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Abstract 
The use of frames is analyzed in Compressed Sensing (CS) through proofs and experiments. First, a 
new generalized Dictionary-Restricted Isometry Property (D-RIP) sparsity bound constant for CS 
is established. Second, experiments with a tight frame to analyze sparsity and reconstruction 
quality using several signal and image types are shown. The constant kδ  is used in fulfilling the 

definition of D-RIP. It is proved that k-sparse signals can be reconstructed if 2
2
3kδ <  by using a 

concise and transparent argument1. The approach could be extended to obtain other D-RIP 
bounds (i.e. tkδ ). Experiments contrast results of a Gabor tight frame with Total Variation 
minimization. In cases of practical interest, the use of a Gabor dictionary performs well when 
achieving a highly sparse representation and poorly when this sparsity is not achieved. 
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1. Introduction 
Let n p×Φ∈  and pβ ∈  be a signal such that  

y zβ= Φ +                                        (1) 

with 2z ε≤ . In compressed sensing, one can find a good stable approximation (in terms of ε  and the tail of 

 

 

1This was proven in 2014 [1]. This result is improved upon [2]. 
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β  consisting of p k−  smallest entries) of β  from the measurement matrix Φ  and the measurement y 
through solving an 1 -minimization, provided that Φ  belongs to a family of well behaved matrices. A 
subclass of this family of matrices can be characterized by the well known Restrictive Isometry Property (RIP) 
of Candès, Romberg, and Tao, [3] [4]. This property requires the following relation for Φ   

2 2 21 1k kc c cδ δ− ≤ Φ ≤ +                                 (2) 

for every k-sparse vector c (namely, c has at most k non-zero components), for some small constant kδ . Some 
bounds on δ  have been determined in previous publications [3]-[6]. Notably, Cai and Zhang have established  

several sharp RIP bounds that cover the most interesting cases of δk and 2kδ  [7] [8] showing 2
1 2,
3 2k kδ δ≤ < . 

A key requirement in this setting is a signal being sparse or approximately sparse. Indeed, Many families of 
integrating signals have sparse representations under suitable bases. Recently, an interesting sparsifying scheme 
was proposed by Candès et al. [9]. In their scheme, instead of bases, tight frames are used to sparsify signals. 

Let p dD ×∈  ( d p≥ ) be a tight frame and k d≤ . Candès et al. [9] suggests that one use the following 
optimization to approximate the signal β :  

*
21

ˆ argmin subject to .p D y
γ

β γ γ ε
∈

= −Φ ≤


                         (3) 

The traditional RIP is no longer effective in the generalized setting. Candès et al. defined the D-restricted 
isometry property which extends RIP [9]. Here the formulation of D-RIP is used as in Lin et al. [10].  

Definition 1. The measurement matrix Φ  obeys the D-RIP with constant kδ  if  

( ) ( )2 2 2

2 2 21 1k kDv Dv Dvδ δ− ≤ Φ ≤ +                              (4) 

holds for all k-sparse vectors dv∈ .  
The RIP is now a special case of D-RIP (when the dictionary D is the identity matrix). For D being a tight 

frame, Candès et al. [9], proved that if 2 0.08kδ < , then if *D β  is approximately k-sparse, the solution to (3) 
is a good approximation of β . Lin et al. [10], improved this result to 2 0.472kδ <  by using some techniques 
developed by Candès et al. [3]. 

Contribution  

The proof in Section 2 establishes an improved D-RIP bound which states that 2
2
3kδ < . This result was  

previously available [1] and it has been improved on by Wu and Li [2]. The main ingredient of the proof in 
Section 2 is a tool developed by Xu et al. [11]. This approach takes its inspiration from the clever ideas of Cai 
and Zhang [7] [8]. 

The practical application of this proof consists of experiments targeting the theory of using tight frames in this 
CS setting satisfying D-RIP. Similar experimental methods to those used by Candès et al. are followed [9] [12]. 
However, an expanded variety of relevant sparse and non-sparse signals are used to test the robustness of the 
Gabor transform. Additionally, these experiments analyze sparsity in the coefficient domain and show that a 
highly sparse representation is a good indicator of reconstruction quality. These results are contrasted with a 
commonly used CS approach of Total Variation (TV) 1  minimization. 

