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Abstract 
In this paper, we construct the group-invariant (exact) solutions for the generalised Fisher type 
equation using both classical Lie point and the nonclassical symmetry techniques. The generalised 
Fisher type equation arises in theory of population dynamics. The diffusion term and coefficient of 
the source term are given as the power law functions of the spatial variable. We introduce the 
modified Hopf-Cole transformation to simplify a nonlinear second Order Ordinary Equation (ODE) 
into a solvable linear third order ODE. 
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1. Introduction 
In this paper, the focus is on the generalised Fisher type equation arising in population dynamics. The analysis 
of the generalised Fisher equation has been carried out using Lie point symmetries (see e.g. [1]) and construction 
of conservation laws see e.g. [2]). These types of equations have appeared in many fields of study, for example, 
the reaction-diffusion equations arise in heat transfer problems [3], biology [4] [5], and transmission of nerve 
signals [6]. The reaction-diffusion equations such as the generalized Fisher equation describe how the concentra- 
tion of a substance is distributed in space changes, whereby the diffusion term causes the spread over the surface. 
Fisher [4] had used a nonlinear reaction-diffusion equation to model the population growth of mutant genes over 
a period of time. One can take Fisher’s equation [4] and with simple modifications, and can derive the Fitzhugh- 
Nagumo equation [7]. Moreover, one can make a modification to the Fitzhugh-Nagumo equation in order to 
obtain Huxley’s equation [4]. 

A significant amount of work has been done in the process of studying the reaction-diffusion equations. In 
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particular, from the classical Lie symmetry analysis point of view (see e.g. [8]), and nonclassical symmetry 
techniques [7] [9] [10]. It turns out that reaction diffusion equations such as the generalised Fisher equation 
admit the genuine nonclassical symmetries if the source term is given by a cubic (see e.g. [7] [10]). In a recent 
work [3] [11], the authors assume a diffusivity which depends on space variable. In this case, the diffusivity may 
be given as a power law function of space variable for the given reaction-diffusion equation to admit non- 
classical symmetries. 

This paper is arranged as follows. In Section 2, we provide the mathematical models for problems arising in 
population dynamics. In Section 3, we provide a brief account of the symmetry methods. In Sections 4 and 5, we 
provide the nonclassical and classical Lie point symmetry reductions, respectively. In Section 6, we briefly 
provide remarks on the conservation laws of the equation in question. The discussions and concluding remarks 
are given in Section 7. 

2. Mathematical Description  
For a diploid population having two available alleles at the locus in question ( 1A  and 2A ), there are three 
possible genotypes; 1 1A A , 1 2A A  and 2 2A A , where 1A  is the allele is under observation. Then, the following 

three equation describe the change in the genotype frequencies ( )11 ,t xρ , ( )12 ,t xρ  and ( )22 ,t xρ ,  

( ) ( )

( ) ( ) ( )

( ) ( )( )

211 11
11 11

12 12
12 12

222 22
22 22

,

1 ,

1 ,

k x g x u
t x x

k x g x u u
t x x

k x g x u
t x x

ρ ρ
µρ γ ρ

ρ ρ
µρ γ ρ

ρ ρ
µρ γ ρ

∂ ∂∂  = − + ∂ ∂ ∂ 
∂ ∂∂  = − + − ∂ ∂ ∂ 
∂ ∂∂  = − + − ∂ ∂ ∂ 

                     (1) 

where ijγ  are the reproductive success rate of genotype ,i jA A  µ  is the common death rate, ( ),t xρ  is the 

total population density, ( ) ( ) ( ) ( )11 12 22, , , ,t x t x t x t xρ ρ ρ ρ= + + , and u is the frequency of allele 1A . The 

frequency of allele 2A  is given by ( )1 u− . Note that u depends on t and x. The frequency of allele 1A  is  

11 122
.

