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Abstract 
Some moments and limiting properties of independent Student’s t increments are studied. Inde-
pendent Student’s t increments are independent draws from not-truncated, truncated, and effec-
tively truncated Student’s t-distributions with shape parameters ν ≥ 1  and can be used to create 
random walks. It is found that sample paths created from truncated and effectively truncated Stu-
dent’s t-distributions are continuous. Sample paths for ν ≥ 3  Student’s t-distributions are also 
continuous. Student’s t increments should thus be useful in construction of stochastic processes 
and as noise driving terms in Langevin equations. 
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1. Introduction: Student’s t Increments 
The interest of this paper is independent Student’s t increments. These increments are independent draws from a 
Student’s t-distribution with support [ ],−∞ +∞ , a truncated Student’s t -distribution with support [ ],b bβ β− + , 
or an effectively truncated Student’s t-distribution with support [ ],−∞ +∞ , but which has a multiplicative 

( )2exp t−  envelope which effectively truncates the distribution. Here β  is the scale parameter for the Stu- 
dent’s t-distribution and b < ∞  is a real constant. 

These independent Student’s t increments can be used to generate a random walk such as the Markov 
sequence 0 0y x= , 1 0 1y y x= + ,  , 1n n ny y x−= + , where the , 0,1, ,ix i n=   are independent draws from a 
Student’s t-distribution, a truncated Student’s t-distribution, or an effectively truncated Student’s t-distribution. 

Attention will be restricted to Student’s t-distributions with location parameter (i.e., mean) 0µ = , scale 
factor β < ∞ , and shape parameter 1ν ≥ , which cover the Cauchy distribution, for which 1ν = , to the 
Gaussian or normal distribution, for which ν = ∞ . 

To distinguish between time t and and a realization of a random variable that is distributed as a Student’s 
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t-distribution, a bold face t will be used with the name of the distribution and a regular face t will represent time. 
The symbols x and ξ  will represent random variables, and specific realizations of the random variables x and 
ξ  will be represented as x and ξ . A stochastic process, which is a family of functions of time, is then ( )tξ  
whereas ( )it t=ξ  is a random variable for it  some constant and ( )it tξ =  is a number in that both t and the 
value of ξ=ξ  are specified. 

A Student’s t-distribution with location parameter 0µ = , shape parameter ν , and scale parameter β , is 
given by [1]-[3] 

( ) ( )( )
( )

( )1 22

22

1 2
; , 1

2 π
f

νν ξξ ν β
ν βν ν β

− +Γ +  
= + 
Γ  

t                         (1) 

with ξ−∞ ≤ ≤ +∞ . ( ); , df ξ ν β ξt  gives the probability that a random draw ξ  from the Student’s t-dis- 
tribution lies in the interval dξ ξ ξ< ≤ +ξ . 

A truncated Student’s t-distribution ( ); , ,Tf bξ ν β  with location parameter 0µ = , shape parameter ν , and 
scale parameter β , is given by  

( ) ( ) ( )1; , , ; , rect d
2Tf b f

Z b bν

ξξ ν β ξ ν β ξ
β

∞

−∞

 
= ×  

 
∫ t                     (2) 

( ) ( )1 ; , d
b

b
f

Z b
β

β
ν

ξ ν β ξ
−

= ∫ t                               (3) 

( ) ( )with  ; , rect d
2

Z b f
bν
ξξ ν β ξ
β

∞

−∞

 
= ×  

 
∫ t                           (4) 

where the rectangle function ( )rect 1x T =  if 1
2x T <  and 0=  for 1

2x T >  has been used to truncate the  

distribution and limit support to [ ],b bβ β− . 
A Student’s t-distribution is obtained from a mixture of a normal distribution with a standard deviation σ  

that is distributed as inverse chi with support [ ]0,∞  [4]-[7]. Let 1a σ= , then a is distributed as chi, 
( ); ,aχ ν β , and 

( )
( )( )

( )

2 21 22 1 2

2 1

e
; , d d .

/ 2 2

aa
a a a

ν ν ν β

ν

ν β
χ ν β β ν

ν

− − −

−=
Γ

                     (5) 

Using chi as defined above and a normal distribution with zero mean and standard deviation of 1 aσ = , the 
mixing integral when evaluated from 0a =  to a = +∞  yields a Student’s t-distribution  

( ) ( )
2 2 2

0

e; , ; , d
2π

aaf a a
ξ

ξ ν β χ ν β
−

∞
= ∫t                             (6) 

with a mean of zero, shape parameter ν , and a scale parameter of β . 
The probability that q>x , ( ); ,P qχ ν β>x , is needed to normalize properly a truncated chi distribution. A 

left-truncated chi distribution ( ); ,aχ ν β  is zero for values a q≤ : 

( ) ( ); , ; , d .
q

P q x xχ ν β χ ν β
∞

> = ∫x                                (7) 

An effectively truncated Student’s t-distribution ( ); , ,Ef qξ ν β  is the pdf for a mixture of a left-truncated chi 
and normal distribution: 

( ) ( )
( )

2 2 2 ; ,e; , , d .
; ,2π

a

E q

aaf q a
P q

ξ

χ

χ ν β
ξ ν β

ν β

−
∞

=
>∫ x

                      (8) 

( ) ( ); , , 0 ; ,Ef q fξ ν β ξ ν β= = t  is a Student’s t-distribution with shape parameter ν  and scale parameter β . 
This paper is organized as follows. The development in time of the variance for the sum of independent draws 

from distributions is reviewed in Section 2. It is shown that truncation of a Student’s t-distribution keeps the 
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moments finite and thus variances add, even if the distributions are not stable under convolution. Gaussian and 
Cauchy distributions are stable under self-convolution. A Gaussian convolved with a Gaussian yields a Gaussian. 
Student’s t-distributions other than 1ν =  and ν = ∞  distributions are not stable under self-convolution. The 
tails of the self-convolution of Student’s t-distributions are “stable”; only the deep tails retain the characteristic 

1tν +  power-law dependence of the original t-distribution [6] [8] [9]. However, the fact that the moments are 
finite and variances add under convolution allows the time development of the variance to be determined. 
Examples of smoothing of the characteristic function owing to truncation are given and examples of the mo- 
ments of distributions are given. 