This paper is organized into four main sections. Background information is presented in Section 1. Section 2 
describes a proof of an improved D-RIP sparsity bound by using a concise and transparent approach. Section 3 
details the methods of experimentation used to apply the tight frame in practical applications of signals and 
image recovery. Section 4 shows and discusses the reconstruction simulation results with an analysis of the 
robustness and shortcomings of using tight frames in CS. 

2. New D-RIP Bounds  
Theorem 2. Let D be an arbitrary tight frame and let Φ  be a measurement matrix satisfying D-RIP with  

2
2
3kδ < . Then the solution β̂  to (3) satisfies  
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( ) ( )
* *

max 1
0 12

ˆ k
D D

C C
k

β β
β β ε

−
− ≤ +                          (5) 

where the constants 0C  and 1C  depend on 2kδ , ( ) ( )
*

max k
D β  is the vector *D β  with all but the k largest  

components (in magnitude) set to zero.  
Before proving this theorem, some remarks are helpful. Firstly, Cai and Zhang have obtained a sharp bound  

2
2

2kδ <  for the case D I=  [8]. Their work inspired pursuit of the bound in this proof. Secondly, following  

the ideas of Cai and Zhang [7] [8], more general results (other D-RIP bounds) can be obtained in parallel. 
In order to prove Theorem 2, the following 1 -norm invariant convex k-sparse decomposition by Xu and Xu 

[11], and Cai and Zhang [8] are needed. 
The following description is taken from Xu et al. [11].  
Lemma 1. For positive integers k n≤ , and positive constant C, let nv∈  be a vector with 

1v C≤  and  
Cv
k∞

≤ . Then there are k-sparse vectors 1, , Mw w  with  

11
and for 1, , ,t t

Cw v w t M
k∞

= ≤ =                         (6) 

such that  

1

M

t t
t

v x w
=

= ∑                                       (7) 

for some nonnegative real numbers 1, , Mx x  with 1 1M
tt x

=
=∑ .  

Now Theorem 2 is proven.  
Proof. This proof follows some ideas in the proofs of Theorems 1.1 and 2.1 by Cai et al. [8], incorporating 

some simplified steps. Some strategies from Cai et al. [5] [13] are also used. This proof deals only with the 2kδ  
case so that the key ideas can be conveyed clearly. 

Let ˆh β β= − . 
For a subset { }1, 2, ,S d⊂  , denoted by SD  the matrix D is restricted to the columns indexed by S (and 

replacing other columns by zero vectors). Let Ω  denote the index set of the largest k components of *D β  (in  
magnitude), i.e., ( ) ( )

* *

max k
D Dβ βΩ= . With this notation there is ( ) ( )

* * *

maxC k
D D Dβ β β

Ω
= − . As in Candès et al.  

[9], one can easily verify the following:  
* * *

11 1
2C CD h D D hβ ΩΩ Ω

≤ +                                (8) 

2 2h εΦ <                                      (9) 

Denote ,i iv D h=  for 1, ,i d=  , where iD  is the i-th column of D, then  

( )*
1, , .dD h v v Τ=                                    (10) 

By rearranging the columns of D if necessary, assume 1 2 dv v v≥ ≥ ≥ . Let { }1, 2, ,T k=  . In this case, 
have  

( ) ( )* *
1 1, , , 0, , 0 and 0, , 0, , , .T k C k dT

D h v v D h v vΤ Τ
+= =                      (11) 

Assume that the tight frame D is normalized, i.e., *DD I= , and *
2 2

x D x=  for all px∈ . Thus there is 
the following useful relation:  

2* * * * * * *

2
2 2 2* * * * *

2 2 2

, , ,

, .