2
u ρ ρ

ρ
+

=                                      (2) 

Differentiating Equation (2) with respect to t, then the three genotype equations (1) collapse into a single 
equation that describes the change in frequency of the new mutant gene 

( ) ( ) ( ) ( )( )1 2

2
1 ,

k xu u uk x g x u u h h u
t x x x x

ρ
ρ

∂ ∂ ∂ ∂ ∂ = + + − − ∂ ∂ ∂ ∂ ∂ 
                    (3) 

where 1 12 22h γ γ= −  and 2 11 12 222h γ γ γ= − + − . Equation (3) is a reaction-diffusion-convection equation with 

cubic nonlinearities referred to here as a generalised Fisher equation. If 0
x
ρ∂
=

∂
, the total population density is  

constant in space, Equation (3) reduces to the Fitzhugh-Nagumo equation. When deriving the models with the 
continuous method, there is an extra convective term due to the assumption that total population density is not 
uniform spatially. 

If one is to consider the conditions that Fisher had examined, so that the allele in question is completely 
recessive. This implies that the genotypes AA  and Aa  have the same phenotype, therefore they have the 
same reproductive success rate. Let the alleles represented by A and a be set as the alleles 2A  and 1,A  
respectively. Hence, 1A  is the allele under consideration. If 12 22γ γ=  the one obtains  

( ) ( ) ( ) ( )22
1 ,

k xu u uk x hg x u u
t x x x x

ρ
ρ

∂ ∂ ∂ ∂ ∂ = + + − ∂ ∂ ∂ ∂ ∂ 
                      (4) 
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where 11 22h γ γ= − . One can see that Equation (4) is also a reaction-diffusion-convection equation. If 0
x
ρ∂
=

∂
, 

then Equation (4) reduces to a generalized Fisher type equation, 

( ) ( ) ( ) ,u uk x g x q u
t x x

∂ ∂ ∂ = + ∂ ∂ ∂ 
                                (5) 

which models the propagation of impulses along nerve axons. In this paper we focus on the reaction diffusion 
equation of the form 

( ) ( )22 , , ,nu ux ax q u a n
t x x

∂ ∂ ∂ = + ∈ℜ ∂ ∂ ∂ 
                           (6) 

We refer to Equation (6) as the governing equation. The variable u may be viewed as representing population. 
The diffusivity ( )k x  may be given by quadratic in x for equations such as Equation (6) to admit genuine 

nonclassical symmetries (see e.g. [3] [11]). In this paper the coefficient of the cubic source term ( )q u  is given 

by the power law 2nx  where n is a real constant. 

3. Symmetry Methods for Differential Equations 
In this section, we restrict discussions to symmetry analysis of second order differential equations. Given for 
example, a second order differential equation of the form  

( ) ( )( )1 2, , , , 0,t x u u u∆ =                                       (7) 

where the subscripts denote all possible first and second derivatives of u with respect to t and x. Finding 
classical Lie point symmetries of Equation (7) implies seeking infinitesimal transformations of the form 

( ) ( )
( ) ( )
( ) ( )

1 2

2 2

2

, ,

, , ,

, ,

t t t x u

x x t x u

u u t x u

ξ

ξ

η

= + +

= + + 


= + + 

  

  

  

                                 (8) 

generated by the vector field  

( ) ( ) ( )1 2, , , , , , .X t x u t x u t x u
t x u

ξ ξ η∂ ∂ ∂
= + +

∂ ∂ ∂
                           (9) 

Note that the transformations in (8) are equivalent to the one-parameter Lie group of transformations that 
leaves the Equation (7) unchanged or invariant. The action of X is extended to all derivatives appearing in the 
equation in question through the appropriate prolongation. The infinitesimal criterion for invariance of the given 
equation is given by  

[ ]2

0
0.X

∆=
∆ =                                         (10) 

Equation (10) yields an overdetermined system of linear homogeneous equation which can be solved 
algorithmically. Note that the solution of Equation (10) yield the classical Lie point symmetries admitted by 
Equation (7). Full theory of determination of Lie point symmetries may be obtain in among other texts [12]-[14]. 
If the invariance is sought subject to a further constraint  

