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Abstract

We know that the hypergeometric function, which is a solution of the hypergeometric differential
equation, is expressed in terms of the Riemann-Liouville fractional derivative (fD). The solution of
the differential equation obtained by the Euler method takes the form of an integral, which is con-
firmed to be expressed in terms of the Riemann-Liouville fD of a function. We can rewrite this de-
rivation such that we obtain the solution in the form of the Riemann-Liouville fD of a function. We
present a derivation of Kummer’s 24 solutions of the hypergeometric differential equation by this
method.
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1. Introduction

The hypergeometric function is a solution of the hypergeometric differential equation, and is known to be ex-
pressed in terms of the Riemann-Liouville fractional derivative (fD) ([1], p. 334). By the Euler method ([2],
Section 3.2), the solution of the hypergeometric differential equation is obtained in the form of an integral,
which is confirmed to be expressed in terms of the Riemann-Liouville fD of a function. This shows that we can
obtain the solution in the form of the Riemann-Liouville fD of a function. In fact, Nishimoto [3] obtained a solu-
tion of the hypergeometric differential equation in terms of the Liouville fD in the first step, and then expressed
the obtained fD in terms of the hypergeometric function in the second step. His calculation in the second step is
unacceptable. In [4], he gave a derivation of Kummer’s 24 solutions of the hypergeometric differential equation

How to cite this paper: Morita, T. and Sato, K. (2016) Kummer’s 24 Solutions of the Hypergeometric Differential Equation
with the Aid of Fractional Calculus. Advances in Pure Mathematics, 6, 180-191.
http://dx.doi.org/10.4236/apm.2016.63015



http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2016.63015
http://dx.doi.org/10.4236/apm.2016.63015
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

T. Morita, K. Sato

([5], Formula 15.5.4) ([6], Section 2.2) by his method. In the present paper, we show that the desired solutions
are obtained by using the Riemann-Liouville fD in place of the Liouville fD.

In a preceding paper [7], we discussed the Riemann-Liouville fD and the Liouville fD as analytic continua-
tions of the respective fractional integrals (fls), on the basis of the papers by Lavoie et al [1] [8], and those by
Nishimoto [3] and Campos [9], respectively. In Section 2, we define these fls of a function f(¢), Djf (2)
and | D‘;*f (z), of order A€  C, by (1) and (2), respectively, and give their properties which we use later.
The notation ,C is defined at the end of this section.

In Section 3, following [1] [3] [7]-[9], the Riemann-Liouville fD, D} f(z) and ,D}f(z), and the Liou-
ville fD, ,D; f(z) and ,, D;f(z), of order v eC, are defined in the form of a contour integral, for a func-
tion f (&) which is analytic on a neighborhood of the path of integration. They are defined such that they are
analytic continuations of the corresponding fl as a function of v € C. In the present paper, the fl and fD are op-
erated to a function of the form ¢7 (¢ —¢,)” for yeC and y, e C. The analytic continuations of D! f(z)
and | Dy f(z) arethenshown to be analytic as a function of v aswellasof y and y,. In the present paper,
we use this fact in the calculation. In the following, we use fD to represent fl and fD as a whole.

In [1], the expression of the hypergeometric function: ,F, (a,b;c;z) in terms of the Riemann-Liouville fD is
given. In Sections 4 and 4.1, its derivation is presented with the aid of the method using the Riemann-Liouville
fD. In Sections 4.2-4.4 and 5, Kummer’s 24 solutions of the hypergeometric differential equation are derived in
two ways in the present method.

In a separate paper [10], a method of obtaining the asymptotic expansion of the Riemann-Liouville fD is pre-
sented by using a relation of its expression via a path integral or a contour integral with the corresponding Liou-
ville fD. It is then applied to obtain the asymptotic expansion of the confluent hypergeometric function which is
a solution of Kummer’s differential equation. In that paper, Kummer’s 8 solutions of Kummer’s differential eq-
uation are obtained by using the method which is adopted in the present paper to obtain the solutions of the
hypergeometric differential equation.

