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Abstract

Small non-protein coding micro-RNAs are regularly exported out of cells, both in health and dis-
ease. More than ninety percent of extracellular miRNAs are associated with lower-molecular-mass
complexes bound to Argonaute 2 (Ago2), nucleophosmin-1 (NPM1) and high density lipoproteins
(HDL), whereas the rest (~10%) are membrane-vesicle-encapsulated within exosomes, shedding
microvesicles and apoptotic bodies. Regardless of the debate of the nature of circulating miRNA as
byproducts of routine cell activities or mediators of cell-cell communication, proper understand-
ing of the molecular behaviors of miRNA in health and disease, is expected to open a new gate for
the discovery of new diagnostic tools and possibly therapeutic implementation in the near future.
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1. Introduction

Since Victor Ambros and Garry Ruvkun discovered micro-RNA (miRNASs), they revolutionized our under-
standing of the molecular mechanisms of cell function [1]. Functional studies indicate that miRNAs participate
in the regulation of almost every cellular process, and are intrinsically associated with much of human pathology
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[2]. MiRNAs are endogenously produced, short non-coded RNAs of 21 - 25 nucleotides that are post-transcrip-
tional component of gene regulatory network that modulate the precise amounts of proteins expressed in all cell,
frequently by mRNA translation repression or less often by mRNA cleavage or degradation [2] [3].

Recently, it was also shown that MRNA may up-regulate the expression of their target genes as well [4] [5]. It
is well documented that a single miRNA can influence hundreds of mRNA gene transcripts and thereby, it has
been implicated as a key player in virtually all cell processes [5]-[8]. While the majority of miRNAs are found
intra-cellular, a virtual number have been detected outside cells, including various body fluids (i.e. saliva, urine,
breast milk, seminal plasma, tears, amniotic fluid, colostrum, bronchial lavage, cerebrospinal fluid, peritoneal
fluid, and pleural fluid) from normal individuals [9].

Cells have protective enzymatic and non-enzymatic mechanisms against oxidative stress [10] targeting re-
constitution of normal cell function. However, oxidative stress occurs when the reactive oxygen species (ROS)
level overwhelms defensive mechanisms [11] [12]. The produced miRNAs under these different conditions va-
ries accordingly. Furthermore, alterations in the level and composition of these extracellular miRNAs, as part of
extracellular RNAs (exRNAs), have been well correlated with disease or injurious conditions [13]-[16], sug-
gesting that these extracellular miRNAs can be served as diagnostic and prognostic biomarkers. The source of
exRNAs can be endogenous or exogenous, including microbes and foods [17]. Recent findings show that exR-
NA can act as a signaling molecule, communicating with other cells and carrying genetic information from cell
to cell throughout the body [1]. Circulating miRNAs are remarkably stable despite high extracellular RNase ac-
tivity [9]. In addition to packing within extracellular vesicles (EVs) which are impermeable to RNases, extra-
cellular miRNAs are also packaged in some manner to protect them against RNase digestion, through the forma-
tion of protein-miRNA complexes [18].

It is of note here to mention that horizontal gene transfer (HGT) is occurring without genomic integration.
Although the study of miRNA is still in the very early stages, current research is exploring the association be-
tween various diseases and changes in the type and amount of miRNAs. These diseases include several types of
cancer, neurological disorders, heart disease, kidney disease, and more [19]-[22]. This review provides an over-
view of the properties of extracellular miRNAs, summarizing the current theories regarding extracellular miR-
NA origin and function, arguing for more compelling translation of circulating miRNAs into clinical practice.

2. Biogenesis of miRNAs (Figure 1)

Non-protein coding RNAs (ncRNAs) have linked this class of nucleic acids with a large panel of biological
processes, such as homeostasis, development and carcinogenesis [23]-[25]. Different classes of small RNAs
continue to be discovered. There are three major classes of animal ncRNAs; microRNAs (miRNAs), short inter-
fering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs). MiRNAs are small, non-coding RNAs commonly
found intra-cellular in all tissues and function as post-transcriptional component of gene regulators. MiRNAs
can be generated in a cell by either canonical pathway or non-canonical pathways [26]-[28]. The canonical
pathway is Drosha (an RNase IlI-like protein)/DGCR8 (DiGeorge syndrome critical region gene 8) and Dicer
dependent, while the non-canonical pathway may be independent of Drosha/DGCRS or Dicer. In both pathways,
miRNAs are produced via processing and editing, resulting in the formation of mature, functional miRNAs of
21 - 25 nucleotides. Canonical pathway of miRNA biogenesis is responsible for the production of the majority
of the known miRNAs. In the canonical pathway, genes are usually transcribed by RNA polymerase 11 (Pol 1)
[29] [30]. Arising from intergenic or intragenic (both exonic and intronic) genomic regions. Of note, while en-
dogenous siRNAs originate from double-stranded (ds) RNA precursors, miRNAs and piRNAs are transcribed as
long single-stranded (ss) RNAs. Primary transcripts (pri-miR), fold back to form double stranded hairpin struc-
tures which are then subjected to sequential processing; first the precursor molecules (pre-miR), 80 - 120 nuc-
leotides long, are produced in the nucleus by type Ill endonuclease microprocessor DROSHA and its cofactor
DGCRAB, followed by their export to the cytoplasm mediated by EXPORTIN 5.

