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Abstract 
Residual stresses can reduce the reliability of plastic injection molding parts. This work is an at-
tempt to model the residual stresses as a function of injection molding parameters. More stress is 
placed on reducing the number of input factors and to include all possible interactions. For this 
purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface 
optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the 
input parameters as significant and non-significant factors. Eight input variables were classified 
into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response 
Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only 
needed after the screening stage in half Central Composite Design. The best subset and regression 
model fitting tools in addition to model verification using randomly selected input setting were 
used to select a model for predicting residual stresses with a verified Root Mean Square Error 
(RSME) of nearly 0.93 MPa. 
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1. Introduction 
The plastic injection molding process is a widely used polymer processing operation [1]. Because injection 
molding has many advantages, such as short production cycles, excellent surfaces of the products, and facile 
molding of complicated shapes, so it is the most popular molding process for making thermoplastic parts [2]. 
The plastic injection molding process is a cyclic process which consists of three stages. These stages are filling 
and packing stage, cooling stage and ejection stage [3]. Plastic injection molding is one of the most important 
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methods applied for forming thin-shell plastic products in industry [4]. This is especially suitable for the house 
hold electronic equipment manufacturing processes. The application of computer, communication and consumer 
electronics (3C) products such as portable computer and cell phone, etc. was widely used in the whole world. 
The vigorous development of 3C products has had the trend for products to be light, thin, short and small [5]. 

As the wall thickness of plastic parts becomes thinner, the injection molding operation becomes more difficult. 
Hence, the industry has the demand for techniques of plastic injection molding to produce plastic parts with thin 
wall features [6] [7]. For example, today cell phone dimensions are getting smaller and their appearances are 
getting more esthetic. Besides these properties, users care about phones’ durability. Users do not want that fall-
ing to the ground, taking impact, exposing to force cause damage to the cell phone. The part which is produced 
by using injection molding method does not have the desired strength and resistance to impact, because of the 
residual stress problem encountered those days in the industry. Residual stresses are internal stresses of the 
molded part in the absence of external forces. They are caused mainly by non-uniform temperature profile in the 
cavity during filling, packing, and cooling stages [8]. It is known that the residual stress is produced due to high 
pressure, temperature change, and relaxation of polymer chains, resulting in shrinkage and warpage of the part 
[9]. Internal stresses in injection molding components are a principal cause of shrinkage and warpage, and are 
considered to be responsible for environmental stress cracking in plastic parts [10] [11]. The best way to prevent 
high residual stress problem is to choose the plastic material and injection parameters right. The decrease in the 
thickness of the part also weakens the strength of the part; however, increasing thickness of plastic parts is not a 
feasible solution as the demand of the cell phone design requires parts to be thin, light and small. This problem 
can be solved by choosing the appropriate material for the durability. But a material may be appropriate for the 
strength may not be appropriate for the application of that part. Thus, one important solution is to minimize re-
sidual stresses by optimizing the process factors of the injection molding process. 

Manufacturing process optimization is of three main parts, experimentation, modeling and searching. Expe-
rimentation may be actual running of the experimentation on the injection molding process or using Finite ele-
ment software’s prior to finalizing the design. The modern computational and simulation tools for injection- 
molding process have matured to a stage where they can provide substantial insight into the process metrics and 
can be profitably utilized to help improve the design of injection-molded components [12]. Computer aided en-
gineering (CAE) has made a major impact on the design and manufacturing process in the injection molding in-
dustry in terms of both quality improvement and cost reduction based on applications of various computer si-
mulation techniques [13]. In the past, the optimization of the process parameters was considered to be a “black 
art”, which relied heavily on the experience and knowledge of experts and required a trial-and-error process [14]. 
Currently, Design of experiments (DOE) is grabbing much attention within the perspective of manufacturing 
process optimization. DOE has been a very useful tool to design and analyze complicated industrial design 
problems. It helps us to understand process characteristics and to investigate how inputs affect responses based 
on statistical backgrounds. In addition, it has been used to systematically determine the optimal process parame-
ters with fewer testing trials [15]. A widely DOE methodology is Taguchi Experimental Design (DOE), which 
various industries have used over the years to improve products or manufacturing processes. It is a powerful and 
effective method to solve challenging quality problems [16]. Taguchi analysis is a useful methodology for opti-
mizing process that does not include interaction factors. One main reason for using Taguchi experimentation is 
the low number of experiments which excludes interactions, and this scatters some shadows on the accuracy of 
the regression model built using this experimentation type. Thus, it can improve some processes but may not 
give the optimal. A more comprehensive approach is Response Surface which includes all interaction effects but 
requires heavy experimentation and data collection. The regression models that can be further used for optimiza-
tion are more accurate in the Response Surface experimental design. But, Response Surface has extensive expe-
rimentation and cost which places some restrictions on the use of this important technique. 

