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Abstract 
This paper presents a brief demonstration of Schulz’s first conjecture, which sets the upper and 
lower limits on the length of the shortest chain of addition. Two methods of the upper limit are 
demonstrated; the second one is based on the algorithm of one of the most popular methods for 
obtaining addition chains of a number, known as the binary method. 
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1. Introduction 
With the development of the Internet and adding chain applications in the development of cryptography—which 
permits safe handling of data over the Internet—the theme began with the publication in 1937 of Arnold 
Scholz’s paper [1], which defines a minimal addition chain, along with his three famous conjectures. In 1939 [2], 
Alfred Brauer gave a strong impetus to this issue, gaining importance in this area. During the last decades of the 
last century deterministic methods flourished. The most popular were the binary method and the window me-
thod [3]-[5]. Heuristic methods began to emerge in the 70s and toward the end of the century, began to dominate 
in the literature [6] [7]. This is the second paper we write on the theme [8] and in both present simple demon-
strations, the third and first conjecture, we use deterministic algorithms. Our intention is to build a framework 
for the development of intelligent methods for generating addition chains. 

2. Basic Definitions 
The first conjecture presented by Scholz was: ( )1 2m l n m+ ≤ ≤ ; for the n which satisfy: 
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12 1 2 ; 1.m mn m++ ≤ ≤ ≥                                    (1) 

In addition to setting maximum and lower bounds for the minimum length of addition chains, this conjecture 
induces a partition of our study space, in this case the natural numbers. The bounded sets defined by Schulz 

12 1 2m mn ++ ≤ ≤  for 1m ≥ , exclude the numbers 1 and 2. For 1m =  the possible values of n correspond to 
the set { }3, 4 ; from there, if we increase m by one, the possible values of n are doubled. The point of this parti-
tion is that we can delimit our study space, in this case the natural numbers, to set general properties on addition 
chains. 

We will begin our discussion with the following definitions: 
Definition 2.1. Let { }e iS a=  be a finite sequence of natural numbers. We will call it an addition chain of a 

natural number if it satisfies: 
I. 0 11 ra a a e= < < < = . 
II. i j ka a a= + , for some ( ),j k  and for each step i, 0 k j i≤ ≤ < , with 0 i r< ≤ . 
Definition 2.2. Let { } { }0 11 , 2, ,e i rS a a a a e= = = = =  be an addition chain of a number e, the highest  

index of the sequence r is called length of the chain eS , and it is denoted by ( )el S . 
Definition 2.3. The minimum length of all addition chains of a natural number e is denoted by ( )l e , that is: 

( ) ( ){ }is an additionmin  ch| .ain ofe el e l S S e=  

Definition 2.4. Let us consider the family iG  of natural subsets defined by: 

{ }
0

1

0, 1;

1, | 2 1 2 .i i i
i

i G
G

i G n N n−

= ==  ≥ = ∈ + ≤ ≤
 

The set iG  will be called ith generation of natural numbers. 
Definition 2.5. For every ith generation with 2i ≥ , we will define: 

{ }1| 2 ;p
i iG x x y y G −= = ∈  even numbers of iG . 

{ }1| 2 1;m
i iG x x y y G −= = − ∈  odd numbers of iG . 

Definition 2.6. For every n N∈ , we will define the nth dominant chain as: 

{ }2n
n

iS a=  defined by 2 ,0 .i
ia i n= ≤ ≤  

3. Important Properties 
Proposition 3.1. The dominant chains are of maximum growth. That is to say, for every x if  

{ } { }2r
r

x i iS b S a= ≠ =  with ( )xl S r= ; then 2rx < . 
Proof. As { } { }i ib a≠  then there exists 1 j r< ≤  (since the first two values of any addition chain are the  

same) in such a way that j jb a≠  as 1 12j j j k ja a a a b− −= ∗ > + =  with 1k j< − , as 1 1j jb a− −= ; jb =  
1j kb b− + ; 1k j< −  because if the first term of the sum had an index less than 1j − , at most it could be 1jb − , 

which would imply that the sequence would not be an addition chain because it does not strictly increase, and as 
1k j< −  and the sequence strictly increases we have that: j jb a< . If it was the last term of the sequence then 

the inequality is true, and if it was not the last term from there j i j ib a+ + , for 1, ,i r j= −  at each increment 
of the difference between the terms of the sequences increases. Hence 2r

r rx b a= < = . 
Proposition 3.2. Dominant chains are addition chains defined on the numbers of the form 2ne = , of length 
( )2n

nl S n= . 
Proof. By definition { }n

e iS a=  defined by 2 ,0i
ia i n= ≤ ≤  from where: 

