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Abstract 
Following a six-step flow chart, exponentially-fitted variant of the 2-step Simpson’s method suita-
ble for solving ordinary differential equations with periodic/oscillatory behaviour is constructed. 
The qualitative properties of the constructed methods are also investigated. Numerical experi-
ments on standard problems confirming the theoretical expectations regarding the constructed 
methods compared with other existing standard methods are also presented. Our results unify 
and improve the existing classical 2-step Simpson’s method. 
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1. Introduction 
In this paper, we consider the first-order initial value problem of the form  

( ) [ ] ( )0 0 0, , , ,u f t u t t T u t η′ = ∈ =                               (1) 

with oscillatory/periodic solution. 
Several classical methods ([1]-[5]) for solving (1) have been derived. However, classical methods may not be 

well-suited for handling problems with pronounced periodic or oscillatory behaviour, because in order to 
accurately achieve this, a very small step size would be required with corresponding decrease in performance, 
especially in terms of efficiency. To overcome this barrier, classical methods have to be adapted in order to 
efficiently approach the oscillatory behaviour. The adaptation (which is called “exponential/trigonometric 
fitting”) is achieved by replacing some of the highest order monomials of the basis with exponentials or 
trigonometric (see [6]-[8]). Numerical algorithms for solving problems whose solution exhibits a pronounced 
periodic or oscillatory behaviour has since the last decade gained a lot of attention. Such problems are often 
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encountered in fields like mechanics, electronic, astrophysics, chemistry and engineering. The idea of using 
exponentially fitted formulae for differential equations was first proposed by Liniger and Willoughby [9]. 
Integration formulae containing free parameters were derived and these parameters were chosen so that a given 
function ( )exp q  where q was real, satisfied the integration formulae exactly. This was tested on linear 
multistep method for 1k = , however Jackson and Kenue [10] derived a fourth order exponentially fitted 
formulae based on a linear 2-step formula and were A-stable. Based on this idea, Cash [11], in his own work, 
attempted using Multiderivative Linear Multistep Method (MLMM) with k = 1 in the second derivative 
formulae. Particular Runge-Kutta (RK) algorithms have been proposed by several authors [12]-[15] in order to 
solve this class of problems. Vanden Berghe et al. [16] [17] on the other hand, introduced other exponentially 
fitted RK (EFRK) methods which integrate exactly first-order systems whose solutions can  
be expressed as linear combinations of functions of the form ( ) ( ){ }exp , expt tλ λ−  or ( ) ( ){ }cos ,sint tω ω . 

Here, we analyze the construction and implementation of the exponentially-fitted variants of the 2-step 
Simpson method for solving problems of the form (1) which possess oscillatory/periodic solution, taking into 
account the six-step flow chart described by Ixaru and Vanden Berghe in [6]. 

The main interest of this work is to modify the classical 2-step Simpson method for adaptation to oscillatory/ 
periodic problems. 

2. Construction of Method  
The classical 2-step Simpson method for solving (1) is given by  

( )1 1 1 14 .
3n n j j j
hu u f f f+ − + −= + + +                               (2) 

To begin the construction of the exponentially-fitted variants of (2), we rewrite (2) in a more general way as  

( )1 0 1 2 1 1 0 1 .n n j j ju u h f f fα β β β+ − + −= + + +                           (3) 

Following the six-step flow chart, the corresponding linear difference operator [ ],h a  reads  

[ ] ( ) ( ) ( ) ( ) ( ) ( )( )0 2 1 0, (h a u t u t h u t h h u t h u t u t hα β β β′ ′ ′= + − − − + + + −  

where ( )0 0 1 2: , , ,a α β β β=  

where ( )0 0 1 2: , , ,a α β β β= . Applying step II of the six-step procedure, the resulting system of equations is 
compatible when 5M = . Solving the resulting system, we have  

0 0 2 1
1 41, ,
3 3

α β β β= = = =                                (4) 

which are the coefficients of the classical method (2). 
Applying step III, we find that  

( ) ( ) ( ) ( ) ( )0 2 0, sinh 1 coshG Z a Z Z Zβ β α+ = − − −                   (5) 

( )
( ) ( )

( ) ( )0
1 2 0

1 sinh
, cosh

Z
G Z a Z

Z

α
β β β−

+
= − + − +                  (6) 

where hz hω ω= =  and 2Z z= , ω  (the frequency of oscillation) is real or imaginary. (For the trigonometric 

case, i.e., ω  is imaginary, choose z h i hω µ= = , i.e. 2 2 2z h Zµ= − = .) 
To implement step IV, consider the reference set of M functions:  

( ) ( ) ( ){ }1, , , , exp , exp , , expK Pt t t t t t tω ω ω± ± ±   

with 2 3K P M+ = − . Since for our method 5M = , we have three possibilities: 
• 4, 1K P= = − , the classical case with the set 2 3 41, , , ,t t t t   
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• 2, 0K P= = , the mixed case with the set ( )21, , , expt t tω±   