A recent published article [17], where the authors developed, for the first time, a new framework to analyze 
and optimize different manufacturing process setting of plastic injection modeling to minimize different defects 
via a multi-objective multi-criteria process through using integrated Analytical Hierarchy Process (AHP) wish 
Taguchi DOE. 

This work suggests an intermediate approach that uses both advantages of two main experimentation types 
whereby, Taguchi Experimental Design (TED) is used for significant factor determination and Response Surface 
is used for modeling the process residual stresses. This study introduces an innovative method to model the re-
sidual stresses based on injection molding process settings; namely filling time, melt temperature, mold temper-
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ature, switch to pack (%), pressure holding time, holding pressure magnitude, cooling time, and cooling inlet 
temperature. This method firstly, uses experiment runs based on Taguchi Orthogonal Array (OA) with only 
main effects of the input variables included. Secondly, the input parameters are classified using Analysis Of Va-
riance (ANOVA) into significant and non-significant factors. Thirdly, Response Surface design of experiment is 
conducted using only significant factors identified in the previous step. Fourthly, regression models is developed 
based on data generated from the Response Surface design of experiment and then validation tests are conducted 
to choose the best regression model based on the minimum Root Mean Square Error (RSME). 

This paper successfully applies multi-stage experimentation, namely, Taguchi and central composite design to 
model and optimize the residual stress. The residual stress is extremely important as it reduces the reliability of 
parts in case of tension or improves it in case of compression. The number of experiments and thus time to de-
sign and time to customer can be reduced appreciably by this technique.  

2. Research Methods 
2.1. Taguchi Method and Signal to Noise S/N Ratio 
Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics 
through the setting of design parameters. Taguchi method is also strong tool for the design of high quality sys-
tems. To optimize designs for quality, performance, and cost, Taguchi method presents a systematic approach 
that is simple and effective [18]. The Taguchi method consists of three stages which are system, parameters, and 
tolerance designs, respectively. The system design involves the application of scientific and engineering know-
ledge required in manufacturing of a product. The parameter design is employed to find optimal process values 
for improving of the quality characteristics. 

The tolerance design is used for determining and analyzing of the tolerances in optimal settings recommended 
by the parameter design [19]. Taguchi recommends the use of the S/N ratio for determination of the quality cha-
racteristics implemented in engineering design problems. The S/N ratio characteristics with signed-target type 
can be divided into three stages: the smaller is the better, the nominal is the best, and the larger is the better [20]. 
The quality characteristics are evaluated through the S/N ratio obtained in the Taguchi experimental plan. 
ANOVA then can be used to evaluate the experimental errors and test of significance to understand the effect of 
various factors [21]. 

2.2. Response Surface Methodology 
Response surface methodology is an integration of mathematical and statistical techniques for modeling and op-
timizing the response variable models involving several quantitative independent variables. It is well adapted to 
making an analytical model for complicated problems. In industry, RSM is a very useful tool for quality and 
productivity improvement, in which often we wish to discover functional relationships between the response and 
independent variables. Upon determining the relationship, we can easily resolve practical quality and productiv-
ity problems by using appropriate statistical techniques [22]. In general, for predicting the optimal point, a 
second-order polynomial function was popularly used and fitted to correlate the relationship between indepen-
dent variables (Xi) and response (Y). The quadratic response surface is always described as follows. 