In the cytoplasm, where they are processed by another type Il1 endonuclease, DICER, into the short “active”
molecules (guide strand), while the opposite (passenger) strand is preferentially destroyed [31] [32]. MiRNAS
are finally loaded onto a multi-protein complex, called RNA-induced silencing complex (RISC), which includes
argonaute (Ago) proteins (in humans four Ago proteins are recognized, Ago 1 - 4), have overlapping roles in
RISC formation that mediates mMRNA degradation or translational repression.

In recent years, several alternative pathways of miRNA biogenesis are identified [31] [32]. Pre-miRNA mim-
ics, endogenous short hairpin RNA (shRNA), other hairpinstructure or other non-coding RNA, can enter the
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Figure 1. Biogenesis and function of microRNA (miRNA). The majority of miRNA are synthesized
through the canonical pathway, in which miRNA genes are transcribed via RNA polymerase 1l to
produce pri-miRNA (long transcripts with multiple hairpin loop structures). Pri-miRNAs are
processed by the Microprocessor protein complex containing Drosha/DGCRS, resulting in gene-
ration of smaller precursor molecules called pre-miRNAs. After exported from the nucleus via Ex-
portin-5, the pre-miRNAs are further processed via Dicer in the cytoplasm to generate short, double-
stranded miRNAs. The mature miRNA direct RISC (a complex containing ago) to target gene mRNA,
resulting in mRNA degradation (miRNA/mRNA with perfect complimentary sequences match in
RNA). In the non-canonical pathways, miRNAs can be synthesized in either Drosha/DGCR8 or
Dicer independent pathways. The short pre-miRNA like precursor can come from mitron, endo-
shRNA or other noncoding RNA. In some special conditions, the precursor can be processed by
Ago2 instead of Dicer to be the mature miRNA (Adopted from Qingquing Wei et al., 2013 [67]).

miRNA biogenesis pathway after direct processing with or without Dicer (non-canonical pathway). The me-
chanism(s) of piRNA biogenesis remain elusive, and are only found in animals, and specifically in the germline
[31] [32].

Argonaute protein uptake of mature miRNA is thought to stabilize the guide strand, while the passenger
strand is preferentially destroyed. Argonaute may preferentially retain miRNAs with many targets over miRNAs
with few or no targets, leading to degradation of the non-targeting molecules. This turnover of mature miRNA is
needed for rapid changes in miRNA expression profiles [33]. MiRNA biogenesis is critically regulated at the
levels of epigenetic modulation, gene transcription and miRNA processing.

Many of the miRNA genes are flanked by promoter regions which are governed by specific transcription fac-
tors like Myc, p53, and hypoxia-inducible factor (HIF-1) [26]. These observations suggest that pathological
challenges are pivotal in regulation of gene expression of miRNAs. In addition, global miRNA expression can
also be modulated by the change of proteins or enzymes involved in miRNA processing, e.g. Drosha, exportin-5,
Dicer and Ago [34].

3. Circulating microRNAs

Circulating extracellular miRNAs are remarkably stable despite high extracellular RNase activity [35]. The mem-
branes of EVs are impermeable to RNases, therefore, attributable to the remarkable stability of vesicle encapsulated
miRNA. In addition to packing within EVs, extracellular miRNAs are also packaged in some manner to protect
them against RNase digestion, through the formation of protein-miRNA complexes [20] [22] [24] [25] [36] [41].
Both forms, vesicles encapsulated or protein associated, consistently revealed the presence of miRNA in al-
most all body fluids. Three different possibilities have been suggested to explain the different mechanisms of
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miRNA secretion; i) Passive leakage from injured cells or degraded cells of short half-lives, such as platelets, ii)
active secretion via Extracellular vesicles (EVS) and iii) associated with lower-molecular-mass complexes
[37]-[42]. Secreted miRNAs are also shown to be remarkably stable despite the austere conditions they are sub-
jected to in both the blood stream (RNase digestion) and during handling (e.g. extreme temperatures and pH
values) [43]-[48]. It has been demonstrated that EVs-associated miRNAs represent the minority, whereas about
90% of plasma circulating miRNAs are travelling in an AGO-protein-bound form [19] [45]. Similarly, about
99% of miRNAs exported by cells in culture under normal conditions were membrane-vesicle-free and asso-
ciated with AGO proteins [45]. It is feasible that the differences in isolation protocols for RNAs could account
for the discrepancy in the reported distribution of extracellular miRNA between EVs and protein-bound fraction
of serum.