• 0, 1K P= = , the mixed case with the set ( ) ( )1,exp , expt t tω ω± ±   
The coefficients of the method for each case are obtained by the implementation of step V as follows: 
S1: ( ) ( ), 4, 1K P = −  In this case, the solution is already known by (4) 

S2: ( ) ( ), 2,0K P =  

( )
( )( )

( ) ( )( )

( )
( )( )

0

2

2

1

0

1,
sinh

,
cosh 1

csch cosh sinh
2 ,

sinh
cosh 1

z z
z z

z z z z

z
z z

z z

α

β

β

β

= 
− =
−

  − 

  = 


− = − 

                             (7) 

S3: ( ) ( ), 0,1K P =  

( )

( ) ( )( )

( )

0

2 2

1 2

0 2

1,
coth 1

,

2 cosh csch
,

coth 1

z z
z

z z z
z

z z
z

α

β

β

β

= 
− =



− 
= 


−

= 


                                 (8) 

As expected, the exponentially fitted variants reduce to the the classical method as 0z → .  

3. Error Analysis: Local Truncation Error (lte) 
The general expression of the leading term of the local truncation error (lte) for an exponentially fitted method 
with respect to the basis functions  

( ) ( ) ( ){ }1, , , , exp , exp , , expK Pt t t t t t tω ω ω± ± ±                           (9) 

takes the form (see [6])  

( ) ( ) ( )( )
( ) ( ) ( )

11 1 1 2 2
11

1 !
PP KEF M K

P

a Z
lte t h D D u t

K Z
ω

∗
++ + +

+= − −
+


                      (10) 

with K, P and M satisfying the condition 2 3K P M+ = − . 
For the three methods constructed above, one finds the following results:   
• S1: ( ) ( ), 4, 1K P = −   

( ) ( ) ( )551
90EFlte t h u t= −                                   (11) 

• S2: ( ) ( ), 2,0K P =   

( ) ( ) ( ) ( ) ( ) ( )( )3 55 2
0 2 0

1 3 3 1
6EFlte t h u t u t

Z
α β β ω= − − + −  

• S3: ( ) ( ), 0,1K P =   

( ) ( ) ( ) ( ) ( ) ( ) ( )( )5 35 2 4
0 2 1 02

1 1 2EFlte t h u t u t u t
Z

α β β β ω ω ′= − − − + − +  
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4. Existence and Uniqueness of Solution  
The following theorem states conditions of ( ),f t u  which guarantee the existence of a unique solution of the 
initial value problem (1) 

Theorem 1. Let ( ),f t u  be defined and continuous for all points ( ),t u  in the region   defined by 

a t b≤ ≤ , u−∞ < < ∞ , a and b finite, and let there exist a constant   such that, for every , ,t u u  such that 

( ),t u  and ( ),t u  are both in  ,  

( ) ( ), ,f t u f t u u u− ≤ −                              (12) 

then if 0η  is any given number, there exists a unique solution ( )u t  to the initial value problem (1), where 

( )u t  is continuous and differentiable for all ( ),t u ∈ . Lambert [3].  
The requirement (12) is known as the Lipschitz Condition, and the constant   is called the Lipschitz 

constant. 
This condition may be thought of as being intermediate between differentiability and continuity, in the sense 

that   
• ( ),f t u  continuously differentiable with respect to u ( ),t u∀ ∈   

• ⇒ ( ),f t u  satisfies a Lipschitz Condition w.r.t. u ( ),t u∀ ∈   

• ⇒ ( ),f t u  continuous w.r.t. u ( ),t u∀ ∈   
In particular, if ( ),f t u  possesses a continuous derivative w.r.t. y for all ( ),t u ∈ , then, by the mean value 

theorem 

( ) ( ) ( ) ( ),
, ,

f t u
f t u f t u u u

u
∂

− = −
∂

   

where u  is a point in the interior of the interval whose end-points are u and u , and ( ),t u  and ( ),t u  are 
both in  . Clearly (12) is satisfied if  

( )

( )
,

,
sup
x u

f x u
u∈

∂
=

∂
                                    (13) 

is chosen.  

5. Contraction Mapping Theorem 
In the sequel, we shall apply the following Contraction Mapping Theorem:  

Theorem 2. (Contraction Mapping Theorem). Consider a set nD ⊂   and a function : ng D →  . 
Assume   

• D is closed (i.e., it contains all limit points of sequences in D)  
• ( )x D g x D∈ ⇒ ∈   
• The mapping g is a contraction on D: There exists 1q <  such that  

( ) ( ), :x y D g x g y q x y∀ ∈ − ≤ −  

Then 
• there exists a unique x D∗ ∈  with ( )g x x∗ ∗=   

• for any ( )0x D∈ , the fixed point iterates given by ( ) ( )( )1 :k kx g x+ =  converges to x∗  as k →∞   

• ( )kx  satisfies the a-priori extimate  

( ) ( ) ( )1 0

1

k
k qx x x x

q
∗− ≤ −

−
 

and the a-posteriori error estimate  
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( ) ( ) ( )1