2

1 1

n n
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= + + +∑ ∑ ∑∑                           (1) 

where n is the number of design variables, and bo, bi, bii, and bij represent the coefficients of constant, linear, 
quadratic, and cross product terms, respectively. To build the empirical response models, the necessary data are 
generally collected by the design of experiments, followed by the statistical single or multiple regression tech-
nique. The more popular statistical approach such as analysis of variance (ANOVA) is adopted to justify the 
significance of the empirical model [23]. 

2.3. Regression Model Development 
The purpose of multidimensional analysis of regression is to determine the quantitative relations between the 
investigated values and the variables, which directly influence them to assess the results of their activity and to 
predict the behavior of the investigated variables [24]. Regression analysis is also one of the most widely used 
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statistical tools because it provides simple methods for establishing functional relationship among variables. It 
can be employed to develop a suitable model for predicting dependent variables from a set of independent va-
riables [25]. 

3. Methodology 
Figure 1 shows the proposed scheme in our study. In phase 1 (planning) Taguchi experimental plan was first 
conducted using reduced number of experiments, time and cost based on orthogonal arrays to determine the 
most significant factors. In phase 2, a Response Surface Methodology (RSM) Central Composite design is con-
ducted based on the identified significant factors in phase 1. In Phase 3 (modeling quality characteristic) data 
obtained from Response Surface experiments are used to develop 3 regression models then validation tests are 
conducted to choose the best model yielding minimum Root Mean Square Error (RSME). 

4. Case Study  
4.1. Part Geometry and Finite Element Model 
Finite Element (FE) analysis of the cell phone cover part is performed using SimpoeMesh [26]. Geometry of the 
part employed in this current study having width, length, height and thickness of 83, 145, 17 and 2 mm respec-
tively was shown in Figures 2(a)-(c). FE model of the part is created by discrediting the geometry into smaller 
simple elements. The FE model shown in Figure 2(d) includes 6884 tetrahedron elements having average aspect 
ratio of 3.2068. The FE analyses were performed using Simpoe-Mold software. 

4.2. Mold and Material Description 
The study analysis is conducted for ABS + PC (P) SABIC/Cycoloy CY6110 material; its properties are given in 
Table 1. Water is used as the cooling fluid, steel 420SS as mold material. The gate location is shown Figure 3(a) 
having 2 mm diameter. The cooling channels are shown in Figure 3(b) and cooling channels properties are giv-
en in Table 2. 

4.3. Phase 1: Screening Stage Design and Analysis 
4.3.1. Taguchi Screening Experiments Experimental Design 
Taguchi Method was developed for saving time, cost and effort. Minitab 15 software was used for statistical 
calculations [27]. The factor levels for the eight included variables are given in Table 3. The levels for each 
factor are set based on literature, materials data sheets, and experience. Tests were organized using Taguchi’s 
L27 (3^8) orthogonal array (Table 4 columns 2 - 9). This orthogonal array is efficient for screening purpose. It 
can give the significance of the different input variables with minimum number of experiments. Table 4-column 
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and their levels

Phase 1:TED

ANOVA; 
Determination of most 

significant factors

S/N 
analysis
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Figure 1. The proposed methodology. 
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(a) 

 
(b) 

   
(c)                                                      (d) 

Figure 2. (a) and (b) CAD drawings of the part, (c) general view and (d) finite element model. 
 
Table 1. Material properties of ABS + PC. 

Material property Performance 

Material structure Amorphous 

Elastic module (MPa) 2822 

Poisson ratio 0.40 

Max shear stress (MPa) 0.50 

Max shear rate (s) 50000 

Ejection temperature (C) 95 

17

83

145
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(a)                                                      (b) 

Figure 3. (a) Gate location, (b) cooling channels configuration. 
 