{ }0 1
0 12

2 1, 2 2, , 2 .n
n n

nS a a a= = = = = =  

From the definition of dominant chain: 0
0 2 1a = = , from where its first element is 1and the last one is 

2n
na = , in addition for every i the following is true: 1

1 2 2i i
i ia a−
− = < =  from where 0 i n< < , therefore it in-

creases and ends in 2n
na = , which proves the first property of addition chain. 

Let us have a look at the second property, that is: 
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1 1
1 12 2 2 ,i i i

i j i k ia a a− −
= − = −= = + = +  

clearly 0 k j i≤ ≤ < , with 0 i r< ≤ , so it satisfies the second property and therefore they are addition chains. 
Finally, since 2n

na =  is an addition chain of 2n , the Proposition (3.1) assures that any other chain of that 
length is of a number 2nx < , which implies that it is the only chain of length n de 2n . This proves that 
( ) ( )2

2n
n nl S n l= = . 

To underline this last fact we will state the following in this corollary: 
Corollary 3.3. The numbers of the form 2ne =  have 

2n
nS  as minimum length chain, whose length is 

( )2n
nl S n= . This chain is unique. 

Proof. The Proposition (3.2) assures that 
2n
nS  is addition chain of 2n , and the Proposition (3.1) states that 

any other chain of that length different from 
2n
nS  makes 2nx <  true, which guarantees the uniqueness of 

2n
nS . 
Another important result: 
Corollary 3.4. If ( )l x r=  then 2rx ≤ . 
Proof. If ( )l x r=  implies that there exists xS  in such a way that ( )xl S r=  if 

2r
r

xS S≠  by the Proposi-
tion (3.1), we have that 2rx <  and if 

2r
r

xS S=  by the Proposition (3.2) we know that 2rx =  from where
2rx ≤ . 

Proposition 3.5. If ix G∈ , then ( )l x i≥ . 
Proof. If we assume that (3.5) is not true, then there exists ix G∈  in such a way that ( ) 1l x i i≤ − < ; from 

where if ( ) 1l x i= −  there exists xS  in such a way that ( ) 1xl S i= − . The Corollary (3.4) assures that 
12ix −≤ , and this implies that ix G∉ , which contradicts our hypothesis, from which we conclude that if ix G∈  

then ( )l x i≥ . 
Proposition 3.6. If p

iz G∈ , then ( ) ( ) 1l z l x≤ +  for any 1ix G −∈ . 
Proof. As p

iz G∈ , then there exists 1ix G −∈  in such a way that 2z x= . Let { }0 1, ,x rS a a x= = =  be a 
minimum length chain of x, from this one we will build an addition chain of z.  

{ }0 11, , , 2z r rS a a x a z x+= = = = = , it is clearly an addition chain of z, of length ( ) 1l x + , which proves that  

( ) ( ) 1l z l x≤ + . 
Proposition 3.7. If p

ix G∈  and 2ix < , then 1 n
iz x G= + ∈  and ( ) ( ) 1l z l x≤ + . 

Proof. As x is an even number and lower than the upper limit of iG , that is 2ix < ; then 2 2ix ≤ −  from 
where 1 2 1 22 1i i n

iz x z G= + −+ = → ∈−≤ , which guarantees that n
iz G∈ . 

Let { }x iS a=  be a minimum length chain ( )l x , then its first term is 1 and its last term is x, from where if 
we add as the last term 1z x= +  to that sequence, now this sequence is an addition chain of z, that is:

{ } { }1z iS a x z= + = , it is an addition chain of Z of length ( ) 1l x + , from where ( ) ( ) 1l z l x≤ + . 
Proposition 3.8. If n

iz G∈ , then ( ) ( ) 2l z l x≤ +  for any 1ix G −∈ . 
Proof. By definition { }1| 2 1;n

i iG x x y G −= = − ∈ , odd numbers iG , from where:  
{ }1 1 12 1, 2 3, , 2n i i i

iG − − −= + +  , from these numbers only the first 12 1nz −= +  does not have an even numbered 

predecessor in iG , an addition chain of this number is given by { }1
1 1

2
2 1n

n i
zS S −

− −= + , whose length is  

( ) 1 1zl S n n= − + = , this length is minimum since if there exists another chain of z with a length lower than n 
according to the Corollary (3.4), we have that 12nz −≤  and clearly 12nz −> , from where we conclude that it is 
minimum, that is ( )12 1il z n−= + = . For the rest of the elements of n

iG , according to the Proposition (3.7), 
there exists a p

iy G∈  in such a way that ( ) ( ) 1l z l y≤ + . Now, the Proposition (3.6) assures 1ix G −∃ ∈  in  
such a way that ( ) ( ) 1l y l x≤ + , from where ( ) ( ) ( ) ( )1 1 1 2l z l y l x l x≤ + ≤ + + = +  for any 1ix G −∈ . 

Proposition 3.9. For every 2i ≥ ; { },p n
i iG G℘=  is a partition of iG . 

Proof. We have to demonstrate that for every 2i ≥  we will always have: 
a) p n

i i iG G G=  . 

b) p n
i iG G = ∅ . 

For 2i =  we have { }2 1 1 2G G− = =  according to the definition of iG  from where { }2 4pG =  and  
{ }3n

iG =  and { } { }2 1 1 2
2 | 2 1 2 1 3 2 4 3, 4G n N n−= ∈ + = + = ≤ ≤ = = , from where we clearly see that a) and b)  

are true. 
Proposition 3.10. The number 3 only has an addition chain of length equal to 2. 
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Proof. The only addition chain of the number 3 is: { }3 0 1 21, 2, 3S a a a= = = = , we will demonstrate that it is 
an addition chain and that it is unique. 

It is an addition chain since it begins with 1, it has increasing terms and it ends with the number 3, from where 
it satisfies the property I of the definition of the chain addition. 

Clearly 1 0 0 1 1 2a a a= + = + =  and 2 1 0 2 1 3a a a= + = + = , which proves part II of the definition 
;0k j ia a a i j k= + ≤ ≤ < . 

We will demonstrate now that it is unique. Let us suppose that it is not, then there exists 3 3S S+ ≠ , which is  
chain of the number 3. Let { }3 0 11, 2, , 3pS b b b+ = = = =  be an addition chain different from 3S , the defini-  

tion of chain forces 0 1b =  and the property II when 1k = , and 0 1i j k≤ ≤ < = , the only possible value of i 
and j is zero, from where 1 2b = . For 2b  the possible values of ( ),i j  are three, which are presented in Table 
1. 

The only possible value for 2b  is 3, according to the definition of addition chain it would be the last term of 
the sequence. However, it is equal to 3S , which contradicts the fact that 3S +  is different from 3S , from where 
we conclude that it is unique. As ( )2 3; 3 2b l= = . 

4. Demonstration of Scholz’s First Conjecture 
In terms of the given definitions, Scholz’s first conjecture is equivalent to: 

( )1 2m l n m+ ≤ ≤ ; for the n which satisfy: 12 1 2 ; 1m mn m++ ≤ ≤ ≥ . 
If we make a change of variables 1i m= +  we will have: 

( ) 2 2i l n i≤ ≤ −  for the n which satisfy: 12 1 2 ; 2i in i− + ≤ ≤ ≥ . 
As { }1| 2 1 2i i

iG n N n−= ∈ + ≤ ≤  the conjecture is now: 

( ) 2 2i l n i≤ ≤ − ; for the , 2in G i∈ ≥ . 
The new formulation would be: 
Theorem 4.1. If ix G∈ , then ( ) 2 2i l x i≤ ≤ − ; for every 2i ≥ . 
Proof. The Proposition (3.5) guarantees the first part of the inequality, that is: if ix G∈ , then ( )i l x≤ . 
We will now demonstrate the second part of the inequality. 
The Proposition (3.6) guarantees us that if p

iz G∈ , then ( ) ( ) 1l z l x≤ + , for any 1ix G −∈ . The Proposition 
(3.8) guarantees us that if p

iz G∈ , then ( ) ( ) 2l z l x≤ + , for any 1ix G −∈ . The Proposition (3.9) proves that  
p n

i i iG G G=  , from where if 1ik −  is another upper bound of ( ){ }1| il x x G −∈ , we have that for every i,  