CT T T T TT

T T T T

DD h DD h DD h DD h DD h DD h h DD h

D h D h DD h D h DD h

= − = −

= − = −
                (12) 

From the facts * *

1 1TD h D hΩ ≤  and * * * * *

1 1 11 1
C CT T

D h D h D h D h D hΩ Ω
+ = + = , the relation  
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* * *

11 1
2C CD h D D hβ ΩΩ Ω

≤ +  yields  

* * *

11 1
2C C TT

D h D D hβ
Ω

≤ +                              (13) 

Since 
* **

* 11 1
2 C

C

TT

T

D D hD h
D h

k k

β
Ω

∞

+
≤ ≤ , use Lemma 1 to get the following 1 -invariant convex  

k-sparse decomposition of *
CT

D h :  

*

1
,C

M

t tT
t

D h x w
=

= ∑                                   (14) 

with each d
tw ∈  being k-sparse, *

1 1
Ct T

w D h=  and 
* *

11
2 C T

t

D D h
w

k

β
Ω

∞

+
≤ . From this and the  

Cauchy-Schwartz inequality, there is  
* * *

*11 1
2 2=1

2 2
.

C CM T
t t T

t

D D h D
x w D h

k k

β β
Ω Ω

+
≤ ≤ +∑                   (15) 

By the triangle inequality, *
=1 22

C
M

t ttT
D h x w≤ ∑  holds and thus  

*
* *1

22

2
.

C

C TT

D
D h D h

k

β
Ω≤ +                             (16) 

Note that 
2 22 22 * * *

2 2 222
ˆ

C TT
h D h D h D hβ β− = = = +  and ( ) ( )

* * *

max Ck
D D Dβ β β

Ω
− = . In order to prove  

the theorem, it suffices to show that there are constants 0 1,C C′ ′  such that  
*

* 1
0 12

.
C

T

D
D h C C

k

β
ε Ω′ ′≤ +                              (17) 

In fact, assuming (17) there is  
22* *

2 2 2
CT T

h D h D h= +                              (18) 

2 2
* *

*1 1
0 1 2

2C C

T

D D
C C D h

k k

β β
ε Ω Ω

   
   ′ ′≤ + + +
   
   

                   (19) 

* *
*1 1

0 1 2

2C C

T

D D
C C D h

k k

β β
ε Ω Ω′ ′≤ + + +                       (20) 

( )
*

1
0 12 2 1

CD
C C

k

β
ε Ω′ ′= + +                            (21) 

Now moving to the proof of (17). Denote  
* * *: , , .T TDD h h DD h DD hΠ = Φ Φ = Φ Φ                      (22) 

First, as *
TD h  is k sparse, hence 2k sparse. There is  

* *
222 2

1 2 .T k TDD h h D hδ εΠ ≤ Φ Φ ≤ +                      (23) 

On the other hand, as each *
T tD h w+  is 2k sparse, there is   

* * * * *

1
, ,C

M

T T t T T tT
t

DD h DD h DD h x DD h DD h Dw
=

Π = Φ Φ +Φ = Φ Φ +Φ∑            (24) 
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* *

1

1 1 1 1,
2 2 2 2

M

t T t t T t t
t

x DD h Dw Dw DD h Dw Dw
=

   = Φ + Φ − Φ Φ + Φ + Φ   
   

∑              (25) 

2 2
*

1 2 2

1 1
2 2

M

t T t t
t

x DD h Dw Dw
=

 
= Φ + Φ − Φ  

 
∑                          (26) 

( ) ( )
2 2

*
2 2

1 2 2

1 11 1
2 2

M

t k T t k t
t

x DD h Dw Dwδ δ
=

 
≥ − + − +  

 
∑                     (27) 

( ) ( )
2 2* *

2 2 222 1 1

11 1 ,
2

M M

k T k t t k t T t
t t

DD h x Dw x DD h Dwδ δ δ
= =

= − − + −∑ ∑                (28) 

( ) ( )
2 2* * *

2 2 222 1

11 1 ,
2 C

M

k T k t t k T T
t

DD h x Dw DD h DD hδ δ δ
=

= − − + −∑                  (29) 

( )
( ) ( )( )12 2 2 22* * *

2 2 222 2 21

11 1
2

M

k T k t t k T T
t

DD h x Dw D h DD hδ δ δ
=

= − − + − −∑                (30) 