The continuity of sample paths is discussed in Section 3. It is shown that truncated and effectively truncated 
Student’s t-distributions have continuous sample paths. It is also shown that sample paths created by Student’s 
t-distributions with 3ν ≥  have continuous sample paths. Random walks are shown for independent increments 
drawn from a uniform distribution, from a normal distribution, and from 1ν =  and 3ν =  Student’s t-distri- 
butions. The samples paths for the different distributions were all simulated from the same sequence of pseudo 
random numbers. This enables observation of the effects of different shape parameters and truncations on the 
random walks. 

Section 4 is a conclusion. 

2. Variances Add under Convolution 
Let g and h be zero mean probability density functions (pdf’s) with variances 2

gσ  and 2
hσ , and let f g h= ∗  

be the convolution of g and h: 

( ) ( ) ( ) ( ) ( )d d .f x g u h x u u g x u h u u
+∞ +∞

−∞ −∞
= − = −∫ ∫                        (9) 

( )f x  is also a zero mean pdf and hence the variance of ( )f x  is 

( )
( )

( ) ( )
2

2 2
2 2 20

1 d 1d 0
d 4π2π

f s
u f u u F s F

si
σ

+∞

=−∞
′′= = =

−−∫                  (10) 

where ( ) ( ){ }F s f x= F  is the 2πi s−  Fourier transform of ( )f x . From the convolution theorem, 
( ) ( ) ( )F s G s H s= , and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 2 0 0 0 0 0 0F G H G H G H G H′′ ′′ ′ ′ ′′ ′′ ′′= + + = +               (11) 

since g and h are zero-mean pdf’s: ( ) ( )d 0 1g u u G= =∫ , ( ) ( )d 0 1h u u H= =∫ , and  

( ) ( )2π d 0 0i u g u u G′= =∫ , ( ) ( )2π d 0 0i uh u u H ′= =∫ . Thus 

2 2 2
f g hσ σ σ= +                                       (12) 

and variances add under convolution. The argument holds even if the means for g and h are non-zero. The 
argument also holds for distributions that are stable or are not-stable under convolution, or for combinations of 
distributions that might not retain shape under the action of convolution. 

The Fourier transforms ( ) ( ),F s G s , and ( )H s  will exist for pdf’s that are continuous or have finite dis- 
continuities [10] p. 9. The derivatives of the transforms might not exist at some values of s owing to higher- 
order discontinuities, but truncation of the pdf will smooth the transform and remove the discontinuities. For  

example, consider ( ) ( )( ){ } ( )22 1 2π expF s x s= + = −F . This distribution in the x domain is a Cauchy  

distribution. The derivatives in the transform domain do not exist at 0s = . However, provided that T < ∞ , 
derivatives at 0s =  exist for the convolution 

( ) ( ) ( )sin π
exp ,

πT
Ts

F s s
s

= ∗ −                              (13) 

which is the Fourier transform of the truncated distribution, 
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( )
( )2
2= rect

1 2π
T

xF s
T x

   ×  
  +  

F                              (14) 

where ( )rect 1x T =  if 1
2x T <  and 0=  for 1

2x T > . 

The convolution of Equation (13) does not appear to have an analytic expression except at 0s = . 
An expression for the convolution, Equation (13), can be written for 0s ≥  as 

( ) ( ) ( )sin π e sin π e
d d ,

π π 

s u u s
s

T s

T u T u
F s u u

u u

− −
∞

−∞
= +∫ ∫                        (15) 

from which the derivatives at 0s =  can, with some effort, be calculated. For T < ∞ , ( ) ( )0 0 0F F′ ′′′= =  and  

( ) ( )arctan π
0 2 2

π
T

F T′′ = −                                     (16) 

( ) ( ) ( ) 3 2
4 arctan π 2 π0 2 2 .

π 3
T TF T= − +                            (17) 

The smoothing power of the convolution of Equation (13) can be observed if the sinc function is replaced by a 
unit area rectangle function with a similar width as the main lobe of the sinc function. Using this approximation 
for the sinc function, the convolution of Equation (13) becomes  

( ) ( ) rect exp
2T

TsF s s = ∗ − 
 

                                  (18) 

( ) ( )
1

1exp d exp d
2

s
T
s

T

T s u u u s u
−

 
= − + − 

 
∫ ∫                        (19) 

and can be evaluated to give  

( ) 2 2 1 1 22exp exp exp exp ,
2T
T sT sT sTF s

T T T T
 + +  +       = − − −        

        
             (20) 

which is, for T < ∞ , a continuous function of s and for which derivatives exist at 0s = . This stands in stark 
contrast to the Fourier transform for the not-truncated function (i.e., for T = ∞ ), which is  

( ) ( ) ( )expF s F s s∞ = = − . 
Figure 1 shows the effect of convolution on the Fourier transform of a Cauchy distribution. The Cauchy dis- 

tribution was truncated as indicated in Equation (14) with T = 100. The scale parameter of the Cauchy distri- 
bution of Equation (14) is ( ) 12π − . The truncation thus removes values that have magnitudes greater than 100π  
times the scale factor. The probability of an observation with magnitude >50 is 0.002, i.e., { }Pr 50 0.002x > = , 
for the distribution of Equation (14). For a normally distributed random variable with mean 0µ =  and 
standard deviation σ , { }Pr 3.09 0.002x σ> = . 

