15 50.0 62.82 66.45 

 

 
Figure 2. Relationship among dose rate, mortality probability (Q) and ‘probacent’ (P) in 
cases of durations of exposure, times 10 and 100 minutes in total body irradiation to hu-
mans. The upper abscissa represents dose rate in rad/min in case of duration of 10 minutes; 
the lower abscissa represents dose rate in rad/min in case of duration exposure of 100 mi-
nutes, respectively. The ordinate on the right side represents percent mortality probability 
(Q). The ordinate on the left side represents ‘probacent’ corresponding to mortality proba-
bility (Q) as shown in Table 2. Data points indicate 5, 10, 50, 90 and 95 % of mortality 
probabilities corresponding to LD5, LD10, LD50, LD90 and LD95. Data points of durations of 
exposure of 10 and 100 minutes appear to fall overall on the two straight ‘probacent’ lines, 
respectively (see text). 
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values corresponding to mortality probabilities can be 
readily obtainable from a table of conversion of percent 
probability of response into ‘probacent’ (P) published by 
the author [25,6]. 

Data points of each group of 10 or 100 minutes dura-
tion appear to overall fall on a straight line.  

In addition, the two straight lines show noticeably 
different ‘probacent’ slopes. It is assumed that data 
points of LD5 to LD95 at any time of duration of exposure 

would fall similarly on a straight ‘probacent’ line with a 
different slope. 

2.2. General Formula of Mortality Probability, 
Q 

A general formula, Eq. (12) that expresses a quantitative 
relationship among dose rate, duration of exposure and 
mortality probability in total body irradiation in humans 
without medical support is constructed on the basis of 
above findings revealed in Figures 1 and 2, and an 
aforementioned assumption as follows: 

K = 2.21767 – 0.90913 x log T      (12a) 

L = 2.01805 – 0.88209 x log T     (12b) 

P = 100 x [(D – 10K) + (10K – 10L) x 50/16.45]/[(10K -  

10L) x 100/16,45]              (12c)  

Q = 10/√2π ∫-∞
P exp [- (P – 50)2/200] dP    (12d) 

where Q is percent mortality probability based on the 
Gaussian normal distribution; D is dose rate in rad/min, 
T is duration of exposure in minutes. P is ‘probacent’ 
and is considered to correspond to a relative biologic 
amount of loss of reserve for survival. ‘Probacent’ of 0, 
50 and 100 corresponds to – 5 SD, mean and mean + 5 
SD, respectively. The unit of ‘probacent’ is 0.1 SD in the 
Gaussian normal distribution of percent mortality proba-
bility, Q (12d).    

2.2. Description of the Computer Program 

The computer programs were written in UBASIC for 
IBM PC microcomputer and compatibles for Eq. (12). 
The computer program for Eq.12 uses a formula of ap-
proximation instead of the integral of Eq.12d because 
the computer cannot execute integral [24,25,34]. Ma-
thematical transformation of the formula of integral, Eq. 
(12d) to the formula of approximation in computer pro-
gramming is described in detail in the author’s book [34]. 
A representative program for Eq. (12) is illustrated in 
Figure 3 to calculate mortality probabilities in humans 
as a function of dose rate and duration of exposure. 

2.3. Statistical Analysis 

A χ2 goodness-of-fit test (logrank test) [35] is used to test 
the fit of mathematical models to the data on ani-
mal-model predictions of lethal radiation doses for hu-

mans [1]. The differences are considered statistically 
significant when p <0.05. 

3. RESULTS 

Table 1 shows the results of lethal radiation doses for 
humans, LD5, LD10, LD50, LD90 and LD95 calculated 
from Eqs. (3)-(11) as a function of dose rate and duration 
of exposure in total body irradiation. Table 1 also shows 
comparison of the formula-derived values with the ani-
mal-model-predicted lethal doses [1]. 

Differences between both values of lethal radiation 
doses are statistically not significant (p >0.995). A close 
agreement is seen in Table 1. The maximum difference 
between both values is ± 0.4 rads. 