We use notations C, R and Z, which represent the sets of all complex numbers, of all real numbers and
of all integers, respectively. We use also the notations givenby ,C:={zeC|Rez>0}, Z,={neZ|n>a},
Zy={neZ|n<b}, Z,,={neZla<n<b} for aeZ and beZ_, and R ,:={xcR|[x>0}.

>a-17

2. Riemann-Liouville fD and Liouville fD

Following preceding papers [7] [10], we adopt the following definitions of the Riemann-Liouville fl, ¢-dept
Liouville fl and the corresponding fDs.

2.1. Riemann-Liouville fIl on the Complex Plane

Let £eC and zeC.We denote the path of integration from {tozby P(&,z),anduse f({)e El(P(g, z))
to denote that the function f (£') is integrableon P(¢,z).

Definition 1. Let £eC, zeC, f({)e El(P(g, z)) and f () be continuous on a neighborhood of
¢ =z . Then the Riemann-Liouville fl of order A e ,C is defined by

i I S RV _ 1 ¢ 54 3
< D: f(Z)——F(A)L(Z &) E(9)de _r(/l)jo n*(z-n)dn, &)
where T"(4) is the gamma function.

2.2. Definition of ¢-Dept Liouville fI

Let zeC and ¢eR . We denote the half line {z+te“”|0<t<oo},by P,(z), or by gz,z+oo-e"" . When
f(z+te") is locally integrable as a function of t in the interval (0,c0), we denote thisby f () e 4, (P, (2)).
Definition 2. Let zeC, ¢cR, seR, and f({)eLy,(P,(2)). Let s be such that the integral

gence, and denote itby s,[f] or s[f(¢)].
Wethenhave s, eR or s =—ow.

Lemmal. let f,_ ({)=¢7({-&)* for yeC and y,eC.Then s [T, |=Re(y+7,).

f (z +te" )‘ dt converges for s>s; and diverges for s<s;. We then call s, the abscissa of conver-
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Definition 3. Let zeC and geR. Let f({)e L‘m( (z)) and f(¢) be continuous on a neighbor-

hoodof ¢=z.Let 1€ ,C, s[f]<0 and Red<—s[f ] Then we define | D,*f (z) by
4 B 1 -1 _ glom -1 i(g+m)
D, f(z)_—mj%(z)(z—;’) f(g)dg_ jt f(z2-te")dt. )

Wecall  D,*f(z) the g-dept Liouville fl of f(z)
Definition 4. When the conditions in Definition 3 are satisfied, we define ,D;*f(z) for &=z+-e¥ by

().

The following lemma was mentioned in [11].
Lemma2. Let &=z+o-e”. Then .D;*f(z)= _D,*f(z).
Proof. This is confirmed by comparing the second members of (1) and of (2). O

2.3. Definitions of Riemann-Liouville fD and Liouville fD

Definition 5. The Riemann-Liouville fD: D} f (z) for £eC and the Liouville fD: | D} f (z) = ;D! f (z)
for £=z+0-€*,of order veC satlsfylng Re v >0, are defined by

<D/ f(z)=D"[ D/ " f(2)], (3)

when the righthand side exists, where m =| Rev |+1,and D"f(z)=f"(z) for meZ_,
Here | x| for xeR denotes the greatest integer not exceeding x.

2.4. Index Law and Leibniz’'s Rule of Riemann-Liouville fl and Liouville fI

We use the following index law and Leibniz’s rule, in Section 4.2. By Lemma 2, the formulas for & =o0.e"
are for the Liouville fl.

Lemma3.Let e C, veC satisfy Rev<Rel,and .D;*f(z) exist. Then

DI [aD;"f(2)]= D" f(2), «DI[:D;*f(2)]=1(2). 4)
Proof. Proof for veR and AeR is found in ([12], Section 2.2.6), where p and q appear in place of -4
and v, respectively. The proofs there apply for peC and gqeC if we replace p and q in the inequalities
thereby Rep and Req, respectively. O
Lemma4.Let Ae,C, veC and s [f] satisfy s,[f]<0,and (i) Rev<0 and —Rev+Rei<-s][f],
or (i) 0<Rev<Rel and ReA+1l<-s/[f].Then (4)holdsvalid for &=z+o-e".
Proof. Proof of (4) for the case (i) is found in ([7], Appendix A). In the case (ii), with the aid of this know-
ledge and formula (3), we prove the first equation in (4) in the following way:

D[, Dy "[.D,"f(2)]]=D"[.D;"*f(2)]=D"[ D[ D, **f(2)]]=D°[.D; " (2)], ()

where n=|Rev|+1,0=0if Rev<Rei,and §=1 if Rev=ReA.When v=21, (5) shows the second

equation in (4). O
Lemma5.Let e C,and . D;*f(z) exist. Then  D.;*[z-f(z)]=2z-,D;*f(z)-4-4D;*"f(2).
Proof. By using the righthand side of (1) we see that both sides of the equation in this lemma are equal to

j 5“ )f(z-n)dn. O

This Leibniz’s rule is given in ([13], Section 5.5). The following corollary follows from this lemma.
Corollary 1. Let Ae ,C,and . D;*f(z) exist. Then

eD;*f(2)=¢D*[z- f(2)]+4- D" (2), (6)

zZ-RD;*f(z)=RD;’[z2-f( )]+24- . D [z- f(2) ]+ A(A+1): D1 (2). @)
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3. Analytic Continuations of Riemann-Liouville fD and Liouville fD
3.1. Analytic Continuations of Riemann-Liouville fI

In [1] [7] [8], analytic continuations of the Riemann-Liouville fl via contour integrals are discussed. In [7],
D/f(z) and ,D;f(z) for £eC are defined as follows.
Deflnltlon 6. Let f(£) be analytic on a neighborhood of the path P(¢,z) and on the point Z, and
f(¢)e L (P(&2)). Then DY f(z) is defined by

y F(V +1) 7t _y1
cDif(2)= o Ii )(5_2) f(£)de, (®)
for veC\Z_,, where the contour of integration is the Cauchy contour C 5,2*) shown in Figure 1(a),
which starts from &, encircles the point z counterclockwise, and goes back to &, without crossing the path

P(&z) . When —neZ_,,weput .D;"f(z):=lim D! f(z).

v—>-n C ¢
Definition 7. Let f, (¢)=({-¢) (<), »eC\Z, f,(£)=0, and f,(¢) be analytic on a neigh-
borhood of the path P(&,z) and on the points & and z. Then D} f, (z) is defined by

I(v+1)

va — —iyn
»D:f,(2)=¢ 4msinyn

-v-1
Jeyen(€ =20 1), ©
for veC\Z_,, where C (g z) is the Pochhammer contour shown in Figure 1(b). When —neZ_;, we put
»D:"f (z)=lim__ ,D/f (z).When y=neZ, ,,weput ,D/f (z)=lim_ ,DIf (z).

3.2. Analytic Continuations of Liouville fI

In [3] [7] [9], the analytic continuation of Liouville fl: , D; f (z) is discussed. Itis defined in [7] as follows.
Definition 8. Let f (£) be analytic on a neighborhood of the path P, (z),and s [f]<e and Rev>s[f].
Then ,D;f(z) for veC\Z_, isdefined by

Dy f(2)= (V+1)I( 2) " f(¢)d¢, (10)

where &=z+o0-e%. When —neZ_,weput ,D,"f(z)=lim__, ,D}f(z).

In [7], another analytic continuation of LIOUVI||E fl. D, f(z) was mtroduced Here we define it for a func-
tion of the form f, ({)=¢7(¢-&)* £, (), where 52 e€C\P,(z), yeC\Z, y,eC\Z, and f,(¢)
is an entire function.

Definition 9. Let (i): f, (¢) be afunction of the form stated above, where &, #0, (ii): C be the modified
Pochhammer contour shown in Figure 2, where §eR_, & eR,, XeR,, YeR , m=min(5,6,)
and M :=max(X,Y) satisfy m<M , and (i) geR , zeC and & satisfy m<[z|<M ,
m<|z-&|<M, argz—¢—n#0(mod2x), and arg(z—&)-g—n#0(mod2n), Then |, D;f  (z) for
veC\Z_ isdefined by

(@)

C\& 2)

o

2
Figure 1. The contours of integration, (a): C(g,z*),(b): C(&2).
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™

Figure 2. The contour of integration €, from &, to X, to X =Xe ",
o, =8, 6,Y, Y =Ye*™, 5" =5e”, and then backto & .