Table 2. Selected cooling channel parameters. 

Property Unit Value, name 

Number of channels - 10 

Distance between cooling channels and the part mm 12 

Distance between cooling channels center mm 24 

Type of channels - Longitude. 

 
Table 3. The process parameters and their levels. 

Process factor Level 1 Level 2 Level 3 Unit 

Filling time (A) 1 2.5 4.0 s 

Melting temperature (B) 250 275 300 ˚C 

Mold temperature (C) 60 72.5 85 ˚C 

Switch to pack % (D) 50 75 100 % 

Pressure holding time (E) 2 6 10 s 

Cooling time (F) 6 9 12 s 

Holding pressure magnitude (G) 60 80 100 MPa 

Cooling inlet temperature (H) 10 15 20 ˚C 

 
10 shows the experimental results obtained from Simpoe-Mold [28]. The test results were evaluated in terms of 
S/N ratio (Table 4 column 11). The S/N ratio was calculated by smaller the better quality characteristic for de-
termining the effect of each factor on the selected injection molding quality characteristic according to the equa-
tion [29]: 

2

1
/ 10 log( )

n

i
i

S N y
=

= − ∑                                  (2) 

where iy is the measured property and n corresponds to the number of samples in each test trial. 

4.3.2. Screening Stage Factor Analysis 
Figure 4 shows the factors plot curves using MINITAB. It is clear that factors A, D, E, F, and G are of the 
highest effect on the residual stresses and the other factors have slight effect within the specified range of the 
experimentation. 

According to Figure 4 the optimal value for the residual stresses can be obtained using the combination of A  

Gate
location
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Table 4. The Taguchi L27 orthogonal array, experimental results, and S/N ratio. 

Exp. No. A B C D E F G H Residual stresses (MPa) S/N ratio 

1 1 1 1 1 1 1 1 1 20.4127 −26.198 

2 1 1 1 1 2 2 2 2 17.6756 −24.9475 

3 1 1 1 1 3 3 3 3 21.566 −26.6754 

4 1 2 2 2 1 1 1 2 23.0203 −27.2422 

5 1 2 2 2 2 2 2 3 20.4502 −26.214 

6 1 2 2 2 3 3 3 1 24.4753 −27.7746 

7 1 3 3 3 1 1 1 3 24.2603 −27.6979 

8 1 3 3 3 2 2 2 1 23.3738 −27.3746 

9 1 3 3 3 3 3 3 2 25.9399 −28.2794 

10 2 1 2 3 1 2 3 1 23.5955 −27.4566 

11 2 1 2 3 2 3 1 2 16.4261 −24.3107 

12 2 1 2 3 3 1 2 3 27.5606 −28.8058 

13 2 2 3 1 1 2 3 2 23.3139 −27.3523 

14 2 2 3 1 2 3 1 3 15.937 −24.0481 

15 2 2 3 1 3 1 2 1 27.4976 −28.7859 

16 2 3 1 2 1 2 3 3 21.8192 −26.7768 

17 2 3 1 2 2 3 1 1 17.4536 −24.8377 

18 2 3 1 2 3 1 2 2 30.9188 −29.8045 

19 3 1 3 2 1 3 2 1 25.0033 −27.9599 

20 3 1 3 2 2 1 3 2 29.1737 −29.2998 

21 3 1 3 2 3 2 1 3 27.4683 −28.7766 

22 3 2 1 3 1 3 2 2 27.1661 −28.6805 

23 3 2 1 3 2 1 3 3 31.5451 −29.9786 

24 3 2 1 3 3 2 1 1 22.5222 −27.0522 

25 3 3 2 1 1 3 2 3 21.6857 −26.7235 

26 3 3 2 1 2 1 3 1 27.6303 −28.8277 

27 3 3 2 1 3 2 1 2 24.8103 −27.8926 

 

 
Figure 4. Plot of process effects for residual stresses. 
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(Filling time) 1s, B (Melt temperature) 250˚C, C (Mold temperature) 60˚C, D (Switch to pack %) 50%, E (Pres-
sure holding time) 6s, F (Cooling time) 12s, G (Holding pressure magnitude) 60 MPa, and H (Cooling inlet 
temperature) 20˚C, is 13.3111 MPa. 

