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Abstract 
The problem of diffraction of a plane acoustic wave by a finite soft (rigid) cone is investigated. This 
one is formulated as a mixed boundary value problem for the three-dimensional Helmholtz equa-
tion with Dirichlet (Neumann) boundary condition on the cone surface. The diffracted field is 
sought as expansion of unknown velocity potential in series of eigenfunctions for each region of 
the existence of sound pressure. The solution of the problem then is reduced to the infinite set of 
linear algebraic equations (ISLAE) of the first kind by means of mode matching technique and or-
thogonality properties of the Legendre functions. The main part of asymptotic of ISLAE matrix 
element determined for large indexes identifies the convolution type operator amenable to expli-
cit inversion. This analytical treatment allows one to transform the initial diffraction problem into 
the ISLAE of the second kind that can be readily solved by the reduction method with desired ac-
curacy depending on a number of truncation. All these determine the analytical regularization 
method for solution of wave diffraction problems for conical scatterers. The boundary transition 
to soft (rigid) disc is considered. The directivity factors, scattering cross sections, and far-field dif-
fraction patterns are investigated in both soft and rigid cases whereas the main attention in the 
near-field is focused on the rigid case. The numerically obtained results are compared with those 
known for the disc. 
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1. Introduction 
A contemporary nondestructive testing and acoustic diagnostics of materials exploit the modelling simulation. 
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The latter provides for interaction of waves with defects of canonical shapes for which some analytical and 
semi-analytical solutions of corresponding diffraction problems can be obtained. These solutions play a key role 
in benchmark data for common numerical methods. On the other hand, it is of importance to take into account 
physical characteristics of defects and constructions for obtained reliable results of diagnostics in a wide fre-
quency range. It is clear that solutions of diffraction problems on impedance surface very often cannot be ob-
tained in analytical forms. But one can obtain a solution by analytical method for soft and rigid surfaces which 
are the boundary cases of impedance. So here, we contemplate as a model of construction or defect a finite cone 
with these surfaces. 

In the scientific literature, a significant number of works are devoted to the study of diffraction of acoustic 
waves in semi-infinite cones with different types of boundary conditions (Dirichlet, Neumann, impedance 
boundary condition). Infinite circular cones [1]-[7] are mainly considered. Diffraction elliptic cone is reviewed 
in [8] and one of limiting cases of the cone such as diffraction of acoustic waves on plane sectors is studied in [9] 
[10]. A semi-transparent cone is investigated in [11]. Scattering of electromagnetic wave by infinite cones is also 
considered (see, for example [12]). It should be noticed that the infinite cone is explored from the mechanical 
point of view in [13]. 

The Wiener-Hoрf method in combination with the method of Kontorovich-Lebedev integral transformations 
is used for the solution of the diffraction problem on finite hollow cones (where discs are considered as particu-
lar cases of cones) [14] [15] and on the semi-infinite cone formed by the finite and semi-infinite conical surfaces 
with different boundary conditions [16]. In publication [17], the appropriate problem is solved on a finite cone 
with internal termination in one of the sectors. Analytical regularization procedure for diffraction problems on 
fragments of circular conical surfaces is proposed earlier in [18] [19] where an excellent survey of known results 
for diffraction by finite cone is done. This procedure is used for investigation of the finite cone [20] in the elec-
tromagnetic case. Geometrical theory of diffraction is used in [21]. 

In this article, based on analytical regularization procedure [18], we investigate a scattered field of a plane 
acoustic wave from the perfectly soft (rigid) finite cone in a different frequency range. 

2. Statement of the Problem 
Let us consider the perfectly soft (S) rigid (R) hollow finite cone ( ) [ ){ }: 0, , , 0, 2πQ r c θ γ ϕ∈ = ∈  (see Figure 
1) in a spherical coordinate system ( ), ,r θ ϕ . Cone Q  is irradiated by a plane monochromatic acoustic wave 
that propagates along the symmetry of a cone in the direction z=n i  with the velocity potential 

( ) ( ) ( ) ( ), exp exp cosiU r ik ikrθ θ= =rn ,                          (1) 

where n  is the vector, that defines a position of any point on the wave front, with the component  
( )0, 0, cosr θ=r r , r = r ; n  is the normal vector, ( )0,0,1=n n ; zi  is the unit vector, ( )0,0,1z z=i i ; 

0k cω=  is a wave number, ω  is the circular velocity, 0c  is the phase of the sound. Time factor 
( )exp i tω− is suppressed throughout this paper. 