Figure 2 shows similar quantities as Figure 1 but with 10000T = . The probability of an observation with 
magnitude >5000 is 52 10−×  for the Cauchy distribution of Equation (14). In a “normal” world,  

{ } 5Pr 4.26 2 10x σ −> = × . Truncation smooths the characteristic function and keeps moments finite.  
The variance 2

nσ  of an n-fold convolution, 1 2n nf f f f= ∗ ∗ ∗ , is 2
1 i

n
fi σ=∑ . If 1 2 nf f f f= = = = , then 

the variance for the n-fold self-convolution is 2
fn σ× . The pdf for the sum of n-independent draws from the 

same parent distribution that is characterized by a pdf f with variance 2
fσ  is the n-fold self-convolution of the 

parent pdf f and the variance of the sum of the n-independent draws is 2
fn σ× . For a process that is the 

summation of samples that are periodically drawn from a parent population, the variance of the process would 
be proportional to time. 

Following Papoulis [11] p. 292, consider a homogenous and stationary Markov sequence [11] p. 530 0 0y x= , 
1 0 1y y x= + ,  , 1n n ny y x−= + , where the , 0,1, ,ix i n=  , are independent Student’s t increments, i.e., the 
ix  are independent draws from a Student’s t-distribution. The sequence is homogeneous since the pdf’s for 

each ix  are independent of n. The sequence is stationary since it is homogeneous and all ix  have the  
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Figure 1. From top to bottom at 0s = : ( ) ( )expF s s= − , 

( ) ( )exp sinc πs T Ts− ∗ , and ( )exp rect
2 2
T Tss  − ∗  

 
 for T 

= 100.                                                   
 

 

Figure 2. From top to bottom at 0s = : ( ) ( )expF s s= − , 

( ) ( )exp sinc πs T Ts− ∗ , and ( )exp rect
2 2
T Tss  − ∗  

 
 for 

41 10T = × .                                              
 
same pdf. Let sT  be the time between increments. The total time t taken to acquire the sequence ny  is 

snT t= . The mean of ny  is zero and the variance of ny , 2
nyσ , is 
2

2 2
ny

s

tn
T
σσ σ= =                                    (21) 

where 2σ  is the variance of any of the Student’s t increments ix . Allow n →∞ , which requires 0sT → . 
The variance will remain finite and non-zero only if 2 2

s oTσ σ→  as 0sT → , where 2
oσ  is a constant. Thus 

2 2
o sTσ σ=  varies linearly with sampling period sT  and the variance of the sequence 2 2

ny o tσ σ=  varies 
linearly with time t. 

The linear dependence on time of the variance of the Markov sequence ny  arises not because of Gaussian 
properties, but because of the assumed independence of samples. The variance of a summation of independent 
samples is the sum of the variance of each sample, and thus the variance will increase linearly with the number 
of samples. If the samples are obtained by periodic sampling, then the variance will increase linearly with time. 

Papoulis [11] p. 292 writes that the limit as n →∞ , which requires 0sT → , results in a Wiener-Lévy 
process, which is a stochastic process that is continuous for almost all outcomes. Papoulis then shows y∞  is a 
normally distributed random variable. Papoulis assumed n samples were drawn from a binomial distribution  

with 1
2p =  and appealed to the DeMoivre-Laplace theorem to obtain a normal distribution in the limit that  
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( )1 1np p−   [11], p. 66. 
Not all functions tend to a normal pdf under repeated convolution [10], p. 186. A Cauchy distribution is 

probably the most noted distribution that does not follow the central limit theorem. Not all Student’s t-distri- 
butions tend to a normal distribution. According to Bracewell [10], p. 190, only functions with finite area, finite 
mean, and finite second moments will tend to normal distributions under repeated convolution. For convolution 
of non-identical functions, Lyapunov’s condition on the ratio of absolute moments to power of the variance must 
be satisfied. 

The dependence on time of the variance for the Markov sequence ny  can be obtained in a slightly different 
manner than the approach of Papoulis [11] and in a manner that does not specify the underlying pdf’s. Following 
Shreve [12], p. 98, the expectation of the quadratic variation can be calculated  

{ } ( ) { }2 2 2 2
1 1

1 1
E E E

n n
n

i i i o s oi
i i

Q y y x T tσ σ− =
= =

 = − = = = 
 
∑ ∑ ∑                    (22) 

and the mean-square limit of the variance of the quadratic variation can be used to show convergence. 

The variance of Q is ( ){ } ( )( ){ }2 22 2 4 2 2 2 2
1E E 2n

i o s i o s i o si x T x T x Tσ σ σ
=

− = − +∑ ∑ . The fourth central moment,  

{ } { }( )24 2E Ei ix xα= , is proportional to the variance squared for a Student’s t-distribution (see below) and there-  

fore α  is a constant. The variance of Q is then ( ) 2 21 o sn Tα σ− , which tends to zero linearly with sT  as 
0sT → . Thus in a mean-square sense, the expectation of the quadratic variation is 2

o tσ , i.e., { } 2E oQ tσ= . The 
variance of the stochastic process increases linearly with time t. For Gaussian increments, 3α = . For Student’s 
t increments, α  is a simple function of the shape parameter ν , the scale parameter β , and the degree and 
form of truncation of the underlying pdf. 

As the moments and continuity of a stochastic process are of interest, these topics are covered in the following 
sections. In the following, it is assumed on the strength of the arguments in this section and owing to the 
assumption of independent increments, that the scale factor β  varies as t . The scale factor for a normal 
distribution is σ β= , the standard deviation. For Brownian motion, y y∞=  is a normally distributed random 
variable and y o tσ σ= . For Brownian motion the increments are independent, Gaussian random variables. 