Figure 1 illustrates the relationship between dose rate 
of radiation and duration of exposure in each group of 
LD5, LD10, LD50, LD90 and LD95. It seems to the author 
that the distributions of animal-model-predicted lethal 
doses (LD5-95) appear to be closely represented by the 
formulas-derived straight lines. 

Table 3 shows comparison of formula (Eq. 
(12)-derived and animal-model-predicted mortality 
probabilities (%) in terms of lethal radiation doses 
(LD5-95) in total body irradiation to humans. Mortality 
probabilities are determined as a function of dose rate 
and duration of exposure as shown in Table 3. Values of 
formula-derived mortality probabilities are obtained by  
execution of the computer program illustrated in Fig. 3 
as well as manual calculation. Both values from the 
computer program and manual calculation are found to 
show a complete agreement with accuracy. Differences 
between both values of formula-derived and animal- 
model-predicted lethal radiation doses , LD5-95, are sta-
tistically not significant (p >0.995). The maximum dif-
ference is ± 1.4 %. A close agreement is present in both 
values in Table 3. 

4. DISCUSSION 

Table 1 and Fig. 1 reveal that a close agreement between 
formula-derived and animal-model-predicted data on 
lethal radiation doses, LD5-95 for humans in the total body 
irradiation [1] (p >0.995). The lines representing Eqs. 
(3)-(7) in Fig. 1 are straight, indicating that the constant c 
in Eq. (1) of death rate is one and becomes essentiall sim-
ilar to the Weibull distribution [18] and suggesting that 
Eq. (1) seems to be a generalized Weibull model.  

If the dose rate D is reduced and the duration of ex-
posure T is proportionately increased, asame amount of 
total dose D x T of radiation would decrease the mortal-
ity probability as shown in Table 1. Ellington reported 
that simple dose fractionation decreases the mortality 
rate caused by the same doses when given in one expo-
sure [15] as suggested by that the mortality probability is  
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Table 3. Comparison of formula-derived and animal-model-predicted mortality probabilities (%),(lethal radiation doses, 
LD5-95) in total body irradiation to humans. 

Dose Rate Dose Rate (Gy/minute) 

Gy/minute  0.01 0.02 0.05 0.10 0.20 0.50 
(rad/minute)  (1) (2) (5) (10) (20) (50) 

Duration of exposure (min)  194 88.5 31.2 14.3 6.5 2.3 
 Formula       

Mortality Derived* 5.0 5.0 4.9 5.1 5.0 5.0 
probability (%) Model       

(LD50) Predicted** 5 5 5 5 5 5 
Duration of exposure (min)  210 96 34.2 15.7 7.2 2.56 

 Formula-       
Mortality derived 9.3 9.1 9.0 9.1 9.1 8.9 

probability (%) Model       
(LD10) predicted 10 10 10 10 10 10 

Duration of Exposure (min)  275 128.5 46.8 21.8 10.2 3.72 
 Formula-       

Mortality derived 50.0 50.3 49.9 49.6 50.1 50.0 
probability (%) Model       

(LD50) predicted 50 50 50 50 50 50 
Duration of Exposure (min)  341 160.5 59.4 27.9 13.15 4.86 

 Formula-       
Mortality derived 91.4 91.1 91.1 90.7 90.8 90.8 

probability (%) Model       
(LD90) predicted 90 90 90 90 90 90 

Duration of Exposure (min)  360 169.5 62.6 29.5 13.9 5.14 
 Formula-       

Mortality derived 96.1 95.8 95.5 95.3 95.2 95.1 
probability (%) Model       

(LD95) predicted 95 95 95 95 95 95 
*Formula-derived mortality probabilities (%), (LD5-95) are calculated from Eq. (8); **Model-predicted mortality probabilities (%) are obtained 
from Reference [1].p >0.995. 