( ) ( )
2 22 2* *

2 2 2 22 22 21 1

1 11 1
2 2

M M

k T k t t k T k t t
t t

D h x Dw D h x wδ δ δ δ
= =

= − − ≥ − −∑ ∑              (31) 

( )
2

*
2* *1

2 22 2

211
2

C

k T k T

D
D h D h

k

β
δ δ Ω

 
 ≥ − − +
 
 

                       (32) 

2* * *
2* 21 1

2 22

4 43 11 .
2 2

C C T
k T k

D D D h
D h

k k

β β
δ δ Ω Ω

 
   = − − +      

 

                 (33) 

Combining this with (23) shows  
2* * *

2* *21 1
2 2 22 2

4 43 11 1 2 .
2 2

C C T
k T k k T

D D D h
D h D h

k k

β β
δ δ δ εΩ Ω

 
   − − + ≤ +      

 

          (34) 

By making a perfect square, there is   
2

*
2* 2 1

2

2 2

22

* *
2 2 21 1

2 2 2

2 1 2
2 23 3
3 3

2 1 2 2 ,
2 2 23 3 3
3 3 3

C

C C

k k
T

k k

k k k

k k k

D
D h

k

D D

k k

βδ δε
δ δ

β βδ δ δε
δ δ δ

Ω

Ω Ω

  
  +  − +
     − −          

  
  +   ≤ + +
       − − −                

              (35) 

which implies that   

* * *
2 2* 2 2 21 1 1

2

2 2 2 2 2

2 1 2 12 2 2
.

2 2 2 2 23 3 3 3 3
3 3 3 3 3

C C Ck kk k k
T

k k k k k

D D D
D h

k k k

β β βδ δδ δ δ
ε ε

δ δ δ δ δ

Ω Ω Ω

 
 + +
 − + ≤ + +
          − − − − −                    

  (36) 

and finally have (17):  
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*2 2 2
2* 1

2

2 2

24 6
4 1 3 .

2 23 3
3 3

C
k k k

k
T

k k

D
D h

k

δ δ δ βδ
ε

δ δ

Ω

 + − +  ≤ +
   − −   
   

                  (37) 

This demonstrates the use of Lemma 1 to get a good result. This could be pursued further to general cases for 
an even better bound. Indeed, this has been done recently by Wu and Li [2] to improve the result of this proof 
which has been available previously [1]. 

3. Experiments  
The focus in these experiments is to show practical applications of a sparsifying frame that satisfies the new 
lower bound proven in the previous section. A time-frequency Gabor dictionary is used as a sparsifying trans- 
form in re-weighted 1  minimization [12]. The Gabor dictionary fulfills the requirements of D-RIP because it 
is a tight frame. 

One of the advantages of a Gabor dictionary is its characteristic of translational invariance both in time and 
frequency. In a similar context, a translational invariant wavelet transform was used with good results in MRI 
reconstruction [14]. Invariance in the 1  minimization penalty term is advantageous for its ability to represent 
different signals sparsely. 

Here comparison measurements of sparsity in Gabor and TV Coefficients of various signals are used to verify 
if good and robust results can be achieved. A selection of 5 different real valued signals and/or images with 
variants are used to simulate the complexity of practical signals.   
• Sinusoidal pulses (GHz range)  
• Shepp-Logan phantom image  
• Penguin image  
• T1 weighted MRI image  
• Time of Flight (TOF) Maximum Intensity Projection (MIP) MRI image  

The original images and signals are sized to be a total length of 16k values-for images, this is a 128 × 128 
gray-scale image, shown in part (a) of each figure. These signals are not sparse in their native domain, but can 
become sparse when a transform is applied. 

The use of the Gabor dictionary to reconstruct these signals utilizes a core optimization algorithm solver for 
the primal-dual interior point method provided by 1 -Magic [15]. The redundancy of the Gabor transform 
coefficients compared to the original signal is about 43 times. These results are compared to reconstructions of 
the same input signal using another CS optimization algorithm solver, TV minimization with quadratic con- 
straint, which is also provided by 1 -Magic. These algorithms operate on the full sized image (or signal) 
without breaking up the data into segments. In both settings, the same under-sampling is performed by using a 
pseudo-random Gaussian measurement matrix with a factor of 2. 