2.1. Moments for Student’s t-Distributions With Support   ,−∞ +∞  
The thn  central moment for a Student’s t-distribution with support [ ],−∞ ∞  is given by 

( ) ( ), ; , d .n
n fµ ν β ξ ξ ν β ξ

∞

−∞
= ∫ t                                   (23) 

Closed form expressions for the second, fourth, and sixth central moment are given, along with the values of 
ν  for which the expressions are valid. 

The second central moment ( )2 ,µ ν β , which is the variance 2σ , is proportional to 2β  and is valid for 
2ν > :  

( ) ( )
2

2 , , 2.
2

νµ ν β β ν
ν

= × >
−

                                  (24) 

The fourth central moment ( )4 ,µ ν β  is proportional to 4β  and is valid for 4ν > : 

( ) ( ) ( )
2

4
4

3, , 4.
4 2
νµ ν β β ν

ν ν
= × >

− −
                             (25) 

The sixth central moment ( )6 ,µ ν β  is proportional to 6β  and is valid for 6ν > : 

( ) ( ) ( ) ( )
3

6
6

15, , 6.
6 4 2

νµ ν β β ν
ν ν ν

= × >
− − −

                        (26) 

Not all central moments exist when the region of support for the t-distribution is [ ],−∞ +∞ . 
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2.2. Moments for Truncated Student’s t-Distributions With Support   ,b b− β β  
Truncation of Student’s t-distributions keeps the moments finite and defined [6] [7]. As an example, consider a 
Student’s t-distribution with one degree of freedom, = 1ν , (i.e., a Cauchy or Lorentzian distribution) with 
support [ ],b bβ β− +  where β < ∞  is a scale parameter and b is a number. Provided that b < ∞ , central 
moments for the truncated Cauchy (and for all other truncated Student’s t-distributions with 1ν ≥ ) exist. 

The integrals that define the truncated central moment for the = 1ν  Student’s t-distribution are  

( ) ( )

12

2
1

11, ,  1 d
π

nb
n b

b
Z b

β

β

ξ ξµ ν β ξ
β β

−

−

 
= = + 

 
∫                       (27) 

( ) ( )12

1 2

arctan1with   1 d 2 .
π π

b

b

b
Z b

β

β

ξ ξ
β β

−

−

 
= + = 

 
∫                   (28) 

Closed form expressions for the central moments for a truncated 1ν =  distribution are given. As might be 
expected, ( )1, ,n bµ ν β=  with 2, 4,n =   is proportional to nβ  with a constant of proportionality that is a 
function of b and n. 

For truncated 1ν =  Student’s t-distributions, the second central moment ( )2 1, ,bµ ν β=  is  

( ) ( )( )
( )

2
2

arctan
1, , ,

arctan
b b

b
b

µ ν β β
−

= = ×                            (29) 

the fourth central moment ( )4 1, ,bµ ν β=  is 

( )
( )( )
( )

3
4

4

3arctan 3
1, , ,

3arctan

b b b
b

b
µ ν β β

+ −
= = ×                        (30) 

and the sixth central moment ( )6 1, ,bµ ν β=  is  

( )
( )( )

( )

5 3
6

6

3 5 15arctan 15
1, , .

15arctan

b b b b
b

b
µ ν β β

− − +
= = ×                 (31) 

All of these moments are defined with the single restriction that b < ∞  (i.e., that the 1ν =  distribution is 
truncated). Since the tails of distributions for 1ν >  decrease more rapidly than for a 1ν =  distribution, the 
central moments can be evaluated for all truncated Student’s t-distributions with 1ν ≥ . In this sense, the 
Cauchy distribution is a worst case. 

3. Continuous Sample Paths 
For a Markov process, the sample paths are continuous functions of t, if for any 0> ,  

( )
0

1lim , | , d 0
x zt

p t t z t
t − >∆ →

+ ∆ =
∆ ∫ x x


                           (32) 

uniformly in ,z t , and t∆  [13], p. 46. ( ), | ,p t t z t+ ∆x  is the pdf for the process and t is time.  
The condition for continuous sample paths, Equation (32), can be written in different forms. For independent, 

zero mean ( 0z = ), symmetric pdf’s  

( )( )0

1lim 1 , | 0, d 0
t

p t t z t
t −∆ →

− + ∆ = =
∆ ∫ x x




                       (33) 

or equivalently, since { }1 2 1 2Pr 0t t t t− < ≤ − ∧ < ≤ =x x  for 2 1 0t t> > , 

( )
0

1lim , | 0, d 0.
t

p t t z t
t

∞

∆ →
+ ∆ = =

∆ ∫ x x


                          (34) 

Both forms will be used. 
A stochastic process that is created as the sums of independent draws from a normal distribution (i.e., 

Gaussian increments) with variance 1t S∆ =  and mean z has continuous sample paths. For simplicity in no- 
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tation, assume that 0z = . For this process with pdf given by  

( ) ( )( )21, | 0, exp 2 ,
2π

p t t z t x t
t

+ ∆ = = − ∆
∆

x                       (35) 

the limit 

( )( )2

0

1 1lim 1 exp 2 d
2πt

x t x
t t−∆ →

 
− − ∆  ∆ ∆ 
∫



                          (36) 

( )2lim 1 exp 2 d
2πS

SS Sx x
−→∞

 
= − −  

 
∫



                            (37) 

( )( )lim 1 erf 2 0
S

S S
→∞

= − =                                    (38) 

equals zero and the sample paths are continuous. 
An expansion of Equation (38) about S = ∞  shows that the dominant term goes as ( )2expS S−  : 

