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Abstract 

In this paper, the effects of the minimum lengths (  β ) to the efficiency of a quantum heat engine 
are considered. A particle in infinite one-dimensional potential well is used as the “working sub-
stance”. We obtain quantized energy of particle in the presence of minimal length, and then we do 
the isoenergetic cycle. We calculate heat exchanged between the system and reservoir, and then 
we get the efficiency of the engine. We observe that the minimum length increases efficiency of the 
engine at the small width of the potential well. 
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1. Introduction 
A deformed quantum mechanics with a generalized Heisenberg Uncertainty (GUP) has been introduced by 
Kemp et al. [1] [2]. As a consequence, there exist smallest distance limitations in spacetime, known as mi-
nimal lengths. This minimal lengths change quantum mechanics that have been established. As an example, 
there has been calculated Schrodinger equation in the presence of minimal length [3] [4], the effect of the mi-
nimal length on the energy spectrum of Coulomb potential [5] [6], Casimir effect [7]-[10], and Dirac Oscilla-
tor [11]-[14]. 

The minimum length also affects the quantum thermodynamics, quantum generalization of the classical ther-
modynamics, for instance, quantum heat engine. In the quantum thermodynamics, there is isoenergetic process that 
is analogous to the isothermal process; and isoentropic process that is analogous to adiabatic process in classical 
thermodynamics. The cycle composed of two isoenergetic and two isoentropic trajectories is called isoenergetic 
cycle [15]. The efficiency of quantum heat engine has been calculated in [15]-[17]. The results show that the ef-
ficiency depends only on the expansion parameter α .  
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The point is that the width of the potential well has no effect on the value of efficiency. In this paper, we 
compute the effect of the minimum length on the quantum heat engine efficiency. 

This paper is organized as follows. In Section 2 we derive quantized particle energy in infinite one-dimen- 
sional potential well in the presence of minimal length. In Section 3 we determine inward and outward heat 
through the system by isoenergetic and isoentropic process, and then we compute the efficiency of Carnot 
Quantum heat engine with two-level state. Finally, in Section 4 we present a discussion of our results and our 
conclusions. 

2. Schrodinger Equation with Minimal Length 
The general form one-dimensional Schrodinger equation is as follows 

( )
2ˆ

0
2

V x E
m

p ψ
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=−                                  (2) 

with operator p̂ i
x
∂

= −
∂
 . In order to incorporate minimal lengths in our equation, we used literature [3] about 

the position space representations as follows 
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where 0β ≥  is a small parameter. With the representation above, we obtain Schrodinger equation with mi-
nimal lengths as follows 
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We choose one-dimensional infinite potential well as a simple model, with potential energy 
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, other
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= ∞
                                 (5) 

So, particle in potential well can be described by one-dimensional time independent Schrodinger as follows 
4 2
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The equation can be solved by first determine the roots of equation 
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We only have two boundary condition ( ) ( )0 0x x Lψ ψ= = = = . It is impossible to find solutions of the eq-
uation by using all four roots. So, in order to obtain exact energy particle that can be applied to boundary condi-
tions, we only use two roots. Then we propose the solution as follows  

( ) 2 2 4 4 2 2 4
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By applying the boundary conditions and nornalization condition, we obtain quantized wave functions as fol-
lows 

( ) si π2 nn
nx x

L L
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                                (10) 

and energy  
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                           (11) 

which when we take 0β → , we have ordinary quantized energy in infinite one-dimensional potential well 
without minimal length 

2 2 2

2

π
2n

nE
mL

=
                                      (12) 

3. Isoenergetic Cycle Process with Minimum Length 
The system is assumed to be driven by reversible quasi-static process. That means the wall is moved very slowly 
by an applied external forced [15]. Because we work on quantum thermodynamics, it is necessary to introduced 
the ensemble average energy of the system as 

( ) ( ), ,
n

n nEE p L Lβ β= ∑                                (13) 

The change of the energy during the moving is given by 

n n
n

n nE E p Epδ δ δ+= ∑                                 (14) 

The above equation is analogous to the first law of thermodynamics. The term Eδ  analogous to internal 
energy, n nE pδ  analogous to heat exchanged, and n np Eδ  to the work done. 