In Table 1, there is a comparison of two measures for this analysis, the Mean Square Error (MSE) and  
 
Table 1. Sparsity and compressed Sensing reconstruction errors of various signals (L-Linear, G-Gabor, TV-Total Variation, 
MSE-Mean Square Error).                                                                                            

Test L MSE G MSE TV MSE %G Sparse %TV Sparse 

1 (Pulse 1) 0.7045 0.0195 0.9411 99.5 0.19 

2 (Pulse 2) 0.7075 0.0192 0.8023 94.8 2.6 

3 (Shepp-Logan) 0.7062 0.2697 0.0 54.7 91.7 

4 (Penguin) 0.7077 0.3011 0.0 54.1 87.6 

5 (Pulse + Shepp-Logan) 0.7101 0.2541 0.2141 54.4 2.2 

6 (T1 MRI) 0.7013 0.1445 0.0637 82.9 7.8 

7 (TOF MRI) 0.7012 0.2555 0.1369 68.4 13.3 
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Sparsity. Measurements of normalized MSE are taken, where ix  and ˆix  are the original and reconstructed 
image.  

2

1

2

1

ˆ
MSE

N

i i
i

N

i
i

x x

x

=

=

−
=
∑

∑
                                    (38) 

A Linear (L) MSE of the reconstruction is used as a reference, shown as (b) in each figure. This is calculated 
by the transpose of the measurement matrix as the pseudo inverse. Gabor (G) MSE identifies the error in the use 
of that dictionary in the CS reconstruction, shown in parts (c) of the figures. TV MSE is a measure of the error 
when TV weighted 1  minimization is performed and is shown in part (d) of each figure. 

Sparsity measurements taken in the coefficient domain are based on a ratio of the count of values that are less 
than 1/256 of the maximum coefficient, divided by the total number of the coefficients. This ratio then is a 
percentage of sparsity. Two sparsity measures are taken:   
• % G Sparse-Sparsity of the Gabor transform coefficients of the fully sampled signal  
• % TV Sparse-Sparsity of the TV calculation of the fully sampled signal  

4. Results and Discussion  
The goal is to show how well a sparse tight frame representation of various signals performs in CS recon- 
struction. Analysis is done of the Gabor dictionary as a sparsifying transform on non-sparse signals and images. 
A large range of reconstruction errors and sparsity levels are observed for different image types and signals. The 
use of the Gabor frame with a reference of TV weighted 1  minimization in compressed sensing reconstruction 
is compared. Table 1 quantifies MSE and sparsity for each reconstruction test. Figures 1-8 are the corres- 
ponding image and signal reconstructions. 

According to these measurements, sparsity in the coefficient domain will correlate to image reconstruction  
 

 
(a)                           (b)                          (c)                          (d) 

Figure 1. Signal reconstruction test 1, one long pulse (a) original; (b) linear pseudo inverse; (c) CS Gabor; (d) CS TV.                                                                  
 

 
(a)                           (b)                          (c)                          (d) 

Figure 2. Reconstruction test 2, 20 short pulses (a) original; (b) linear pseudo inverse; (c) CS Gabor; (d) CS TV.                                                                  
 

 
(a)                           (b)                          (c)                          (d) 

Figure 3. Reconstruction test 3, Shepp-Logan phantom (a) original; (b) linear pseudo inverse; (c) CS Gabor; (d) CS TV.                                                                  
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(a)                           (b)                          (c)                          (d) 

Figure 4. Reconstruction test 4, penguin (a) original; (b) linear pseudo inverse; (c) CS Gabor; (d) CS TV.                                                                  
 

 
(a)                           (b)                          (c)                          (d) 

Figure 5. Signal reconstruction test 5, one long pulse + Shepp-Logan phantom (a) original; (b) linear pseudo inverse; (c) CS 
Gabor; (d) CS TV.                                                                                                                                   
 

 
(a)                           (b)                          (c)                          (d) 

Figure 6. Image reconstruction test 5, one long pulse + Shepp-Logan phantom (a) original; (b) linear pseudo inverse; (c) CS 
Gabor; (d) CS TV.                                                                                                    
 

 
(a)                           (b)                          (c)                          (d) 

Figure 7. Reconstruction test 6, T1 MRI, (a) original; (b) linear pseudo inverse; (c) CS Gabor; (d) CS TV.                         
 