( )2
2 4 2

2 1 3lim exp 2 1 0
πS

S
S

S S→∞

 
− − + = 

 


 
                        (39) 

and thus the limiting value as S →∞  is zero. 
For samples paths that are created as the sums of independent draws from a Student’s t-distribution with 

1ν =  (i.e., 1ν =  Student’s t increments), which is a Cauchy distribution, the pdf 

( ) ( )2
, | 0,

π
tp t t z t

x t
∆

+ ∆ = =
+ ∆

x                             (40) 

does not have continuous sample paths. The limit 

( )( )20

1lim 1 d
πt

t x
t x z t−∆ →

 
∆ − ∆ − + ∆ 

 
∫



                           (41) 

( )2lim 1 arctan
πS

S S
→∞

 = − 
 

                               (42) 

does not equal zero. An expansion of ( )( )1 2arctan πS S−   about S = ∞  

2 4 2
2 1 11
π 3 5
S

S S
 − + 
   

                                   (43) 

shows that the dominant term is S   and thus the limit is infinity as S →∞ . 
Sample paths for both normal distributions and 1ν =  Student’s t-distributions (Cauchy) have 

( ) ( )
0

lim , | ,
t

p t t z t x zδ
∆ →

+ ∆ = −x                             (44) 

as required for consistency [13], p. 47.  
For a process with 2ν =  Student’s t-distribution increments, the sample paths are continuous if the limit  

( )

3
2 2

0

1 2lim 1 1 d
24t

x x
t tt

−

−∆ →

 
  − +   ∆ ∆∆   

 
∫



                        (45) 

3
2 22

lim 1 1 d
4 2S

S S xS x
−

−→∞

 
  = − +    

 
∫



                        (46) 



D. T. Cassidy 
 

 
164 

( )
( )

2

3 2 22

2 2 1lim 1 2
2 4S

S S
S

S ε→∞

 + = − =  + 

 


                         (47) 

is zero. Since the limit is not zero, a process with 2ν =  Student’s t-distribution increments does not have con- 
tinuous paths. 

For a process with 3ν =  Student’s t-distribution increments, the sample paths are continuous if the limit 

( )

22

0

1 2lim 1 1 d
3π 3t

x x
t tt

−

−∆ →

   − +   ∆ ∆∆   
∫



                                        (48) 

222lim 1 1 d
3π 3S

S S xS x
−

−→∞

   = − +    
∫



                                         (49) 

( ) ( )
( )

2

2

arctan 3 3 3 3arctan 3 3
lim 1 2 .

π 3S

S S S S
S

S→∞

 + +
 = −
 +
 

   


                   (50) 

is zero. 
An expansion about S = ∞  shows that the dominant term for the condition for continuous sample paths for 

a 3ν =  Student’s t-distribution, Equation (50), is 1 S  as S →∞ : 

( )5 2
5 3 23

4 3 72 3lim 0.
5ππS

O S
SS

−

→∞
− + =


                            (51) 

Processes with Student’s t-distributions increments with 3ν ≥  have continuous paths since the limit as 
0S →∞ = . However, the fourth moments for Student’s t-distributions with 4ν ≤  do not exist. Thus it would 

not be possible to use the mean-square variance of the quadratic variation to prove convergence of the ex- 
pecation of the quadratic variation { }E Q  to 2

o tσ . See Equation (22) and associated discussion. The moments 
exist for truncated and effectively truncated Student’s t-distributions.1 

3.1. Sample Paths: Truncated Cauchy 

Consider a truncated Cauchy with support [ ],b bβ β− , or ,b S b S −   with 21S β= . 

The variance for a truncated Cauchy with support [ ],b bβ β−  is given by Equation (29) since the mean is 
zero and truncation keeps the integral finite. The truncation need not be severe to obtain useful results; the 
variance diverges linearly with b. 

The condition for continuity is that the limit 

( ) ( )2

πlim1 rect d
2arctan 2π 1S

S x S x
b bS x−→∞

 
−   +  

∫



                         (52) 

( )( )
( )

arctan min ,
lim1

arctanS

S b

b→∞
= −


                                    (53) 

equals zero for any 0> . The rectangle function, ( )rect 1x =  if 1
2x <  and 0=  otherwise, has been used 

to truncate the distribution. 
If S b≥ , then the limit is zero and a process with truncated Cauchy increments should have a continuous 

path. However, it is not clear that the limit is zero for any 0> . The limit is zero when all the area of the pdf is 

 

 

1A reader might wonder why truncate a distribution. It is convenient but not physical to assume support is [ ],−∞ +∞ . Consider emission 
from a Lorentzian lineshape. Energy is conserved and the energy of the quantum of radiation must be positive. Infinite energy is not realistic  
Returns for the market are randomly distributed. Returns of 100%< −  are nonsensical. Wealth is limited, implying an upper limit for re-
turns. 
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enclosed by   for any 0> . In fact, the limit is zero only for   equal to “infinity”, since the maximum 
value (i.e., “infinity”) allowed is b S . Support for the truncated Cauchy distribution was taken as  

,b S b S −  . The support was chosen to scale with the scale factor of the distribution so that the distri- 
bution was truncated to include the same fraction of the area of the not-truncated distribution, regardless of the 
choice of the scale factor 1 S . That is, the truncation was chosen such that the value of ( )1Z b , which is 
defined by Equation (28), is independent of the scale factor. 

3.2. Sample Paths: Effectively Truncated ν = 1 Distribution 
The pdf for a mixture of a left-truncated chi distribution for 1ν = , 1a σ= , a q> , and a normal distribution 
is [6], [7] 

( )
( )( )

( ) ( )( )
2 2 2

2 2

exp 2
; 1, , .