For practical reason, we choose the system with two-level energy state ( )1,2n = . The Carnot cycle is shown 
as Figure 1. 

Let us consider first the isoenergetic process. The isoenergetic process analogous to isothermal process in 
classical thermodynamics, so 0Eδ = . According to reference [15], the heat exchanged along trajectory AL  to 

BL  given by 
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Because the initial state entirely to 1n =  and final state entirely to 2n =  then we get relation as follows 
 

 
Figure 1. Carnot circle for two-level system. 
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By using (11), we get 
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As noted earlier, that during the isoenergetic process, the total energy remains constant. Then we get 
( ) ( )1 2, ,A BE L E Lβ β= , that makes 2B AL L= . So during the first isoenergetic process, the heat flows from en-

vironment to system with 
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The work done to the system, can be obtain by AB ABW Q= − .  
At the second, we arrive at isoentropic process. For isoentropic process, the probability is unchanged through 

von Neumann entropy 

ln
i

i iS k p p= ∑                                    (19) 

The heat exchange during isoentropic process equal to zero. As a Figure 1, we expand the width of the poten-
tial well, from 2B AL L=  to 2C AL Lα= . If the width of the potential well is changed, then so does the total 
energy. Which means that it is not necessary to change the quantum state of the system during the isoentropic 
process, the state still on 2n = . So the work can be calculated as follows 
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Similar with isoenergetic process, we can calculate the heat exchanged from 2C AL Lα=  to D AL Lα= . The 
heat exchanged from the system to the environment along this process is given by 
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The last path along the cycle is isoentropic process, which return fully to the initial condition. The work per-
formed during this process from D AL Lα=  to AL  is given by 
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We obtain that work along two isoentropic process cancel each other, that is 0BC DAW W+ = . Therefore, the 
efficiency of the cycle can be expressed by 

1 CD

AB

Q
Q

η = −                                      (23) 

By substituting Equation (18) and Equation (21), we obtain the explicit analytical expression  
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with 
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Then we plot the graph between the efficiency versus the width of potential as Figure 2. From Figure 2, we 
obtain that the efficiency value depends on the initial value of potential width. We get interesting result that the 
efficiency value increase above classical result with the decreasing the width of potential. The efficiency is also 
affected by the size of minimal length. If we approximate 0AL → , the value of efficiency (24) would be 

4

11η
α

= −                                      (26) 

And at large width of potential well, the efficiency value approaches classical result.  
At Figure 3, we plot the graph with α  variations. We take 0β →  and using L’hopital theorem, we get  

 

 
Figure 2. The efficiency versus initial potential width, with 1.2α =  and β  variations. 

 

 
Figure 3. The efficiency versus initial potential width, with 5210β =  and α  variations. 
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Schrodinger limit as 

20
1im 1l

β
η

α→
= −                                     (27) 

Efficiency value returns to the quantum engine efficiency without the presence of minimal length. 

4. Discussion and Conclusion 
In this work, we have studied the consequences of the minimal length on the quantum thermodynamics. This 
minimal length modifies Schrodinger equation to be fourth order differential equation. We choose periodic solu-
tions in order to obtain the exact solutions. After that, we calculate the efficiency of heat engine with procedure 
in Reference [15]. We obtain for the width of potential smaller than 910 m− , the efficiency as (26). But for the 
width greater than 610 m− , the efficiency approaches to classical result (27).  

We conclude that the minimal length affects the efficiency of the quantum heat engine at small size of poten-
tial well. This effect can be explained by considering the particle as a ball-point having a finite size which is of 
order of the minimal length [1].  
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