Table 5 shows the ANOVA significance analysis for the factors. Considering the 5% P-significance level, 
factors A, D, E, F, and G are considered significant and this result coincides perfectly with Figure 4. 

Factors screening requires less experiments and is effective in this sense to identify if the input machine set-
ting is significant enough to be included in further analysis. As, is seen in this work, half of input factors are not 
significant and should not be included in the model building experimental design part. 

4.4. Response Surface Methodology 
As discussed above the RSM is high costly and time consuming. The cost increases exponentially as the number 
of factors increase. Thus, in this work we have included a factor screening phase whereby, we exclude any non- 
significant factors prior to modeling. 

In this study, the approximation of the mathematical model will be proposed using the fitted third-order po-
lynomial regression model, which is called the cubic model. The necessary data for building the response model 
are generally collected by the experimental design [30].  

The significant factors regarding residual stresses for Response Surface experiments are screened from the 
injection process parameters through the Taguchi experiments based on P-value of 0.05 that is 95% confidence 
interval. Filling time, switch to pack percentage, pressure holding time, holding pressure magnitude, and cooling 
time are found to be the significant factors in these screening tests. In this study, the experimental design adopts 
the centered central composite design (CCD) in order to fit the cubic model of the RSM. The factorial portion of 
CCD is a full factorial design with all combinations of the factors at two levels and composed of the eight star 
(axial) points, and six central points in cubes (coded level 0) which is the midpoint between the high and low 
levels. The star points are at the face of the cube portion on the design which corresponds to an alpha (α) value 
of 2.366. This type of design is commonly called the face-centered CCD. 

Table 6 shows the five process factors and their levels. The experimental plans is generated using stipulated 
conditions based on the face centered CCD and involves 56 total runs as shown in Table 7. Table 7 shows the 
experiments layout and results.  

 
Table 5. ANOVA results. 

 DF Seq SS Adj SS Adj MS F P 

A 2 12.3309 12.3309 6.1654 16.18 0.001 

B 2 0.8437 0.8437 0.4219 1.11 0.368 

C 2 1.4884 1.4884 0.7442 1.95 0.192 

D 2 4.4536 4.4536 2.2268 5.85 0.021 

E 2 10.9439 10.9439 5.4719 14.36 0.001 

F 2 17.9833 17.9833 8.9916 14.36 0.000 

G 2 12.6835 12.6835 6.3418 23.6 0.001 

H 2 0.2655 0.2655 0.1327 16.65 0.714 

Residual Error 10 3.8097 3.8097 0.381 0.35  

Total 26 64.8026     

 
Table 6. Process factors and their levels for the full factorial experimental design. 

Process factor Low level High level Unit 
Filling time (A) 1 4.0 s 

Switch to pack % (B) 25 75 % 
Pressure holding time (C) 2 10 s 

Cooling time (D) 9 15 s 
Holding pressure magnitude (E) 40 80 MPa 
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Table 7. Experiments layout and their results. 