1 2
t xu uξ ξ η+ =                                         (11) 

known as the invariant surface condition (ISC), that is given  
[ ]2

0,
0,

ISC
X

∆=
∆ =                                        (12) 

then one obtain a system of nonlinear determining equations which may yield the nonclassical symmetry 
generators [15]. 
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4. Nonclassical Symmetry Reductions  
In this section, we consider nonclassical symmetry reductions of the generalised Fisher type equation given in 
Equation (6). Here, ( )q u  is given as a cubic function of u (see e.g. [7]) and both the diffusivity and the 
coefficient of the source term are given by power law functions of the space variable. 

4.1. Nonclassical Symmetry Reduction Given n = 1  
In this subsection, we consider Equation (6) with 1n =  and 3.q u=  Assuming 1 1ξ = , the infinitesimal 
criterion for invariance of the form (12) results in a system of overdetermined nonlinear determining equations 
which is split in the powers of in powers of xu  as given below; 

1:  
2 2 2 3 2 3 3 2 3 3 2 2 3 22 3 2 2 2 0.u x t x xx xa u x a u x a u x x x x xηξ η η ξ η ηξ η η− + − − − + + =  

xu :  

( )22 3 3 2 3 3 2 2 2 2 2 2 2 2 2 23 2 2 2 2 2 2 0.u xu xx x u x ta u x x x x x x x xξ η ξ ξ ξ ξ ξ ξ ξ ξ ξ− + − + + − + − =  
2
xu :  

2 2 2 2 22 4 2 0.xu uu u ux x xξ η η ξ ξ− − − =  
3
xu :  

2 0.uuξ =  

The solution of these determining equations yields the admitted nonclassical symmetry generator given by  

2 2 2 2 33 3 3 .
22 2

X x au x xau x a u u
t x u
∂ ∂ ∂   

= + + − + +   ∂ ∂ ∂   
                     (13) 

The associated ISC is given by  

2 2 2 2 33 3 3 .
22 2t xu x au x u xau x a u u 

+ + = − − − 
 

                       (14) 

Using governing equation and the ISC (14) simultaneously one may eliminate tu  to get the equation  

2 2 2 2 3 23 1 33 0.
22 2xx xx u x x au u x a u xau u 

+ + + + + = 
 

                    (15) 

Employing a change of variables ln ,y x=  then Equation (15) reduces to  

( ) ( ) ( )2 3 23 1 32 exp exp 2 exp 0
22 2yy yu y au u a y u y au u 

+ + + + + = 
 

             (16) 

We introduce the “modified” Hopf-Cole transformation given by  

( ) ( ) ( )
( )

v y
u y F y

v y
′

=                                   (17) 

to simplify Equation (16). Upon substituting (17) into Equation (16), it turns out that ( )F y  must satisfy an 
algebraic equation  

( ) ( ) ( ) ( )22 3 2 exp 4exp 2 0.a F y a y F y y− − + − =                     (18) 

Hence  

( ) ( )
2

exp
F y

a y
=  

and so Equation (16) transforms to a linear third ODE  
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0.v′′′ =                                        (19) 
The solution to Equation (19) is given by  

( ) ( ) ( ) ( )2
1 2 3

1, .
2

v t y c t y c t y c t= + +                          (20) 

Substituting backwards for ( ),u t x , produces  

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 2

2
1 2 3

2 2 ln
, .

ln 2 ln 2

c t x c t
u t x

ax c t x c t x c t

+  =
 + + 

               (21) 

Solving for the arbitrary functions, ( )ic t , Equation (21) is substituted back into the ISC given by Equation 
(14). Hence, we obtain in terms of the original variables the general nonclassical symmetry exact solution given 
by  

( )
( )

( ) ( ) ( )
1

2 2
1 1 2

2 2 ln
, ,

ln 2 ln 2 6 2

x t a
u t x

ax x a t x t a t t a

− +  =
 + − + − + + 

                   (22) 

where 1a  and 2a  are arbitrary constants. Solutions (22) is depicted in Figures 1-3. 
 