Tl+1) [t (z+ne” ) dn, (11)

D' f (Z) _ e—i¢v+i;7n =
4zsinym ¢

M =4 Trire
where 7:=y+y,-veZ. When —neZ_, we put ,D,"f, (z):=Ilim
wD, f, (z) isdefined by analyticity.

)

D, f, (z). When y+y,-veZ,

vo>-n M =9 Ty,

3.3. Analyticity of Riemann-Liouville fD and Liouville fD

In this section, we consider functions f,(¢) and f,({) expressed by

f($)=(¢=¢)(¢-&)". .($)=¢"(¢-&)" (12)

where £€C, & eC, yeC\Z and y,eC\Z.

The following Lemmas 6~10 are obtained by modifying the corresponding arguments given in Section 2 for
the Riemann-Liouville fD and in Sections 3.1~3.3 for the Liouville fD in [7], with the aid of ([14], Sections 3.1
and 3.2).

Lemma 6. .D;f (z) and ,Djf,(z) are analytic as a function of veC as well as of y, e C, and of
y €C inthedomains Rey>-1 and Rey+y,>-1, respectively.

Lemma 7. ,D;f (z) and ,, D;f,(z) are analytic as a function of veC as well as of yC and
v, €C.

Lemma8. Let .D;f (z) exist. Then D f (z) existsand .D;f (z)=.D}f(z).

Lemma9. Let ,D;f (z) exist. If y+1le C,then . D;f (z) existsand ,D;f (z)=.D;f(2).

Lemma 10. Lemmas 8 and 9 with D f (z), D! f(z), ,D/f,(z) and y, replaced by , D;f,(z),
wDyf,(z), wD;f,(z) and y+y,, respectively, are valid.

Remark 1. The statements related with , D} f,(z) and ,, D;f,(z) in Lemma 10 are proved by modifying
the proofs of Theorems 3.1 and 3.3, respectively, in [7].

In the following sections, we use D} f(z) and ,D;f, (z) forthe Riemann-Liouville fD.

4. The Hypergeometric Function in Terms of Riemann-Liouville fD

Let aeC, beC, ceC and zeC satisfy (i): cegZ_ or(ii): c=—meZ_ andeither —-m<a=-neZ_
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or —-m<b=-neZ,. Inthe case (i), the hypergeometric series ,F, (a,b;c;z) is defined by

zFl(a,b;c;z):g%zk, |z] <1, (13)

where (z)k:H::;(zH) for keZ, and (z),=1,for zeC.Inthe case (i), it is defined by

Fabiomiz) = Ok

The integral representation of ,F, (a,b;c;z) is given by

F(C) 1o c-a-1 -b
F(a,b;c;z)=——2——| 1" (1-t 1-tz)  dt, 14
2 1( ) F(c—a)l“(a)-[o ( ) ( ) ( )
when Rec>Rea>0, in ([5], Formula 15.5.4) ([6], Section 2.5). In fact, we obtain (13) from (14) by expand-
ing the righthand side of the latter in powers of z and then performing the integration term-by-term, when

|z] <1.
This function is a solution of the hypergeometric differential equation:
d’w dw

z(l-z)—+|c—-(l+a+b)z|—-ab-w=0, 15
( )dZZ [ ( ) :|dZ ( )

which has also another solution given by
7% ,F(l1+a-cl+b-c;2-c;z), (16)
see ([5], Section 15.5.1) ([6], Section 2.2).

4.1. Solution of the Hypergeometric Differential Equation (15) with the Aid of
Riemann-Liouville fD

The function ,F (a,b;c;z) is known to be expressed in the form of (18) for | =3 given below, in [1]. We
now obtain the solutions of (15) expressed in terms of the Riemann-Liouville fD.
Proofs of the following two lemmas are presented in the following two sections.