Exp. No A B C D E Residual Stresses 

1 1.87 39.43 4.31 10.73 51.55 15.3154 

2 3.13 39.43 4.31 10.73 51.55 17.7162 

3 1.87 60.57 4.31 10.73 51.55 15.1058 

4 3.13 60.57 4.31 10.73 51.55 17.9076 

5 1.87 39.43 7.69 10.73 51.55 17.0077 

6 3.13 39.43 7.69 10.73 51.55 18.5774 

7 1.87 60.57 7.69 10.73 51.55 16.6253 

8 3.13 60.57 7.69 10.73 51.55 19.4672 

9 1.87 39.43 4.31 13.27 51.55 13.7617 

10 3.13 39.43 4.31 13.27 51.55 14.487 

11 1.87 60.57 4.31 13.27 51.55 12.2111 

12 3.13 60.57 4.31 13.27 51.55 14.6087 

13 1.87 39.43 7.69 13.27 51.55 14.299 

14 3.13 39.43 7.69 13.27 51.55 15.5651 

15 1.87 60.57 7.69 13.27 51.55 14.4523 

16 3.13 60.57 7.69 13.27 51.55 16.348 

17 1.87 39.43 4.31 10.73 68.45 17.3996 

18 3.13 39.43 4.31 10.73 68.45 17.3468 

19 1.87 60.57 4.31 10.73 68.45 17.4586 

20 3.13 60.57 4.31 10.73 68.45 16.7691 

21 1.87 39.43 7.69 10.73 68.45 19.8274 

22 3.13 39.43 7.69 10.73 68.45 19.5139 

23 1.87 60.57 7.69 10.73 68.45 19.407 

24 3.13 60.57 7.69 10.73 68.45 20.097 

25 1.87 39.43 4.31 13.27 68.45 17.1021 

26 3.13 39.43 4.31 13.27 68.45 17.3039 

27 1.87 60.57 4.31 13.27 68.45 16.8999 

28 3.13 60.57 4.31 13.27 68.45 15.7888 

29 1.87 39.43 7.69 13.27 68.45 16.5648 

30 3.13 39.43 7.69 13.27 68.45 16.4264 

31 1.87 60.57 7.69 13.27 68.45 16.6773 

32 3.13 60.57 7.69 13.27 68.45 17.0083 

33 2.5 50 6 12 60 16.2736 

34 2.5 50 6 12 60 16.2736 

35 2.5 50 6 12 60 16.2736 

36 2.5 50 6 12 60 16.2736 

37 2.5 50 6 12 60 16.2736 

38 2.5 50 6 12 60 16.2736 

39 1 50 6 12 60 13.8783 

40 4 50 6 12 60 17.4748 

41 2.5 25 6 12 60 14.2905 

42 2.5 75 6 12 60 16.497 
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Continued  

43 2.5 50 2 12 60 15.8673 

44 2.5 50 10 12 60 16.3209 

45 2.5 50 6 9 60 19.8856 

46 2.5 50 6 15 60 12.5724 

47 2.5 50 6 12 40 14.8686 

48 2.5 50 6 12 80 14.9246 

49 2.5 50 6 12 60 16.3101 

50 2.5 50 6 12 60 16.3101 

51 2.5 50 6 12 60 16.3101 

52 2.5 50 6 12 60 16.3101 

53 2.5 50 6 12 60 16.3101 

54 2.5 50 6 12 60 16.3101 

55 2.5 50 6 12 60 16.3101 

56 2.5 50 6 12 60 16.3101 

Phase 3: Regression Modeling and Model Selection of the Residual Stresses 
The best subset tool is used in modeling the residual stresses. Table 8 shows the results for the best subset. 
Column 1 shows the number of variables included in the test, columns 2 and 3 are the non-adjusted and adjusted 
regression correlation factor, respectively, and column 4 is called the Mallows CP. In statistics, Mallows sug-
gested for model selection, among input variables, and the goal is to find the best model involving a subset of 
these predictors. The lower, the CP factor the better the model is [31]. 

Although many of the mentioned models are good in terms of the adjusted R square, the Mallows CP suggests 
that the best model is the twenty third model. And because of the close value of the CP for the last three models, 
they are included in further processing for the selection of the best model. These models for the recommended 
variables are fitted using Minitab and the fitness results are given in equations 3 - 5. 