π 1 erf 2
E

q
f q

q

β ξ β
ξ ν β

ξ β β

− +
= =

+ −
                        (54) 

The tails of the pdf decrease as ( )2 2exp 2q ξ−  for non-zero q, where 1 q  is the maximum value of σ  
that is included in the mixing integral. 

The condition for continuous sample paths for ( ); 1, ,Ef qξ ν β=  can be written in several equivalent forms: 

( )( )2 20

1lim 1 ; 1, , d 0,Ef q
β

ξ ν β ξ
β −→

− = =∫



                            (55) 

which, owing to symmetry in ξ , is equivalent to 

( )
2 20

1lim ; 1, , d 0.Ef q
β

ξ ν β ξ
β

∞

→
= =∫                                 (56) 

The equation can be written as 

( )lim ; 1, 1 , d 0.ES
S f S qξ ν β ξ

∞

→∞
= = =∫                            (57) 

Consider the inequality 

( ) ( )( )
( )( ) ( )( )

2 2

22

exp 1 2
; 1, 1 , .

0 π 1 erf 2
E

S q S S
f S q

S q S

ξ
ξ ν β

ξ

− +
= = <

+ −
                 (58) 

An analytic expression for the integral of the upper bound of the inequality can be found. The dominant term 
in a series expansion for 

( )( )
( )( ) ( )( )

2 2

22

exp 1 2
d

0 π 1 erf 2

S q S S
S

S q S

ξ
ξ

ξ

∞ − +
×

+ −
∫                           (59) 

about S = ∞  with oq q S= , where oq  is a positive number, is  

( )( )
( )( )

2 2

2 3

exp 1 2

π 1 erf 2

o

o o

q S

q q

− +

−




                                   (60) 

and the limit  

( )( )
( )( )

2 2

2 3

exp 1 2
lim 0

π 1 erf 2

o

S
o o

q S

q q→∞

− +
=

−




                                 (61) 

for 0> . The scaling oq q S=  ensures that the truncation scales appropriately with S and thus keeps 
constant the area in the tails of the pdf that has been truncated. 

Since probability is 0≥ , i.e., ( ); 1, 1 , 0f S qξ ν β= = ≥ , and the limit as S →∞  of the integral of the 
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upper bound times S is zero, then 

( )lim ; 1, 1 , d 0E oS
S f S q q Sξ ν β ξ

∞

→∞
= = = =∫                          (62) 

and the sample paths for stochastic processes that are created by summing independent draws from effectively 
truncated 1ν =  Student’s t-distributions (i.e., effectively truncated Cauchy distributions) are continuous. The 
same reasoning can be applied to all effectively truncated Student’s t-distributions with 1ν ≥  and thus all 
stochastic processes created by summing independent draws from effectively truncated Student’s t-distributions 
have continuous sample paths. 

Figure 3 is composed of random walks wherein the increments for the walks were obtained from a uniform 
distribution, a normal distribution, and 1ν =  distributions. All walks were manufactured from the same se- 
quence of 2048 draws from a uniform distribution. This allows comparison of the walks and demonstrates the 
moderating influence of truncation and effective truncation on the walks. The parameter b was arbitrarily chosen 
to equal 50 and q = 0.025 was chosen to match approximately quadratic variation for the walks for the truncated 
and effectively truncated 1ν =  distributions. The walks with truncated and effectively truncated 1ν =  
increments are more angular than the walk with normal increments. The 1ν =  walk shows the occasional large 
jump. The magnitudes of the jumps are significantly smaller in the truncated and effectively truncated 1ν =  
walks. Note that the 1ν =  increments were scaled for presentation of the walks in the figure. See Table 1 and  
 

 
Figure 3. Random walks for draws from a uniform distribution (red), a normal distribution 
(black), a 1ν =  distribution (blue), a truncated 1ν =  distribution (cyan), and an effec- 
tively truncated 1ν =  distribution (magenta) for 1β = , 50b = , and 0.025q = . All ran- 
dom walks were derived from the same uniform distribution. To display the data, the incre- 
ments drawn from the 1ν =  distribution were divided by 50 and the increments drawn 
from the truncated and effectively truncated 1ν =  distributions were divided by 3.                

 
Table 1. Descriptive statistics for 2048 draws from distributions with 1, 0.025,qβ = =  and 50b = .                         

Distribution Mean Std Dev Skewness Kurtosis Q iQ  

Uniform −0.5 −0.008 0.292 0.058 1.80 174.7 0.085 

Normal −0.025 1.023 0.008 2.96 2,142 1.046 

( )1f ν =  0.346 63.47 30.06 1231 8,245,552 4,026 

( )1Tf ν =  −0.143 5.849 −0.903 24.33 70,068 34.21 

( )1Ef ν =  −0.134 5.823 −0.318 41.98 69,440 33.91 

( )3f ν =  −0.039 1.731 0.328 20.16 6,136 2.996 

( )3Tf ν =  −0.040 1.727 0.282 19.35 6,107 2.982 

( )3Ef ν =  −0.039 1.727 0.288 19.45 6,109 2.983 
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Table 2 for sample and parent statistics of the distributions used to generate the figures. For a Cauchy distri- 
bution with 1β = , { }Pr 50 0.0127> =ξ . For a normal distribution, { }Pr 2.492 0.0127σ> =ξ . 