 
(a)                           (b)                          (c)                          (d) 

Figure 8. Reconstruction test 7, MIP MRI, (a) original; (b) linear pseudo inverse; (c) CS Gabor; (d) CS TV.                        
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success. For example, test 1 measures a Gabor coefficient sparsity of over 99% and a reconstruction success 
which reduces the MSE by 36 times compared to the linear reconstruction. Whereas, with the same signal, 
which is not sparse at all in the TV domain, TV minimization actually increases the MSE when compared with 
the linear reconstruction, see Figure 1. It is important to note that the sparsity calculated on the Gabor 
coefficient set is on a much larger set of redundant coefficients than the non-redundant TV coefficients. 

In test 2, the complexity and sparsity are adjusted by adding additional sinusoidal pulses which may overlap. 
The complexity of the pulses significantly increases to 20 pulses and the Gabor dictionary is able to sparsely 
represent the signal very well compared to TV minimization, see Figure 2. Similar to the results in test 1, the 
reconstruction MSE is reduced by 36 times. 

In tests 3 and 4, images are chosen which are sparse in the TV domain but not in the Gabor domain. The TV 
reconstruction reduces the MSE to zero compared to the Gabor reconstruction reducing by only a factor of 2.6 
and 2.4 respectively. The penguin image is an example with a different background magnitude from the 
Shepp-Logan phantom, see Figure 3 and Figure 4. 

The signal in test 5 is a combination of a pulse from test 1 with the Shepp-Logan image from test 3. The same 
signal is plotted in the time domain for Figure 5 and in the image domain for Figure 6. Although both Gabor 
and TV CS reconstructions improve the result over the linear calculation, the error still remains quite large. It is 
noteworthy that the sparsity percentages are much lower for this case in both the TV and Gabor domains. This 
underscores the important connection between having a sparse representation and making a good reconstruction. 

In the last experiments, tests 6 and 7, MRI images of the brain as either T1 weighted or TOF MIP are used. 
They appear not to be sparsely represented in either the Gabor domain or in TV. The MSE result is poor in both 
reconstruction algorithms, see Figure 7 and Figure 8. It is important to note that under-sampling is in the image 
domain and not in the native MRI signal domain of k-space. However, this is still an equivalent comparison for 
cases when the under-sampled k-space produces artifacts that are incoherent as in this experiment. A require- 
ment of CS reconstruction is that artifacts due to sampling are similar to uniform noise with an even distribution 
across the image. 

It is also important to point out that the linear reconstructions, calculated with a pseudo-inverse, have a 
consistent MSE for all experiments, see L MSE in Table 1. This is not the case for this tight frame. These 
findings show remarkably good results for some periodic signals. However, the Gabor tight frame does not 
appear to be advantageous for the images investigated here. The ability of the sparsifying transform to produce a 
high percentage of sparsity contributes greatly to the reduction of reconstruction error. When using CS in these 
cases, it is vital to pick a dictionary which will effectively and sparsely represent the signal of interest.  

5. Conclusion  
The use of a new D-RIP sparsity bound constant for compressed sensing is proven using a transparent and 
concise approach. Practical numerical experiments for this setting are performed. The use of a Gabor tight frame 
in CS is contrasted with TV weighted 1  minimization by simulation. Measurements of reconstruction error 
and coefficient sparsity in each domain are presented and analyzed. Sparse representation by frames does 
provide good results when the dictionary is chosen appropriately. Care must be taken to assure high levels of 
sparsity are achieved in the coefficient domain. Otherwise, poor fidelity in reconstruction may occur.  
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