3533

333633

22

*10*139.1*10*833.1
*10*135.1*10*7.3**10*88.3**10*416.6

**10*902.9*473.0*772.1*10*03.8*793.671.51

ED
CBECCB

EAEDCAModel

−−

−−−−

−−

−

++−−

+−+−++=
                 (3) 

2 2 2

3 2 6 3 3 3

3 3 5 3

2 76.36 6.793* 1.6535* 2.262* 3.072* 5.451*10 * 9.902*10 * *

6.396*10 * * 0.15053* * * 2.315*10 * * 3.68*10 * 1.146*10 *

1.842*10 * 3.1233*10 *

Model A C D E E A E
B C C D D E B C
D E

− −

− − − −

− −

= + + − + + − +

− + − + +

−

   (4) 

3533

33372

2

*10*125.1*10*863.1
*10*169.1*10*9.9**10*315.2**15053.0

**10*902.9*1704.0*271.2*9707.1*793.647.123

ED
CBEDDC

EAEDCAModel

−−

−−−

−

−

++−−

+−+−++=
                (5) 

1) Verification results 
Table 9 shows the verification results for some randomly selected experiments. Columns 2 through 6 show 

the selected values for the Filling time (A), Switch to pack % (B), Pressure holding time (C), Holding pressure 
magnitude (D), and Cooling time (E). The predictions for the Models 1 - 3 in Table 9 are shown in columns 7 - 
9. The actual results are in column 10, while Table 10 shows the absolute errors associated with each model, 
row 7 shows the RSME for the three models. Form Table 10, the best model is model 3 with The RSME value 
of 0.930751.  
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Table 8. Best subset results for residual stress modeling. 

Vars R-Sq R-Sq 
(adj) 