1 2i ik k −≤ +  is true, it is the upper bound of ( ){ }| il x x G∈ , that is ( ) 1 2il x k −≤ + ; for every ix G∈ . 
Let 2k  be the upper bound of 2G ; then 

( )2 2 2 ; 2.ik k i i= + − ≥                                    (2) 

As { }2 3, 4G =  and 24 2= , its minimum addition chain is ( )24 2 2l = = , according to the Corollary (3.3) 
and the 3 according to the Proposition (3.10) ( )3 2l = , from where the upper bound of 2G  is 2. This is 

2 2k = , and substituting this value of 2k  in (2) we will have: 

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 1 2 1 2 2,ik k i i i i i= + − = + − = − + = − = −  

which proves that if ix G∈ , then ( ) 2 2l x i≤ − ; for 2i ≥ . This demonstrates the second part of the inequality. 
An alternative way of deriving the upper bound established in Schulz’s first conjecture is obtainable by using 

the binary analysis methods for constructing the addition chains [3]. It is expressed in the following algorithm. 
 
Table 1. Sequence of addition chain for possible values of ( ),i j .                                                    

i j 2i jb b b+ =  Comment 

0 0 0 0 1 1 2b b+ = + =  The sequence would not be strictly increasing 

0 1 0 1 1 2 3b b+ = + =  Possible value 

1 1 1 1 2 2 4b b+ = + =  The last value must be 3, there can’t be higher numbers 
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5. Binary Method 
Input: an integer: ( )0 2, , ,m me e e e−=   
Output: Addition chain { }1, 2, ,U e=   
Start: 

{ }1: 1; 1x U= =  
for i=1 to m 

2x x= ∗  
{ }U U x=   

If 1ie ==  then: { }1x x U U x= + ∧ =   
End 

Therefore the length of the obtained chain depends on the length of the binary expression of the number and 
the quantity of ones that it has, as for each one, without taking into account the first one, is added another num-
ber to the output chain; for example see Table 2. 

 
Table 2. Algorithm fot the binary method.                                                                         

Description Example 

Input: integer: e 77 

Write ( )0 1, , , me e e e=   77 = 1001101 

Output: Addition Chain U { }1,2, ,U e=   

{ }1; 1 ; 1x U i= = =  1x = ; { }1 ; 1U i= =  

While i m<  
2x x= ∗ ; { }U U x=  ; 1i i= +  

While 7i <  

1 0e = ; 2 1 2x = ∗ = ; { }1,2U = ; 1 1 2i = + =  

As i m<  
2x x= ∗ ; { }U U x=  ; 1i i= +  

As 2 7i = <  

2 0e = ; 2 2 4x = ∗ = ; { }1,2,4U = ; 3i =  

Repeat: Step 4 : 2x x= ∗  
Add x at the  end of the list U 
As 1ie ==  than 1x x= +  

{ }U U x=  ; 1i i= +  

As 3 7i = <  
{ }4 2 8; 1,2,4,8x U= ∗ = =  

As 3e  is 1= ; 8 1 9x = + =  

{ }1,2,4,8,9U = ; 3 1 4i = + =  

As ; 2i m x x< = ∗  
Add x at the end of the list U 
If 1ie ==  then 

1x x= +  
Add x the list of U; 1i i= +  

As 4 7i = <  

4 1e = ; 9 2 18x = ∗ = ; { }1,2,4,8,9,18U =  

As 4e  is 1= ; 18 1 19x = + =  and 

{ }1,2,4,8,9,18,19U = ; 4 1 5i = + =  

As i m< ; 2x x= ∗  
Add x at the end of the list U; 1i i= +  

As 5 7i = < ; 

5 0e = ; 19 2 38x = ∗ =  

{ }1,2, 4,8,9,18,19,38 ; 5 1 6U i= = + =  

ei’s equal to one. 