 
Figure 1. Population frequency over time and space given solution (22). Here, 
the parameters are given by 1 2 1.a a a= = =                                   

 

 
Figure 2. Population dynamics as time progresses over space given solution (22). 
Here, the parameters are given by 1 2 1.a a a= = =                               
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Figure 3. Impact on the population frequency as time evolves given solution 
(22). Here, the parameters are given by 1 2 1.a a a= = =                         

 
If the source term is given by ( )3u k−  then u u k= − , gives rise to the equation 

( )2 2 2 3.t x x
u x u a x u= −                                    (23) 

In this case, the exact (group-invariant) solution will be given by,  

( )
( )

( ) ( ) ( )
1

2 2
1 1 2

2 2 ln
, .

ln 2 ln 2 6 2

x t a
u t x k

ax x a t x t a t t a

− +  = +
 + − + − + + 

                  (24) 

4.2. Nonclassical Symmetry Reduction Given n ≠ 1  
Suppose that one considers a more general case, ( ) ( )2ng x ax=  where n∈ℜ . The governing equation then 
becomes  

( ) ( )22 3.n
t x x

u x u ax u= −                                    (25) 

Following the steps above, the admitted genuine nonclassical symmetry is given by   

( )( ) ( ) ( )( )2 2 21 3 2 4 2 3 3 2 .
2 2

n n nuX x ax u n ax u ax nu n n
t x u
∂ ∂ ∂

= + + − − + + +
∂ ∂ ∂

          (26) 

The associated ISC is given by   

( )( ) ( ) ( )( )2 2 21 3 2 4 2 3 3 2 .
2 2

n n n
t x

uu x ax u n u ax u ax nu n n u+ + − = − + + +              (27) 

Eliminating tu  using (25) and (27) one obtains 

( )( ) ( ) ( ) ( )( )2 22 3 2 23 2 2 4 2 3 3 2 0.
2 2

n n n n
xx x

x ux u ax u x n u ax u ax u ax u n n+ + + − + + + + + =         (28) 

Introducing the transformation lny x=  yields   

( ) ( ) ( ) ( )2 3 2 23 1 3 1e 2 e e 0.
2 22 2

n ny y y
yy yu a u n u a u n a u n n u + + + + + + = 

 
            (29) 

In this case, it turns out that the “modified” Hopf-Cole transformation should be given by  
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( )
( )( )

( )
( )

2 ,
exp

n

v y
u y

v ya y

′
=  

as such the transformed Equation (29) becomes a solvable linear third order ODE  

( )22 0.v n n v′′′ ′− − =  

In terms of the original variables the exact solution is given by  

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

1 11 13 23 2 2 2
2 1

1 11 1
2 22 2

2 1 0

1

, ,

2

n n n n

n n n nn

n n x c t x c t

u t x

ax x c t n n x c t n n c t

− − −

− − −

 
− −  

 =
 

− + − −  
 

             (30) 

where ( )ic t  are arbitrary functions of t. Without loss of generality, set ( )2 1c t =  and then solving for the rest 
of the arbitrary functions by substituting Equation (30) into the ISC corresponding to this case. Then, ( )0c t  and 
( )1c t  can be found to be  

( )0 0,c t =                                       (31) 

or 

( ) ( )( )3 2 2
0 1

1exp 2 2 2 2 1 3 3 ,
2

c t a n n n n n n t = − − − − + 
 

                     (32) 

and 

( ) ( ) ( )( )1 2 exp 2 1 2 1c t a n n n t= − −                            (33) 

If 0n = , then the problem is equivalent to the one considered in [3] and 1n =  yields the problem discussed 
in the previous section. 