3.1. Extracellular Vesicle-Encapsulated miRNA

A major breakthrough was the demonstration that the cargo of EVs included both mRNA and miRNA could be
translated into proteins by target cells [47] [48]. Recently, analysis of RNA from EVs demonstrated that EVs
contain a large variety of other small noncoding RNA species, including RNA transcripts overlapping with pro-
tein-coding regions, repeat sequences, structural RNAs, tRNA fragments, piwi RNA (piRNAs) and small inter-
fering RNAs (siRNAs) [49] [50]. Exosomes are secretory products of endosomal origin, while, microvesicles
directly bud from the plasma cell membrane [51]. The mechanism of formation of exosomes is the process of
the endosomal pathway, including endocytic vesicles, early endosomes, late endosomes; also known as multive-
sicular bodies (MVBs) and finally lysosomes [52]. The pathway of multivesicular endosomes (MVES) that are
prone to fuse with lysosomes and predestined for lysosomal degradation, differ from the pathway of secretory
MVESs predestined to become secreted as exosomes; i.e. ESCRT-dependent and ESCRT-non-dependent path-
ways. Endosomal sorting complex responsible for transport (ESCRT) is a four multi-protein complexes assem-
bled within the MVEs: (ESCRT)-0, -1, -1, and -111, with associate accessory proteins (e.g., Alix and VPS4). The
ESCRT-O0, -I, and -l complexes recognize and sequester ubiquitinated membrane proteins at the endosomal
membrane, while the ESCRT-III complex is responsible for membrane budding and actual scission of intralu-
minal vesicles) ILVs and exosomal release [53]-[55]. An alternative pathway, independent of the ESCRT ma-
chinery has also been described, and it includes the ceramide and sphingolipid pathway, in which the enzyme
natural sphingomyelinase-2 (nSMase2) is involved inmediation of exosomal release [56] [57]. Exosomes are re-
leased by a wide spectrum of cell types and their release appears to be modulated by micro-environmental mi-
lieu and influenced by growth factors, heat shock and stress conditions, pH variations and therapy [58]-[60]. The
mechanisms by which EVs affect the target cells include transfer/activation of signaling protein receptors or in-
tercellular exchange of proteins and RNAs, which are both recruited to induce phenotypic modulation in the
target cells [61].

3.2. Protein-Associated miRNA

Recently, accumulated data suggest that the majority of circulating miRNAs may not be only confined within
extracellular vesicles, but a substantial fraction is also bound to protein complexes, such as high density lipo-
proteins (HDL), Argonaute-2 (Ago2) and nucleophosmin-1 (NPM-1). HDL bounded miRNA has been reported
to be present in the plasma of healthy subjects. The uptake of HDL bounded miRNA seems to be dependent on
the interplay between cholesteryl ester of HDL and the cell surface HDL receptor, named scavenger receptor
class B, type | (SR-BI) [44].

Turchinovich and colleagues [43], showed that the majority of miRNAs found in human plasma, are asso-
ciated with Ago2 and that the high proportion of Ago-miRNA may represent by-products of dead cells, since
Ago-miRNA complexes, which are known to be present within Exosomes, are known to be extremely stable
within cells [59], and it may be derived from vesicles potentially damaged during purification [74].

These findings raise indeed intriguing questions about whether these miRNAs have a different biological
role and source; researchers have proposed that miRNA-protein complexes may be released into circulation as
a consequence of cell lysis or necrosis, meaning that if participated in cell-cell communication this might in-
cidentally occur under certain circumstances including cell stress and intra-cytoplasmic accumulation of un-
folded or misfolded proteins. Nonetheless, it is believed that the role of these complexes has not been discov-
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4. MiRNA Release: Active Sorting or Byproduct of Cell Activity!