 

 

Figure 3. The computer program to calculate percent mortality probability (Q) as a function of 
dose rate of radiation in rad/min (D) and duration of exposure in minutes (T), expressed by Eq. 
(12), in total body irradiation in humans. Results of execution of the program are shown in the 
rows of ‘Formula-derived mortality probabilities (%)’ in Table 3 (see text). 
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a function of dose rate and duration of exposure as ex-
pressed by Eq.(12). 

Extrapolation of the five straight lines in Fig. 1 might 
be possible as shown with dashed lines beyond the upper 
and lower ends of the lines. However, it would require 
further animal-model-predicted data on lethal radiation 
doses and relevant human data to examine the  
extrapolation.   

A quantitative dose-response relationship in lethal io-
nizing radiation exposure in humans is not known [1]. 
Several investigators have derived hypothetical 
dose-response curve based on experiences with reactor 
accidents and the atomic exposure in Japan. From these 
observations, the LD50(60) for humans exposed to a single 
dose of radiation delivered over a period of less than  
24 hours is believed to be in the range of 2.50 to 4.0 Gy 
(250 to 400 rads) [36]. 

If extrapolation is allowed and the duration of expo-
sure is assumed to be 1,400 minutes (less than 24 hours), 
LD50 calculated from Eq. (9) will be 3.19 Gy that is in 
the range of 2.50 to 4.0 Gy.  

Levin, Young and Stohler [37] published an estimate 
of the median lethal dose on humans exposed to ionizing 
total body irradiation and not subsequently treated for 
radiation sickness. The median lethal dose was estimated 
from calculated doses to young adults who were inside  
two reinforced concrete buildings that remained standing 
in Nagasaki, Japan after the atomic detonation. Median 
lethal dose estimates were calculated using both loga-
rithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both 
calculations supported previous estimates of the median 
lethal dose based solely on human data, which clustered 
around 3 Gy. The LD50 estimate, based on a log probit 
calculation, was 2.9 Gy to the bone marrow. The LD50 of 
2.9 Gy was surprisingly consistent with estimates made 
by other researchers; 2.45 Gy by Langham (1967), 2.86 
Gy by Lushbaugh et al. (1967), 2.65-2.70 Gy by Bond 
and Robertson (1957) [37]. 

Fujita, Kato and Schull [38] reported that the LD50(60) 
is 2.3-2.6 Gy on the basis on a total of 7,593 persons 
exposed to the atomic bombing of Hiroshima. The range 
of 2.3-2.6 Gy is noticeably in a good agreement with the 
values of LD50 shown in Table 1. 

Therefore, if it is taken into consideration that LD50 is 
a function of dose rate and duration of exposure, there 
seems to be a remarkable agreement between formu-
la-predicted LD50 in Tables 1 and 3 and above described 
published-estimated LD50 for humans [36-38].  

According to Tokyo Electric Power Company’s report, 
radiation leaking from the damaged reactors of the Fu-
kushima Daiich Nuclear Power Plant caused by the 9.0 
magnitude earthquake and tsunami recently hitting Japan 
(March 11, 2011, [40]) was 600 mSv per hour [41]. If Eq. 

(12) is possibly applied in this grave situation to calcu-
late mortality probabilities for one hour, 25 or 10 mi-
nutes of exposure to ionizing radiation, results are as 
follows:  

In one hour of exposure to radiation, mortality proba-
bility (Q) = 5.295x10-3 %, and ‘probacent’ (P) = 8.148. 
In 25 minutes of exposure that was for total 250 mSv as 
a maximum limit dose allowed to each emergency res-
cue worker, mortality probability (Q) = 1.318 x 10-3 %, 
and ‘probacent’ (P) = 3.084. In 10 minutes of exposure 
that was for total 100 mSv as a low dose limit allowed to 
each rescue worker, mortality probability (Q) = 1.063 x 
10 -3 %, and ‘probacent’ (P) = 2.278 [42]. 

The above results might suggest a potential risk of 5-6 
deaths (one-hour exposure), and 1-2 deaths (25-minutes 
exposure) and one death (10-minutes exposure) in 
100,0000 ordinary persons exposed to radiation without 
clinical support, respectively. 