5. Classical Lie Point Symmetry Reductions  
5.1. Classical Lie Point Symmetry Reductions Given n = 1  
We consider the case where 1n =  and ( ) 3q u u=  in Equation (6). In this case the admitted Lie algebra is 
three dimensional and spanned by the vector fields  

1 ,X
t
∂

=
∂

 

2 ,X x u
x u
∂ ∂

= −
∂ ∂

 

( ) ( )3 2 ln 1 ln .X t x t x x t u
t x u
∂ ∂ ∂

= + + − + +
∂ ∂ ∂

 

It is easy to show that this Lie algebra is closed. Reductions are possible by any linear combination of these 
symmetries. Usually one may determine the optimal system of subalgebras of these classical Lie point 
symmetries to determine reductions which are not connected by any point transformation. However here we 
restrict analysis to three cases only. Note that symmetry generator 3X  led to hard to solve reductions and thus 
its use is omitted.  

5.1.1. Reduction by X2  
The corresponding characteristic equations corresponding to this scaling symmetry are given by  

d d d ,
0
t x u

x u
= = −                                     (34) 
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and the functional form of thew group-invariant solutions is given by  

( ) ( )1, ,u t x f t
x

=  

where f satisfies the ODE  

( ) ( )32 .f t a f t′ = −                                   (35) 

We obtain  

( )
1
2

2

1 ,
2

f t
a t d

 =  + 
                                 (36) 

and so, the group-invariant solution for the governing equation is given by  

( )
1
2

2

1 1,
2

u t x
x a t d
 =  + 

                               (37) 

The solution in Equation (37) is depicted in Figure 4 and Figure 5. Given the source term ( ) ( )3q u u k= − , 
with k being an arbitrary constant we obtain  

 

 
Figure 4. Impact on the population frequency over time and displacement given solution (37). Here, 1.a d= =     

 

 
Figure 5. Impact on the population frequency given solution (37). Here, 1a =  and 0d = .                       
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( ) ( )32 2 2 .t x x
u x u a x u k= − −                               (38) 

The transformation, u u k= −  can be made to Equation (38) to give  

( )2 2 2 3.t x x
u x u a x u= −                                  (39) 

In terms of the original variables the exact (group-invariant) solution for Equation (38) is given by  

( )
1
2

2

1 1, .
2

u t x k
x a t d
 = + + 

                               (40) 

5.1.2. Reduction by X1  
The time translation symmetry leads to the steady state problems with the model given by the modified Emden- 
Fowler equation of the form  

( ) ( ) ( )322 ,u x u x a u x
x

′′ ′+ −                                (41) 

The transformation 1z x−=  reduces the ODE (41) into the Emden-Fowler equation  

( ) ( )32 4 ,u z a z u z−′′ =  

which is hard to solve exactly. Note that ODE (41) admits the scaling symmetry which may be used to reduce 
the order this equation by one. 

5.1.3. Reduction by the Combination c X c X1 1 2 2+   
To construct the exact (group-invariant) solution we consider the linear combination of symmetries 1X  and 

2.X  The characteristic equation corresponding to this combination is given by  

1 2 2

d d d .t x u
c c x c u

= =
−

 

The basis of invariants is given by  

2
1

1

exp
cI x t
c

 
= − 

 
 

and  

2
2

1

exp .
cI t u
c

 
=  

 
 

Let 1Iγ =  and ( ) 2 .F Iγ =  Thus the functional form of the group-invariant solution is given by  

( ) ( )2

1

, exp ,
cu t x t F
c

γ
 

= − 
 

                               (42) 

where F satisfies the second order ODE  

( ) ( ) ( ) ( )32 2 22 2

1 1

2 0.
c cF F F a F
c c

γ γ γ γ γ γ γ
 

′′ ′+ + + − = 
 

                     (43) 

Equation (43) admits the following rotation symmetry,  

.X F
F

γ
γ
∂ ∂

= −
∂ ∂

                                   (44) 

We implement the method of differential invariants to reduce the order of Equation (43) by one. The first 
prolongation of X is given by 

[ ]1 2 .X F F
F F

γ
γ
∂ ∂ ∂′= − −

′∂ ∂ ∂
                            (45) 
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The characteristic equations are given by,  
d d d .