Lemmall. Let p(z) and w (& z) for 1z, beasfollows:

p(2)=1, pz(z)=(1—z)°'a_b, ps(z)=2"", p4(z):zl‘°(1—z)c_a'b, (17)

W (£:2)=p (2)5 (£) D27 27 (1-2)" "7, (18)

where the values a,, b, and ¢, are given in Table 1, and y, (&) are constants. Then w, (&,z), for |e Zpy 4
and ¢ e{0,1,:0-e*}, are solutions of (15).

r(2-c)

Lemma 12. When & =0, we choose 7, (0)= r ] ,and then w (&,z) given by (18) are expressed
+a —¢

as
w (0,2)=p,(z)z"" - ,F(1+a —¢.,1+b —¢;2-¢;z), | € Zy g (19)

Table 1. Values of a,, b and c.

I a, b C
1 a b c
2 c-a c-b c
3 l-c+a l1-c+b 2-c¢
4 1-a 1-b 2-c
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Corollary 2. When we put w (z)=w, (0, ) for I ez, . wehave

w,(z)=z"-,F(l+a-cl+b-c;2-c;z),
w,(z)=(1- )Cabz“~ F(l-al-b;2-c;z), (20)
w; (z)=,F (a,b;c;z),

w,(2)=(1-2)"""-,F(c—ac-b;c;2). (21)

Remark 2. The solutions w, (z) given in Corollary 2 satisfy w, (z)=w,(z) and w,(z)=w,(z); see ([5],
Formulas 15.5.3~15.5.4) ([6], Section 2.2). This is confirmed by noting that the solution of (15) in the form
2*y " ¢z withafixed 2 and ¢, =1 isunique.

4.2. Proof of Lemma 11

Lemma 13 Let Rea<-1, and (i): £=0 and Re(a-c)>-1, or (ii): £=1 and Re(c-b)>0, or (iii):
E=ow-e", Re(1+a-b)<0 and Reb>1.Then a solution of (15) is given by

w(z)= D" [za‘c (1- z)HH] (22)

Proof. We assume that a solution of (15) is expressed as w(z) = ,D;*v(z) for AeC satisfying Re 1>2.
If (i) or (ii) applies, we substitute this w(z) in (15), and use Lemma 3 and Corollary 1. We then obtain

<D [2(1-2)-v(2)]+ (D' [((3-24-a-b)z-2+ A+c)-v(z)]

(23)
—(1—/1—a)(1—ﬂ—b)- rD:'v(z)=0.
Putting A=1-a and hence assuming Rea<-1, and applying Dg*z to (23), we obtain
z(1-z)-v(z)+ D™ [((1+ a-b)z-1-a+c) -v(z)] =0, (24)
with the aid of Lemma 3. This equation requires that
d
E[z(l—z)~v(z)]+((1+a—b)z—1—a+c)~v(z)=0, (25)

and z(1-z)-v(z)=0 when z=¢. Now we obtain v(z)=z"" (1—z)°’b’l if any of the three conditions in

Lemma 13 is satisfied. Thus we obtain (22). When (iii) applies, we use Lemma 4 in place of Lemma 3. Then we
havetouse s[z(1-z)v(z)]=a-b+1. O
Remark 3. The proof of Lemma 13 corresponds to the derivation, given in ([2], pp. 43-44), of an integral
form of the solution of (15), where the method is called the Euler method.
fI(_lesr’;1ma 14.1f w(a,b,c;z) is a solution of (15), then p,(z)w(a,b,,c;;z) for Ie Zypy also are solutions
0 :
Proof. We first consider the case of |=3.Wereplace w(z) by z*-u(z) in(15), then we obtain

2?(1-z)u"+[(24+1+a+b)z+24+c|z-u'—(A+a)(A+b)z-u+(2-1+c)A-u=0. (26)
When we choose A =1-c, this equation is reduced to (15) with a, b, candwreplaced by a,;, b,, ¢; andu,

respectively. In the case of 1=2, we use (1- z) u(z) inplace of z*-u(z). By using this lemma for 1=3
and =2, we see that p,(z )w(a3 b,,c;;z) and p,(z)p,(z)w(c, —as,c;—h,,cy5z) are solutions of (15).