Mallows 
CP S A B C D E AB AC AD AE BC BD BE CD CE DE A3 B3 C3 D3 E3 

1 42.4 41.4 59.7 1    X                 

1 40.7 39.6 63.1 1                   X  

2 57.6 56 32.3 1    X     X            

2 57.4 55.8 32.6 1    X          X       

3 69.9 68.2 10.4 1    X   X        X      

3 69.3 67.5 11.6 1    X X  X              

4 71.8 69.6 8.7 1 X  X          X  X      

4 71.7 69.5 8.9 1 X  X  X        X        

5 77.5 75.3 -0.3 1 X  X  X    X    X        

5 76.6 74.3 1.4 1 X  X X     X      X      

6 78.8 76.2 -0.8 1 X  X X     X    X  X      

6 78.4 75.7 0 1 X  X  X    X    X       X 

7 79.3 76.3 0.1 1 X  X X     X    X  X     X 

7 79.2 76.2 0.3 1 X  X X     X    X  X    X  

8 79.8 76.3 1.2 1 X  X X     X    X  X    X X 

8 79.8 76.3 1.3 1 X  X X     X X   X  X     X 

9 80.3 76.5 2.2 1 X  X X     X X X  X  X     X 

9 80.3 76.4 2.3 1 X X X X     X X   X  X     X 

10 80.8 76.5 3.3 1 X  X X     X X X  X  X    X X 

10 80.7 76.4 3.4 1 X X X X     X X   X  X    X X 

11 81.1 76.4 4.7 1 X  X X X    X X X  X  X    X X 

11 81.1 76.3 4.7 1 X  X X X    X X  X X  X    X X 

12 81.4 76.2 6.1 1 X  X X X   X X X X  X  X    X X 

12 81.4 76.1 6.2 1 X  X X X   X X X  X X  X    X X 

13 81.6 75.9 7.7 1 X  X X X X  X X X X  X  X    X X 

13 81.6 75.9 7.8 1 X X X X X X  X X X   X  X    X X 

14 81.7 75.5 9.5 1 X  X X X X  X X X X  X  X   X X X 

14 81.7 75.5 9.5 1 X X X X X X  X X X   X  X   X X X 

15 81.8 75 11.3 1 X  X X X X  X X X X X X  X   X X X 

15 81.8 75 11.3 1 X  X X X X  X X X X  X X X   X X X 

16 81.9 74.4 13.2 1 X  X X X X  X X X X X X X X   X X X 

16 81.9 74.4 13.2 1 X  X X X X X X X X X X X  X   X X X 

17 81.9 73.8 15.1 1 X  X X X X X X X X X X X X X   X X X 

17 81.9 73.8 15.1 1 X  X X X X  X X X X X X X X X  X X X 

18 82 73.2 17 1 X  X X X X X X X X X X X X X X  X X X 

18 81.9 73.1 17.1 1 X X X X X X X X X X X  X X X X  X X X 

19 82 72.4 19 1 X  X X X X X X X X X X X X X X X X X X 

19 82 72.4 19 1 X X X X X X X X X X X X X X X X  X X X 

20 82 71.7 21 1 X X X X X X X X X X X X X X X X X X X X 

 
2) Model graphical illustration and optimization 
Figures 5(a)-(c) shows a 3D fitted Response Surface of the residual stresses for the significant variables.  
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Table 9. Random points verification of the suggested models. 

Exp. No. A B C D E Model 1 Model 2 Model 3 Results 
1 1.5 60 7 10 50 16.30118 16.86167 16.94736 16.5994 
2 2 50 9 12 60 17.1164 17.08319 17.05788 15.5094 
3 3 40 3 14 70 14.70965 16.14324 15.81389 16.2522 
4 3.5 70 5 13 75 15.21857 15.40207 15.98266 16.97746 
5 4 35 2 11 65 17.65731 17.05032 16.61571 17.4100 

 
Table 10. Error calculation for each suggested model. 

Exp. No. Error 1 Error 2 Error 3 
1 0.298225 0.262268 0.347957 
2 1.606999 1.57379 1.548475 
3 1.542553 0.10896 0.438315 
4 1.75889 1.575395 0.994798 
5 0.247307 0.359676 0.79429 

RSME 1.281071 1.016731 0.930751 

 

   
(a)                                                      (b) 

 
(c) 

Figure 5. 3D illustration plots for the residual stress versus other input variables. The optimal combination discussed 
above (Filling time, 1s; Switch to pack percentage, 80%; Pressure holding time, 11s; Cooling time, 16s; and Holding 
pressure magnitude, 35 MPa) was verified and it gave residual stresses of 7.0125 MPa. 

 
According to Figure 5 to minimize the residual stresses, variable A (Filling time) must be as low as possible, 0 
s., however, since the filling time cannot have a zero value it is more realistic to have 1s. as filling time, variable 



F. Alkaabneh et al. 
 

 
102 

B (Switch to pack percentage) must be as high as possible, thus the selected value for variable B is 80%, varia-
ble C (Pressure holding time) must be as high as possible, thus 11s, as pressure holding time will be selected, 
variable D (Cooling time) must be as high as possible, thus 16s, as cooling time will be selected, and variable E 
(Pressure holding magnitude) must be as low as possible, thus 35 MPa will be selected. 

The optimal combination discussed above (Filling time, 1s; Switch to pack percentage, 80%; Pressure holding 
time, 11s; Cooling time, 16s; and Holding pressure magnitude, 35 MPa) was verified and it gave residual 
stresses of 7.0125 MPa. 

The optimal value for the residual stresses obtained using TED was 13.3111 MPa; however, the optimal value 
for the residual stresses obtained using RSM was 7.0125 MPa. It is known that TED is not capable for global 
optimization and it excludes the interactions among variables; on the contrary the RSM is capable for global op-
timization as well as revealing the interactions among variables. 

5. Conclusions 
The suggested model building stage for the injection molding included a screening stage to reduce the number of 
variables included in the modeling stage. This has direct effects on the number of experiments and the modeling 
cost. It actively reduced the number of input variables from 8 to 5 and the number of Response surface experi-
ments from 160 to 56. Filling time, switch to pack percentage, pressure holding time, holding pressure magni-
tude, and cooling time are found to be the significant factors. The best subset and verification based model se-
lection was successful in building a model with a verification result of nearly 0.93. 

There was a controversial difference in optimal behavior between the Taguchi stage (Phase 1) and Response 
Surface stage (Phase 2). With the expectation of the Response Surface stage, the outperforming Taguchi expec-
tations definitely justifies the phase 2 suggested in this work. 
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