2
F F
F F

γ
γ

′
= − = −

′
                                (46) 

The invariants are therefore, 1J Fγ=  and 2
2J Fγ ′= . Writing 1 ,J z=  2J G=  and ( )G G z=  we 

obtain the reduced equation 

( )3 3 2

1d
d

ca z G z
cG

z G z

− +
=

+
                               (47) 

A further simplification can be made to Equation (47), whereby G G z= + . Therefore Equation (47) can be 
written as,  

2 3 2

1

d 1 .
d

cGG a z G
z c

 
= + − 

 
                              (48) 

Suppose 2 1c c= , then Equation (48) becomes variable separable and the solution for G  can be found. 
Substituting back for G gives,  

( )
2

,
2

azG z z= −                                   (49) 

wherein an integration constant vanished for simplicity. 
In terms of the original variables we obtain a group-invariant (particular) solution given by  

( )
( ){ }1

2, .
2 2 ln

u t x
x k a t x

=
+ −  

                          (50) 

where 1k  is an arbitrary constant. The ODE (47) is difficult to solve exactly when 1 2c c≠ . Solution (50) is 
depicted in Figure 6. 

5.2. Classical Lie Point Symmetry Reduction Given n ≠ 1   
In this case, Equation (25) admits a two dimensional Lie symmetry algebra spanned by the base vectors  

 

 
Figure 6. Impact on the population frequency given solution (50). Here, 1 1.k =                                        
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1 ,X
t
∂

=
∂

 

2 .X x nu
x u
∂ ∂

= −
∂ ∂

 

5.2.1. Reduction by X1  
The time translation led to the steady state problem given by the Emden-Fowler type ODE  

2 2 2 32 0,n nu u a x u
x

−′′ ′+ − =  

Which is harder to solve exactly. 

5.2.2. Reduction by X2  
Reduction by this symmetry generator led to a functional form of the group-invariant solution given by  

( ) ( ), ,nu t x x F t−=  

which is in fact separation of variables. Here F satisfies the first order ODE  

( ) 2 31 ,nF n nF a F′ + − +  

which has a solution  

( ) ( )

( ) ( )

1 22 1

2 12
1

1 e
,

1 e

n n t

n n tn

n n
F

n nk a

−

−

 − = ± 
− +  

 

where 1k  is an integration constant. Thus we obtain 

( ) ( ) ( )

( ) ( )

1 22 1

2 12
1

1 e
, .

1 e

n n t
n

n n tn

n n
u t x x

n nk a

−
−

−

 − = ±  
− +  

 

6. A Note on Conservation Laws of Equation (25)  
It is worth noting that Equation (25) has the conservation laws given by the conserved vectors  

( )
3

1 2 23 1 3exp , exp 2 ,
4 2 4 xT t xu T t x u xu   = − = − −   

   
 

( )
3

1 223 1 3exp , exp 3 2 .
4 2 4 xT t x u T t x u xu

−   = − = − − +   
   

 

provided 0,a =  which implies a linear heat equation with spatial dependent diffusion term. These combination 
of conserved vectors is obtained by both direct and multiplier methods. 

7. Some Discussions and Concluding Remarks 
In this paper, we have used both classical and nonclassical symmetry methods to construct the exact solutions. 
Some new group-invariant (exact) solutions for reaction diffusion equation with spatially dependent diffusivity 
and the coefficient of the source term have been constructed using both classical and nonclassical symmetry 
techniques. Figures 1-6 depict the change in mutant population with respect to either time or space or both. The 
effects of the parameters appearing in the plotted exact solutions on the population are displayed. We have 
introduced the modified Hopf-Cole transformation to transform a nonlinear second order ODE to a simpler to 
solve linear third order ODE. To the best of our knowledge, this transformation has never been used in the 
recorded literature. 
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