This proves the case of |=4. O
Proof of Lemma 11. The formula (18) for w, (£,z) follows from Lemmas 13 and 14 with the aid of Lemmas
7-10. O

4.3. Expressions of w,(&,z) in Terms of the Hypergeometric Functions

We now present the expressions of w; (£,z) given in (18) in terms of the hypergeometric functions. We then
obtain Kummer’s 24 solutions. In the following section, we give another derivation of them.
Proof of Lemma 12 is given at the first part of the proof of Lemma 15 below.
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By using Lemmas 8, 9 and 10 and the middle member of (1), (18) is expressed as

w (£,2)=p (Z)r?l(_é'g.)f;”a”' (z=n)" (1-7)"" "dn. (27)
. T(2-¢) _I'(l-a-h+q) . _I'(1-a+b)
Lemma 15. We choose V4 (O)—m, V4 (1)—W, and j/l( )— F(bl)
Then w, (£,z) given by (18) is expressed as w, (g,z):v”v,(g,z)(—l)d**',Where
o 7 5 ay ) el (L AL C 1A -1 =By,
W (&,2) = p,(z)ﬁz 2 [ ) A o g ) e 28)
=p(z)z™ (:I-_Z)ﬁk’I : ZFl(Ak,I'Bk,I;Ck,I;é’k)’ IGZ[M]’ (29)
itk, ¢, &, diys g Bas Ay B Cy, arethose giveninarowin Table 2,
Proof. Weput £=0 and 7 =2zt in(27). Then we obtain
_ e (0) ¢ (La-c (4 4\ (1 o4 \GL
w (0,2) = p,(z)—r(l_al)z jot (I-t) ™ (1—zt)" ™ dt, (30)

when 1-Rea >0, and also 1+Re(a —¢ )>0. The data in the row k=1 in Table 2, are so chosen that
w(&,z) given by (28) with the data is equal to (30). Lemma 12 follows from (30) with the aid of formula (19).
Weput £=1 and »=1-t(1-2z) in(27). We then obtain

w (Lz)=np (z)r}/'—(l)(—l)l_a' (1-z)"™™ _[:tc"b"l (1-t)* (1-t(1-2))" " dt, (31)

(1-a)
when Re(c —b)>0, Rea <1 and [L-z|<1.Thedataintherow k=2 are taken from this equation.
Weput = and 7 :% in (27). We then obtain
W, (oo, Z) =p (Z)M(_l)q—m—h Zfb| J‘ltb|—1 (1_t)—a| (1_£jc|b|l . (32)
r(l-a) 0 z

when Reb >0, Rea <1 and [z|>1.Thedataintherow k=3 are taken from this equation.
We put t=1-X in(28). Then we obtain

Table 2. Functions ¢, ofzand valuesof &, d,,, «,, B, A, B, and C.,, for keZ

[2.6] *

k é/k § dk.l ak.l ﬂk.l A(,I Bk,I Ck.l

1 z 0 0 1-¢, 0 1+a -¢ 1+b - 2-¢

2 1-z 1 1-a, a,-¢ c-a-h ¢ —h C -8 1+c -a -b

3 1 © ¢ -2 -b h 0 h 1+b —¢, 1-a +h
z

4 1-= 1 1-a, a,-¢ c-a-h 1-4a C -8 1+c -4 -b

5 % 0 1-a, 1-c, ¢ -b-1 1-4, 1+b —c 1-a +h
-z

6 . 0 0 1-¢ ¢ -b -1 1-a 14 —¢ 2-¢
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w(&2)=p, (Z)_r?l(é) () 2 -2/ (-6 ™
-a)
(33)
lexck*"A“"’l (1- x)Ak"f1 (1— X Sk ] dx.
: &1
Applying this to the formula (28) for k=1,2 and 3, we obtain the results in Table 2 for k=6,4 and 5, re-
spectively. O