Two hypothesizes have been postulated to explain the presence of circulating extracellular miRNA, both, ve-
sicles encapsulated or protein associated. MiRNA release either by the selective sorting system or mere bypro-
duct of cell activity and waste disposal is yet debatable. Accumulating evidence, however, suggests that both
theories can be true [43]. The hypothesis of cell activity byproduct has been claimed by the some observations;
miRNA remains stable for weeks in cell lysate without enzymatic inhibition (e.g. RNases), which support the
notion of simple passive release of miRNA in response to over production and cytoplasmic crowd [42]. Moreo-
ver, miRNA produced by several cell lines after three days culture under normal conditions was significantly
lower than their parental cells of origin which supports this notion. Besides, the extracellular miRNA production
by some cell lines is mainly (>95%) in a protein-associated state [42]. Moreover, apart from crowd and overflow
release, yet, no clear indication of either active release of vesicle-free AGO2-miRNA complexes from cells or
their uptake by recipient cells in mammals [43]. In contrast, miRNAs entrapped within microvesicles can hori-
zontally transfer gene information to recipient cells, modulate gene expression and trigger functional effects [62]
[63]. The exact mechanisms by which cells scission/release EVs containing miRNAs remains incompletely un-
derstood; however, the release is multifactorial and modulated particularly by extracellular signals [64]. Micro-
vesicles are released by direct budding from the plasma cell membrane, whereas exosomes release process
might be ceramide enzyme nSMase2-dependent or nondependent machinery [65]. However, exosome release is
blocked by inhibiting nSMase2 (neutral sphingomyelinase 2) and interestingly, inhibition of nSMase2 actually
increases the export of miRNAs by HDL [65], suggesting two different pathways to exert the same action,
meaning, two distinct mechanisms and/or competition in the export pathways. Moreover, the ESCRT-III com-
plex is responsible for membrane budding and actual scission of intraluminal vesicles (ILVs) and exosomal re-
lease [53]-[55]. The activation of nSMase2 enzyme and ESCRT-IIl complex and their involvement in the re-
lease of vesicles might be a response to the crowd and overflow proposition. This means that, in case of crowd
and overflow, the cell endosomal pathway is unable to cope with the abrupt increase in the need for degradation
through the endocytic pathway, hence activation of an alternative pathway to eliminate and secrete these con-
tents outside the cell. Other observations have been supporting the hypothesis of active sorting; high EVs miR-
NA level than that contained in the parental cells which may be explained by the observation that certain miR-
NAs can be lost during extraction from samples [66]. The differences in the blood collection protocols willim-
pact the comparison between extracellular versus intracellular miRNA profiles expressed in different cell types
[67]-[71].

5. Function of miRNA

Each class of small RNAs binds to a member of the Argonaute (Ago) family of proteins. The Argonaute protein
family includes eight members (Ago 1 - 4, present in all mammalian cells and Piwi 1 - 4, found in the germ line
and hematopoietic stem cells) in the human genome [68]. The siRNAs and miRNAs associate the Ago clade,
whereas piRNAs associate the Piwi clade [69]. The Ago protein bound to the small RNA comprises the RNA-
induced silencing complex (RISC). The RISCs containing miRNAs are primarily target messenger RNAS
(mRNAS) by either complete complementarity causing degradation of the mRNASs or incomplete complementar-
ity, causing translation repression (slowing or preventing mRNA translation) [70], a combination of the two is
hotly debated. However, the balance between repressed and degraded mRNA might play an integral role as
post-transcriptional component of gene regulatory network that modulate the precise amounts and type of pro-
teins expressed in cells. MiRNA is a crucial player in gene regulation through different mechanisms of actions
mostly controlling gene transcription and translation processes [69]. Recently, miRNA has been also reported to
induce histone modifications methylation of the DNA promotor sites and thus, ameliorating the target gene ex-
pression [70].

6. Clinical Applications of Extracellular miRNA

The search for novel, early disease predictors represent a current and a permanent challenge in disease recogni-
tion. MiRNAs offer a new class of biologically active molecules that contribute many disease processes [71].
Accumulating evidences showed that circulating extracellular miRNA, both, vesicles encapsulated or pro-
tein-associated can serve as disease biomarkers [72]. Some points need to be cleared to maximize the benefit
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and minimize the pitfalls. Cell contribution in the disease state within the same organ varies among different
cells of the same organ. This variability may be attributed to the stress phase, which differs among cells even
within the same organ. RNA microarray profiling of intracellular miRNA may only reflect the stress phase of a
particular cell. On the other hand, extracellular circulating miRNA represents the final net result of miRNAs that
produced by most of involved cells. Besides, vesicles are subjected to shearing force associated with centrifuga-
tion and filtration that might alter its miRNA contents [72]. But the possibility of other distant organ miRNA re-
lease that might alter the interpretation of the results is still there. Confounding biological and technical factors,
such as age or gender of patients as well as storage conditions and processing protocols, are essential in order to
judge the value of miRNAs as biomarkers [72]. Besides, identification of a set of extracellular miRNAs rather
than single up or down regulated miRNA against intracellular protein microarray would be more reliable bio-
marker for a specific disease. Recently, not only miRNA are recognized as disease biomarkers, but also miR-
NAs signatures are increasingly recognized as valuable biomarkers for a differential diagnosis in clinically
overlapping diseases such as non-ischemic systolic heart failure versus acute myocardial infarction [73].