As 6 7i = <  

6 1e = ; 38 2 76x = ∗ =  

{ }1,2,4,8,9,18,19,38,76U =  

As 6e  is 1= ; 76 1 77x = + =  

{ }1,2,4,8,9,18,19,38,76,77 ; 6 1 7U i= = + =  

As i m m=   stop   
the output is: U 

As 7 7i =   stop and the output is:  

{ }1,2,4,8,9,18,19,38,76,77U =  
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The output chain has the same number of elements that the number of bytes of the expression, in base 2, of 
the input number e, plus the quantity of ones of the binary expression, minus one, which is at the beginning of 
the binary expression. In this case: 77 = 1001101, the length of the binary expression is of 7 bytes and the num-
ber of ones minus the first one is 3. Hence the length of the output chain is 7 + 3 = 10; U = {1, 2, 4, 8, 9, 18, 19, 
38, 76, 77}. Therefore the length of the addition chain is 9. This fact is expressed in the next proposition, as fol-
lows: 

Proposition 5.1. The length of the addition chain generated by the binary method of a number e is equal to the 
last sub-index of the binary expression 0 1, , , me e e e=  , plus the quantity of ones it has, minus one. That is 

1m p+ − , where p is the number of ones that the binary expression e has. 
Proof: Take e∈ ; and its binary expression 0 1, , ., me e e e=   The algorithm starts with a one and elimi-

nates 0e , it is equal to one, and adds it to the addition chain U. For each element from 1e  to me  that is for m 
elements we have added one more to U. Then { }0 1 1 2 1, , , , , , ,m m m m pU u u u u u u+ + + −=    has m plus 1p − , where 
p is quantifies the number of ei’s equal to one. Therefore, according to Definition 2.2 the length of the addition 
chain is equal to the last sub-index of the chain, in this case 1m p+ − . As m is the last sub-index of the binary 
expression, and p is the number of ones in the expression. Note that we have that  

{ }0 1 1, , , , ,m m pU u u u u e+ −= =  . Then from Definition 2.2, we derive that the length of the chain is the last of 
the sub-indexes, which is 1m p+ − . 

Q.E.D. 
Note that the numbers belonging to the generation Gi, for 2i >  have has binary expression with length equal 

to n, minus the superior limit, which has 1n +  elements with 1 and n with zeros, which corresponds to the su-
perior limit of the generation, as it is observed in the following Table 3. 

Note that the upper bound of the generation is given by 2n; its minimum addition chain is n, because of Prop-
osition 3.2. Then we do not take i into account. The maximum expected length of a chain, belonging to the gen-
eration n, is given by the number whose binary expression is equal to n, corresponding to 2 1ne = − , one less 
than the superior limit, with binary expression: ( )0 1 12 1 1, 1, , 1n

ne e e −− = = = = . The obtained addition chain 
will have n − 1 components, as the number of ones of the expression is n, where the addition chain is given by 

{ }0 1 3 2 21, 2, 3, , .nU u u u u e−= = = = =  Hence, the length of this chain is 2 2n − , which is the longest gener-
ated by the method in that generation. Then is proved the following result: 

Corollary 5.1. The length of the longest addition chain generated by the binary method in iG  corresponds to 
2 1ie = −  that has as length ( )2 1 2 2il i− = − . 

 
Table 3. Example binary sequence.                                                                           

Generation Limits of the partition Limits of the partition expressed in binary Size of the partition 

G0 1 1 1 1 1 

G1 2 2 10 10 1 

G2 3 4 11 100 2 

G3 5 8 101 1000 4 

G4 9 16 1001 10000 8 

G5 17 32 10001 100000 16 

G6 33 64 100001 1000000 32 

G7 65 128 1000001 10000000 64 

G8 129 256 10000001 100000000 128 

G9 257 512 100000001 1000000000 256 

G10 513 1024 1000000001 10000000000 512 

…. 

Gn 12 1i− +  2i  1,0, ,0,1  1,0, ,0  2n−1 
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Theorem 5.1. The binary method for the generation of addition chains proofs the right hand side of the First 
Schulz’s Conjecture that is: 

If in G∈ , then ( ) 2 2l n i≤ − ; for every 2i ≥ . 
Proof. If in G∈  then n has the binary expression ( )0 1 2 11, , , , in e e e e −= =  , where at least a component is 

different form 0e  is equal to 1, because if all are zeros, it will be the superior limit of 1iG − . The generation i 
has 1i −  elements whose binary expression has two ones, for these elements, according to Proposition 5.1, its 
generated addition chain is of length equal to i, as we add only another value and the first value of the generated 
chain has as sub-index 1 1i i= − + . The rest will have longer chains. The longest corresponding to a 2 1in = −  
has length 2 2i −  due to the results of corollary. 

This fact proofs that all the chains generated with this method are not larger than 2 2i − . Hence, the mini-
mum chain must be smaller or equal to these values. This last result completes the proof. 
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