1
k k kqx x x x

q
−∗− ≤ −

−
 

6. Application of the Contraction Mapping Theorem to LMM  
If h is sufficiently small, implicit LMM methods also have unique solutions given h and 0 1 1, , , ku u u − . To see 
this, let   be the Lipschitz constant for f. Given 1, ,i i ku u + − , the value for i ku +  is obtained by solving the 
equation 

( ),i k k i k i k iu h f t u gβ+ + += +                               (14) 

where  

( ) ( )
1

0
constant

k

i k i j j i j
j

g h f uβ α
−

+ +
=

= −∑                          (15) 

That is, we are looking for a fixed point of  

( ) ( ),k i k iu h f t u gφ β += +                                (16) 

If 1kh β < , then φ  is a contraction:  

( ) ( ) ( ) ( ), ,k i k i k ku u h f t u f t u h u uφ φ β β+ +− ≤ − ≤ −                  (17) 

So by the Contraction Mapping Fixed Point Theorem, φ  has a unique fixed point. Any initial guess 0
i ku +  

yields a convergent fixed point iteration:  

( )1 ,l l
i k k i k i ku h f t uβ+
+ + +=                                  (18) 

7. Convergence and Stability Analysis 
Theorem 3 (Dahlquist Theorem) The necessary and sufficient conditions for a linear multistep method to be 
convergent are that it be consistent and zero-stable  

Dahlquist theorem (3) holds also true for EF-based algorithms but, because their coefficients are no longer 
constants the concepts of consistency and stability have to be adapted. 

Definition 4. An exponentially fitted method associated with the fitting space (9) is said to be of order 
p M r= − , (where r is the order of the differential equation to be solved) and it is consistent if 1p ≥ .  

Since 1M ≥  for all the constructed schemes, the consistency requirement is satisfied. Hence, the constructed 
schemes are all consistent. 

Definition 5. A linear s-step method is said to be weakly stable if there is more than one simple root of the 
polynomial equation ( ) 0ρ ξ =  on the unit circle.  

To investigate the stability of (3), one applies the method to the test problems u uλ′ = . Applying (3) to the 
above test problems, one obtains  

( )
( )

1 0 1 2 1 1 0 1

0 1 2 1 1 0 1

n n n n n

n n n n

u u h u u u

u h u u u

α β λ β λ β λ

α λ β β β
+ − + −

− + −

= + + +

= + + +
                     (19) 

From the above, one finds that  

( ) ( )2 1 1 0 0 11 0, 1, 2,n n nh u hu h u nβ β α β+ −− − − + = =                     (20) 

where h hλ= . The characteristics equation is given by  

( ) ( )2
2 1 0 01 0h h hβ ξ β ξ α β− − − + =                          (21) 

setting 0h =  in (21), gives the reduced characteristic equation as 2 1 0ξ − = . The roots are 1ξ = ±  and 
hence the methods derived are weakly stable. Notice that h  depends on the test equation but Z on the 
numerical method. 
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Definition 6. A region of stability is a region of the q--z plane, throughout which ( ), 1R q z < . Any closed 

curve defined by ( ), 1R q z =  is a stability boundary. Also, any interval ( ),α β  of the real line is said to be 

the interval of stability if the method is stable for all ( ),q α β∈   
For each of the constructed methods, the region of stability is presented in Figure 1. 

8. Numerical Results 
Numerical experiments confirming the theoretical expectations regarding the constructed methods are now 
performed. The constructed methods are applied to two test problems and the result obtained compared with the 
classical fourth-order Taylor method, explicit four stage fourth-order Runge-Kutta method and the classical 
2-step Simpson method. 

8.1. Problem 1 
Consider the IVP: ( ), 0 1u u t u′ − = =  with the exact solution ( ) 2e 1tu t t= − − . Solving the problem using 
different values of steplength h, the the maximum absolute errors for each steplength is obtained as presented in 
Figure 2. As expected, the exponentially-fitted variants (S2:(2,0), S3:(0,1)) of the classical 2-step Simpson 
method performed better compared with the classical methods. 

8.2. Problem 2 
Consider the IVP: ( )e , 1 etu u t uα αα −′ = + − = −  with the exact solution ( ) e tu t t α= . With 1α = , the problem 
is solved using different values of steplength h and the maximum absolute error for each steplength is obtained 
as presented in Figure 3. The constructed exponentially=fitted variants also performed better compared to the 
classical methods. 

 

 
Figure 1. Truncated absolute stability regions of the constructed methods.                                            

 

 
Figure 2. Maximum absolute errors for Problem 1 as a function of the step-size ( )2 , 2 1 8kh k−= = .                          
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Figure 3. Maximum absolute errors for Problem 1 as a function of the step-size ( )2 , 2 1 8kh k−= = , 1α = .                

9. Conclusion 
The exponentially-fitted versions of the classical 2-step Simpson method have been constructed and imple- 
mented in this paper. The stability and convergence properties of the constructed methods were also analysed. 
The results obtained from the numerical examples show that the theoretical expectations are meet (i.e. the expo- 
nentially-fitted variants of the classical 2-step Simpson method are suitable for solving periodic/oscillatory 
problems).  
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