Remark 4. Let W, (&,z) given by (29), for keZ,, and le Zpy g » be denoted by W, (z) when
n=4(k-1)+1. We show that they give Kummer’s 24 solutions of (15), which are w,(z) for Ziy 20 given in
Theorem 1 below. They are related by W, (z)=w, (z)(—l)d” for nezg,, . and by W, (z)=wm(n)(z)(—1)d"
for neZy,,,, where m(13)=m(15)=14, m(14)=m(16)=15, m(17)=18, m(18)=20, m(19)=17,
m(20)=19, m(21)=22, m(22)=21, m(23)=24, m(24)=23,and d,eR for neZg,, . Here wy,(z)
and w(z) appear twice, and w,(z) and wyg(z) do not appear. We note that when the formers are solu-
tions of (15), the latters which are obtained from the formers by exchanging a and b, are obviously solutions of
(15). By adding these in the set of solutions W, (z), we have the 24 solutions of (15).

Remark 5. In Lemma 15, we have two expressions of w, (£,z) for different k. For instance for £=0 and
I =3, wehave W,(z)=w,;(0,z)=W,(z),which isgiven in ([5], Formulas 15.3.3~15.3.5) ([6], Section 2.4.1).

Remark 6. When &=, we have .D.*f(z)= _D,*f(z), so that the equation (32) and the data for
k =3 in Table 2 are obtained by using the Liouville fD, and is given by Nishimoto in [4]. In that case, Nishi-
moto’s derivation is justified.

1 1 1 1
4.4. Solutions of (15) as a Functionof 1-z, —, 1-—, —,and 1-——
Z z 1-z 1-z

In the following, there appear p, (z), &, Bk and ¢, for keZ,, . Theyare listed in Table 3.

Lemma 16. If w(a,b,c;z) is a solution of (15), then P, (z)w(a, bk,Ck;gk) for kez also are solu-
tions of (15).

Proof. When k =2, we replace zand w(z) by 1-¢, and y,(¢,), respectively, in (15). We then obtain

the same equation with ¢, z and w(z) replaced by €,, &, and y,(¢,), respectively. We call the obtained
Equation (15-2).

(28]

When k=3, we put ¢ =¢;, and replace zand w(z) by % and z*y(¢) or ¢*y(¢), respectively, in
(15). We then obtain
F(E-1)y +[(24+2-c){ +(-24-1+a+b) |y +[(A1+1-c)A-{ —(A—a)(A-b)]y=0.

When we choose A =a, this equation is reduced to (15) with b, ¢, zand w(z) replaced by b,, ¢, ¢ and
y(¢), respectively. We call the obtained Equation (15-3).

Table 3. Fuctions p, (z) and ¢, ofz andvaluesof b and ¢, for KeZpy-

k P (2) Sy b, ¢,
2 1 1-z b l+a+b-c
1
3 z = l+a-c l+a-b
z
1
4 z® 1-= l+a-c l+a+b-c
z
1
5 (1-2) — c-b l+a-b
1-z
6 (1-2) l—i c-b c
1-z
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When k=4, we replace ¢ and y(¢) by 1-¢, and y,(¢,), respectively, in (15-3). We then obtain

the same equation with b,, ¢,, ¢ and y(¢) replaced by b, =b,, ¢, =1+a+b,—¢, ¢, and y,(&,),
respectively.

When k =5, we replace ¢, and y,(¢,) by §i and £,y (&s) or &oy(&s). respectively, in (15-2).
5
We then obtain the same equation with b, ¢,, ¢, and y,(¢,) replaced by b,=1+a-¢,, G =1+a-b,
¢s and y. (&), respectively. We call the obtained Equation (15-5).
When k =6, we replace ¢ and y,(¢;) by 1-¢; and y, (<), respectively, in (15-5). We then obtain
the same equation with b, c,, ¢ and yg(¢y) replaced by by =by, ¢ =1+a+b;—¢, ¢ and yg(<s),

respectively. O
By Corollary 2 and Lemma 16, we obtain the following corollary.
Corollary 3. Let w,(a,b,c;z) for 1eZ,, represent the righthand side of the equation for w(z) given
in (20)~ (21). Thenfor n=4(k-1)+1, le Zpy 4 and keZ

w, (2) =B, (2)w (B, 6: ¢ ) (34)

[26]
is a solution of (15).
We note here the following remark, which is used in obtaining Table 4 below.