Hematopoietic cells of bone marrow, intestinal tract, 
and central nervous system are most vulnerable to radia-
tion effects [5,8,17,39]. Body responses to lethal radia-
tion effects reflect status of living body in which physi-
ologic response, repair and regeneration of recovery  
process, pathologic changes and aging process are con-
currently occurring [4,6,13,14,36,39].  

Death is caused by multi-organ failure. In cases of 
relatively high doses, infection and hemorrhage are ear-
liest contributing factors to death, resulting from the 
damage to the most sensitive hematopoietic cells in total 
body irradiation [1,13,36]. Clinical support with transfu-
sion of fresh platelets and granulocytes, antibiotics, and 
infusion of fluids is capable of treating radiation sickness 
and raising LD50 [1]. 

5. CONCLUSIONS 

A formula of death rate, Eq. (1) derived from the ‘pro-
bacent’-probability equation for survival probability [21] 
is applied in this study to construct a general formula 
that expresses a quantitative relationship among dose 
rate of radiation, duration of exposure and mortality 
probability in total body irradiation in humans. The gen-
eral formula, Eq. (12) is developed on the basis of the 
animal- model predictions of lethal radiation doses for 
humans published by Cerveny, MacVitte and Young [1]. 
The data on animal-model predictions are based on the 
extensive study of mortality resulting from radiation 
exposure and a compilation of animal experimental data 
published by Jones, Morris, Wells and Young [2]. The 
LD50 for humans is mathematically predictable as a 
function of dose rate and/or duration exposure. 

A close agreement is present between both values of 
formula-derived and animal-model-predicted LD50 as 
well as mortality probabilities. The formula-predicted 
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LD50 seems to remarkably agree with published esti-
mates of LD50 [36-38]. The general formula, Eq. (12) 
might be hopefully helpful in preventing radiation ha-
zard and injury, and further for safety in  
radiotherapy. 

The general formulas, Eqs. (9)-(11) and (12) that  es-
timates human LD50 and mortality probability are con-
structed based on animal-model-predicted lethal radia-
tion doses and so would need further research on animal 
experiments and relevant human data for their verifica-
tion. 

6. ABSTRACT 

Jones, Morris, Wells and Young at the Oak Ridge Na-
tional Laboratory, Oak Ridge, Tennessee published an 
extensive study on mortality resulting from radiation 
exposure and a compilation of animal experimental data 
[2]. Cerveny, MacVittie and Young [1] published a table 
of animal-model predictions of lethal radiation doses for 
humans that is based on the publication of the Oak Ridge 
National Laboratory by Jones, Morris, Wells and Young 
[2]. A general formula, Eq. (12) that expresses a rela-
tionship among dose rate, duration of exposure and per-
cent mortality probability in total body irradiation in 
humans without subsequent medical treatment is con-
structed on the basis of the data published by Cerveny, 
MacVittie and Young [1]. The LD50 for humans is ex-
pressed by Eq. (9) and (11). A close agreement is present 
between formula-derived and animal-model-predicted 
mortality probabilities as well as LD50.  

The death rate equation (1) derived from the ‘proba-
cent’-probability model of survival probability, Eq. (2) is 
employed in this study to construct the general formula, 
Eq. (12) of mortality probability as a function of dose 
rate and duration of exposure in total body irradiation in 
humans. There seems to be a remarkable agreement be-
tween formula-predicted and published estimated LD50 

(36-38) and also between both mortality probabilities 
(see Tables 1 and 3).  

The formulas, Eqs. (9)-(11), and (12) for LD50 and 
mortality probability in lethal radiation exposures might 
be hopefully helpful in preventing radiation hazard and 
injury, and further for safety in radiotherapy. The general 
formulas are constructed based on animal-model- pre-
dicted lethal radiation doses for humans in this study and 
so would need further research on animal experiments 
and relevant human data for their verification. 
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