Nishimura N. and his collaborators addressed the combination of miRNA and siRNA in nanoliposomal par-
ticles to target oncogenic pathways altered in ovarian cancer. Combined targeting of the Eph pathway using
EphA2 -targeting siRNA and the tumor suppressor miR-520d-3p exhibits remarkable therapeutic synergy and
enhanced tumor suppression in vitro and in vivo compared with either monotherapy alone [74].

Recently, miR-423-5p, miR-18b-3p, miR-129-5p, miR-1254, miR-675, and miR-622) were reported to be
elevated in patients with heart failure, with miR-423-5p positively correlated with N-terminal pro-brain natri-
uretic peptide (NT-proBNP) levels and most strongly related to the clinical diagnosis of heart failure [75]. Be-
sides, plasma levels of miR-208b and miR-499 both have been highly associated with AMI. Also, it was demon-
strated that measuring miR-1 in plasma is a good approach for blood-based detection of human AMI [76]. Cir-
culating miR-1 is significantly increased in the blood of AMI patients compared to non-AMI subjects and were
positively correlated with serum CK-MB (Creatine kinase-MB) [77].

Kato and collaborators recently show that miR-192 levels increase significantly in glomeruli isolated from
streptozotocin-injected diabetic mice as well as diabetic db/db mice, in parallel with increased TGF-B1 and col-
lagen 1a2 (Colla2) levels [78]. Upregulation of renal miR-192 during diabetic kidney diseases is also found in
db/db mice, type 2 diabetes rat, and whole blood samples of type 2 diabetes patients [79].

7. Conclusions

The fact that diverse diseases in different organ systems (liver, kidney, pancreas, heart, lung and skin) may end
with fibrotic changes suggests common pathogenic pathways. These pathways are orchestrated by complex ac-
tivities within different cells in which specific molecular pathways and gene expression have emerged. These
specific molecules are cell specific (relates to the stress phase of cells involved), rather than organ specific. Cur-
rent researches are exploring the association between various diseases and changes in miRNAs as part of mole-
cular pathways activation. The activation of molecular pathways of cell stress in different diseases seems to be
more or less similar regardless the organ involved in a specific disease; resulting in cellular dysfunction, paren-
chymal scarring and ultimately organ failure. The clinical presentation of any disease can be explained as “func-
tional expression of cell disruption” depending on the cell mass involved in this response.

As all living organisms should have a facility to get rid of their metabolic wastes. Exosomes, microvesicles,
apoptotic bodies and protein associated nucleoproteins might be some forms of cell excreta. Two hypothesizes
have been postulated to explain the presence of circulating extracellular RNAs, both, vesicles encapsulated or
protein associated. RNAs release either by the selective sorting system or mere byproduct of cell activity and
waste disposal is yet debatable. Accumulating evidence, however, suggests that both theories can be true.
Extracellular nucleoproteins consist of a variety of factors among which miRNA is seemingly of particular im-
portance in response to molecular pathways activation. Yet, we treat most of diseases after the onset of the func-
tional disturbances, while thorough understanding of the molecular cell biology will enable us to diagnose and
hence treat cells far before the onset of symptoms and signs by targeting molecular cell disruption in which
miRNA is a pivotal player.

The response of cells to stress, which can be physical, chemical or biological stressor(s), is a series of biolog-
ical events that facilitate and promote counteraction and adaptation to qualify these cells to survive. Cell adapta-
tion can be categorized into five major types including atrophy, hypertrophy, hyperplasia, dysplasia and metap-
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lasia. The adaptation may be physiologic or pathologic. In case of failure of adaptation, cells will proceed to a
state of cell death, through undergoing autophagy, apoptosis and necrosis. From cell adaptation to cell death, the
process of fibro-genesis is activated to modulate the final anatomical and physiological outcome of the tissue in
reaction to stress. Duration, severity and frequency of exposure to stressors are detrimental for the nature of cell
response to stress. Correlation between exRNA profiles in various adaptation mechanisms has not yet been tho-
roughly investigated. This profile will expedite the discovery of complex panel of biomarkers to monitor specif-
ic disease states along the complete pathogenic pathway for prediction, initiation, development, diagnosis, pro-
gression, regression, and treatment efficacy of the disease.
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