Table 4. Functions z, ofzand valuesofk, I, «,, £, A, B, and C, for neZ,,.

n Zn k I aﬂ ﬁn A’l BH Cn

1 z 1 1 l-c 0 l+a-c l+b-c 2-c

2 z 1 2 l-c c-a-b 1-a 1-b 2-c

3 z 1 3 0 0 a b c

4 z 1 4 0 c—-a-b c-a c-b c

5 1-z 2 1 c—-a-b 0 c-b c-a l-a-b+c
6 1-z 2 2 c—a-b l-c l1-a 1-b l-a-b+c
7 1-z 2 3 0 0 a b l+a+b-c
8 1-z 2 4 0 l-c 1+b-c l+a-c l+a+b-c
9 7t 3 1 b 0 b 1+b-c 1-a+b
10 7zt 3 2 b c—a-b 1-a c-a l-a+b
11 z* 3 3 a 0 a l+a-c l+a-b
12 7zt 3 4 a c—-a-b 1-b c-b l+a-b
13 1-z7 4 1 c—-a-b a c-b 1-b l-a-b+c
14 1-z* 4 2 c-a-b b 1-a c-a l-a—b+c
15 1-z7 4 3 0 a a l+a-c l+a+b-c
16 1-77 4 4 0 b 1+b-c b l+a+b-c
17 (1-2)" 5 1 b 0 b c-a l1-a+b
18 (1-2)" 5 2 b 1-¢ 1-a 1+b-c 1-a+b
19 (1-2)" 5 3 a 0 a c-b l+a-b
20 (1-2)" 5 4 a 1-c 1-b l+a-c l+a-b
21 2(z-1)" 6 1 1-c a l+a-c 1-b 2-c
22 z(z-1)" 6 2 1-c b 1-a 1+b-c 2-c
23 2(z-1)" 6 3 0 a a c-b c

24 z(z-1)" 6 4 0 b c-a b c




T. Morita, K. Sato

Remark7 p,(z)=1, p,(z)=¢2 for k=3 and5,and P, (z)=(1-¢,)" for k=4 andé.

5. Kummer’s 24 Solutions of the Hypergeometric Differential Equation

By Corollary 3 and Lemma 7, we obtain the following theorem by the present method.
Theorem 1 We have 24 solutions of (15), which are expressed as

w,(z)=2(1-2,)" ,F(A,B.:Cyiz,), NeZ (35)

[L24]
where the functions z, of zand the valuesof «,, B,, A,, B, and C_ arelisted in Table 4.
The values for ne Ly, in Table 4 are obtained by comparing (35) with (20)~(21) in Corollary 2. By Co-
rollary 3 and Remark 7, the functions z, and the values for ne Zys 0 aT€ obtained with the aid of the fol-
lowing lemma.
Lemma 17. Let & (a,b,c), 5 (ab,c), A(ab,c), B (ab,c) and C (ab,c) for Ie Zy,, represent
a, B, A, B and C,, respectively, as a function of a, b and c. Then the values of «,, g,, A,, B, and

C, andfunctions z, ofzfor ne Zys 0 2re given by
ay =@ (ab,6), £ =F(ab.C) neZg, (36)
a,=a+a (ab.c), B =5(abt) neZy,UZ, ., (37)
ay =@ (ab,6), B =a+ph(ab.C), Nelyy ULy, (38)

A1:'&1(a’6k’ck)’ Bn:~l(a’bk’ck)’ Cn:él(a’ﬁklck)' 2, =Gy NELyg (39)

where k=|n/4|+1 and I=n-4(k-1).
The following lemma is well known, see ([5], Formulas 15.5.3~15.5.14) ([6], Section 2.2).

Theorem 2. The solutions w, (z) given in Theorem 1 for ne Zyy o0y 2re related by

W, 1 (z)=w,,(z), neZ (40)

[112]"

Proof. This is confirmed by using Lemma 16 or Corollary 3 with the aid of Remark 2. O
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