Figure 4 displays the pdf’s on a 10 2log log−  plot. This figure clearly shows that there is little difference be- 
tween the truncated and effectively truncated 1ν =  pdf for x b<  where b is the point of truncation. The tail 
of the truncated distribution falls off infinitely fast whereas the tails of the effectively truncated distribution fall 
off at the same rate as a Gaussian pdf. Since the random walk with Gaussian increments has continuous sample 
paths, one would expect an effectively truncated 1ν =  distribution to have continuous sample paths as the roll- 
off of the tails is similar. And since the tails of the truncated 1ν =  distribution roll-off faster than a Gaussian, 
one would expect a truncated 1ν =  walk to have continuous sample paths. The tails of the Cauchy distribution 
(i.e., a not truncated 1ν =  Student’s t-distribution) do not roll off as fast as a Gaussian. A Cauchy random 
walk does not have continuous samples paths. Large steps in the Cauchy random walk are obvious in Figure 3. 

There is little difference in shape between a truncated Student’s t-distribution and an effectively truncated 
Student’s t-distribution. From taking limits of the pdf, continuous sample paths were found for the effectively 
truncated 1ν =  distribution, yet a truncated 1ν =  distribution did not appear to have continuous sample 
paths (c.f. Equation (53) and related discussion). This discrepancy would seem to point to a problem with the 
con- dition for continuous sample paths or the interpretation of the condition for continuous sample paths. 
 
Table 2. Parent statistics for distributions with 1, 0.025qβ = = , and 50b = .                                            

Distribution Mean Std Dev Skewness Kurtosis Q iQ  

Uniform −0.5 0 0.289 0 1.80 171 0.083 

Normal 0 1 0 3 2,048 1 

( )1f ν =  0† - 0† - - - 

( )1Tf ν =  0 5.589 0 27.50 63,982 31.24 

( )1Ef ν =  0 5.617 0 52.28 64,624 31.55 

( )3f ν =  0 3 1.732=  0† - 6,144 3 

( )3Tf ν =  0 1.693 0 37.04 5,873 2.868 

( )3Ef ν =  0 1.702 0 56.14 5,932 2.896 

 

 
Figure 4. Plots of a normal distribution (black), a 1ν =  distri- 
bution (red), a truncated 1ν =  distribution (cyan), and an effec- 
tively truncated 1ν =  distribution (blue) for 1β = , b = 50, and q 
= 0.025. Note the scaling on the axes: the ordinate is 10log  and 
the abscissa is 2log .                                           
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3.3. Sample Paths: Effectively Truncated ν = 3 Student’s t-Distribution 
The pdf for a mixture of a left-truncated chi distribution for 3ν = , 1a σ= , a q> , and a normal distribution 
is [6] [7] 

( )
( ) ( )( )

( ) ( ) ( )( )
3 2 2 2 2 2 2 2

22 2 2 2

3 3 3 2 exp 3 2
; 1, , .

π 3 π 6 exp 3 3 πerf 6 2
E

q q q
f q

q q q

β ξ β ξ β
ξ ν β

ξ β β β β

+ + − +
= =

+ + − −
           (63) 

The left truncation of the chi distribution imparts a multiplicative Gaussian envelope that effectively truncates 
the underlying t distribution. 

Figure 5 displays a normal pdf and 3ν =  pdfs on a 10 2log log−  plot. Note the similarity between the 
3ν =  distribution, the truncated 3ν =  distribution, and the effectively truncated 3ν =  distribution for 

x b<  where 50b =  is the point of truncation. The value of 0.025q =  was chosen to yield approximately 
the same standard deviation for the effectively truncated distribution as was obtained with the truncated distri- 
bution. See Table 1 and Table 2 for sample and parent statistics of the distributions. The effectively truncated 
distribution is just starting to show the same slope in the tail as the normal distribution. This owes to the 

( )2exp x−  characteristic from truncation of the underlying χ  distribution in the χ -normal mixture that 
creates the Student’s distribution. For a 3ν =  t-distribution with { } 5Pr 50 1.76 10−> = ×ξ . For a normal dis- 
tribution, { } 5Pr 4.293 1.76 10σ −> = ×ξ . 

Figure 6 is similar to Figure 3 except increments were drawn from 3ν =  Student’s t-distributions and the 
walks were not scaled. There are five random walks displayed in Figure 6: a walk with uniform increments 
(red), a walk with normal increments (black), and walks with 3ν =  increments (not-truncated, truncated, and 
effectively truncated). The three 3ν =  walks almost perfectly overlap, showing that the walks are almost iden- 
tical, as one might surmise from Figure 5. The normal walk and the 3ν =  sample paths appear to have similar 
features. Figure 7 displays random walks with uniform increments, with Gaussian increments, and with 3ν =  
truncated increments. All walks were created from the same 2048 random draws from a uniform distribution. 
The sample paths for the Gaussian increments are displayed twice; once with a scale factor of 1 and once with a 
scale factor of 1.693. The multiplicative scale factor of 1.693 is the ratio of standard deviations of the increments 
for the parent distributions of the normal and truncated 3ν =  distributions. The scaled plot is presented to 
facilitate comparison of the truncated 3ν =  and normal sample paths. It is clear that the 3ν =  and normal 
sample paths (for the 2048 time steps displayed) are similar. 

All walks shown in Figure 3, Figure 6, and Figure 7 were manufactured from the same sequence of variates 
drawn from a uniform distribution. This allows comparison of the effect of different distributions (uniform, 
 

 
Figure 5. Plots of a 3ν =  distribution (blue), truncated 3ν =  dis- 
tribution (magenta), and effectively truncated 3ν =  distribution (cyan) 
for 1β = , 50b = , and 0.025q = . Note the scaling on the axes: the 
ordinate is 10log  and the abscissa is 2log . For comparison, a normal 
distribution (black) and a 1ν =  (i.e., a Cauchy) distribution (red) are 
also plotted.                                                        
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Figure 6. Random walks for draws from a uniform distribution (red), 
a normal distribution (black), a 3ν =  distribution (blue), a trun- 
cated 3ν =  distribution (cyan), and an effectively truncated 3ν =  
distribution (magenta) for 1β = , 50b = , and 0.025q = . All ran- 
dom walks were derived from the same uniform distribution. The 
increments were not scaled for this figure. Note that the three 3ν =  
walks almost perfectly overlap.                                

 

 
Figure 7. Random walks for draws from a uniform distribution (red), 
a normal distribution (black), a truncated 3ν =  distribution (blue), 
and a scaled normal distribution (black) for 1β = , 50b = , and 

0.025oq = . The increments for the scaled normal distribution were 
multiplied by 1.693 All random walks were derived from the same 
uniform distribution.                                             

 
Gaussian, Cauchy, 1ν =  and 3ν =  distributions) and truncation (both truncation by a rectangle function 

and effective truncation) on the sample paths. 
Table 1 lists descriptive statistics for the draws that were used to create the sample paths shown in Figure 3, 

Figure 6, and Figure 7. Table 2 lists the values found in Table 1, but calculated for the parent distributions. In 
Table 1 and Table 2, Q is the quadratic variation and iQ  is the average quadratic variation per step. There is 
good correspondence between the values obtained for the sample parameters and the parent parameters. In 
Table 2, the †  symbol indicates a value that was obtained by a symmetry argument. 

The data in Table 1 and Table 2, and in Figures 3-6, clearly show the effectiveness of truncation and effec- 
tive truncation. 

4. Conclusions 
Independent Student’s t increments, from which stochastic processes such as random walks are created, are 
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investigated. Attention is restricted to increments from not-truncated, truncated, and effectively truncated 
Student’s t-distributions with shape parameters 1ν ≥ , which covers a broad range of distributions: from 
Cauchy distributions, for which 1ν = , to normal or Gaussian distributions, for which ν = ∞ . A Student’s 
t-distribution can be obtained as a mixture of a chi distribution of the reciprocal of σ  and a normal distribution 
with standard deviation of σ . Effectively truncated t-distributions arise from left-truncation of the chi distri- 
butions in the mixing integrals. An effectively truncated Student’s t-distribution has a Gaussian envelope that 
imparts interesting properties to the effectively truncated Student’s t-distribution. 

Random walks, specifically Markov sequences 0 0y x= , 1 0 1y y x= + ,  , 1n n ny y x−= + , where the 
, 0,1, ,ix i n=   are independent Student’s t increments, are considered. The development in time of the scale 

parameter β  of the Student’s t-distributions (not-truncated, truncated, and effectively truncated t-distributions) 
is investigated. It is found for distributions for which the variance exists that 2 tβ α=  where α  is a constant 
and t is time. The variance exists for truncated and effectively truncated Student’s t-distributions, and for 
Student’s t-distributions with shape parameter 2ν > . The development in time of the scale parameter for 
Student’s t-distributions is consistent with a normal distribution, for which the variance, which equals 2β , in- 
creases linearly with time. A Gaussian (or normal) distribution is stable under convolution; in general, a 
Student’s t-distribution is not stable under convolution. 

The continuity of the sample paths is investigated and it is found that truncated and effectively truncated 
Student’s t-distributions, and that Student’s t-distributions with 3ν ≥ , have continuous sample paths. This 
opens the possibility for modelling with a greater number of distributions. 

Gardiner [13], p. 79 defines a Wiener process ( )tW  as 

( ) ( )
0

d
t

s s t=∫ Wξ                                     (64) 

with the constraints that ( ){ }E 0t =ξ , that ( )tW  is a continuous function of time t, and that ( )tW  is a 
Markov process. The requirement ( ){ }E 0t =ξ  is not restrictive as any non-zero mean value of ( )tξ  can be 
considered to be signal. Gardner explains that one normally assumes that ( )tξ  is Gaussian and that 

( ) ( ){ } ( )E t t t tδ′ ′= −ξ ξ . The assumption of Gaussian statistics follows from a desire to have continuous paths 
for ( )tW . The white noise property of the Wiener process, i.e., ( ) ( ){ }{ } ( ){ }E 1t t t tδ′ ′= − =ξ ξF F , 
follows not from the assumption of Gaussian statistics for ( )tξ  but from the assumption that ( )tW  is a 
Markov process. For a Markov process, ( )tW  is not determined probabilistically by any past values [13], p. 
78 and thus ( )tW  and ( ) ( )t t′ −W W  are independent for all t t′<  and ( ) ( ){ } ( )E t t t tδ′ ′= −ξ ξ . 

A random walk process that is constructed from truncated or effectively truncated Student’s t increments 
( )tξ  with 1ν ≥  is continuous. This process can also be constructed under the Markov assumption that 

( ) ( ){ } ( )E t t t tδ′ ′= −ξ ξ , where for simplicity increments are assumed to be draws from zero mean dis- 
tributions such that ( ){ } ( ){ }E E 0t t′= =ξ ξ . Student’s t-distributions with 3ν ≥  appear also to be continuous, 
without the need for truncation. Thus it appears that there exists more than independent Gaussian increments for 
construction of random walks with continuous sample paths. Given continuous sample paths and second mo- 
ments that depend linearly on time for random walks with independent, not-truncated, truncated, and effectively 
truncated Student’s t-increments, it seems reasonable to speculate that the diffusion coefficients [13] [14], p. 79, 
p. 133  

( ) ( ) ( )( )
( )

2

0

1 1, lim
!n t

t

D t t t t
n t ξ

ξ
∆ →

=

= + ∆ −
∆ ξ

ξ ξ                         (65) 

exist and thus it should be possible to model noise in Langevin equations with appropriate t-distributions. 
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