Since the velocity potential ( )iU  is symmetrical and independent of azimuth angle ϕ , than the scattering 
field is estimated in terms of the scalar (velocity) potential, satisfying the three-dimensional Helmholtz equation 

( ) ( )2, , 0U r k U rθ θ∆ + = ,                                (2) 

where ∆  is Laplace operator, 
2

2 2

2 1 sin
sinr rr r

θ
θ θθ

∂ ∂ ∂ ∂ ∆ = + +  ∂ ∂ ∂∂  
. 

The unknown potential ( ),U U r θ=  of the diffracted field is related to the sound pressure p  and to the 
velocity of particles υ  by way of 

0p i Uωρ= − , U= −∇υ , 

and satisfies the Dirichlet (S) or Neumann (R) boundary conditions on the surface of the cone Q  as follows: 
( )

{ },
0i

r Q
U U

θ ∈
 + =   for S;                             (3a) 
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Figure 1. Geometrical scheme of the problem. 

 
( )

{ },

0i

r Q

U U
θθ ∈

∂  + = ∂
 for R.                            (3b) 

Here 0ρ  is mean density; ∇  is the nabla operator. 
In order to obtain the unique solution to the problem (2), (3), the additional conditions must be imposed on the 

unknown velocity potential ( ),U U r θ= : the radiation condition written as: 

1U ikU o
r r

∂  − =  ∂  
, r →∞ , 

and the condition of the finiteness of energy in any bounded volume (edge condition) given as: 

{ }2 221 d
2 V

U k U V∇ + < ∞∫∫∫ . 

3. Solution of the Diffraction Problem 

For solution of the diffraction problem let us decompose the space ( ) [ ] [ ){ }3 : 0, , 0, π , 0, 2πR r θ ϕ∈ ∞ ∈ ∈  in 
regions 

( ) [ ){ }1 : 0, ; 0,D r c θ γ∈ ∈ , ( ) ( ]{ }2 : 0, ; , πD r c θ γ∈ ∈ , ( ) [ ]{ }3 : , ; 0, πD r c θ∈ ∞ ∈      (4) 

and determine the total field in the form of 

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

1 2

3

, , , , ;
,

, , , , .
t

i

U r r D D
U r

U r U r r D

θ θ
θ

θ θ θ

 ∈= 
+ ∈

 

Since the unknown scalar potential ( ),U r θ  satisfies the Helmholtz Equation (2), we represent it by means 
of eigenfunctions in the appropriate domains as: 

( )

( ) ( )
( )
( ) ( )

( ) ( )
( )
( ) ( )

( ) ( )
( )
( ) ( )

1
1 2 1

1

2
1 2 2

1

1 2 3
1

1 cos , , ;

1, cos , , ;

1 cos , , .

p

p
p

k
k

k

n
n

n

p
p

k
k

z
n z

n z

I sr
y P r D

I scsr

I sr
U r y P r D

I scsr

K srsr
x P r D

K scsr sr

ν
ν

ν

µ
µ

µ

θ θ

θ θ θ

θ θ

∞

−
=

∞

−
=

∞

−
=


∈



= − ∈

Φ + ∈


∑

∑

∑

               (5) 
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Here ( )1  py , ( )2
ky , nx  are unknown expansion coefficients; ( )1 2Pη− ⋅  is the Legendre function; ( )Iη ⋅  is 

the modified Bessel function; ( )Kη ⋅  is the Macdonald function; s ik= − ; pν  kµ  are positive roots of tran-
scendental equations 

( )1 2 cos 0
p

Pη η ν
γ− =

= , ( )1 2 cos 0
k

Pη η µ
γ− =

− = , for S;                   (6a) 

( )1
1 2 cos 0

p
Pη η ν

γ− =
= , ( )1

1 2 cos 0
k

Pη η µ
γ− =

− = , for R,                   (6b) 

where ( )1
1 2Pη− ⋅  is the associated Legendre function, which is defined in [22] by the expression 

( ) ( )1
1 2 1 2cos cosP Pη ηγ γ γ− −± = ±∂ ± ∂ . 

For further convenience, in (5) we introduce 1 2nz n= −  with ( ) 0srΦ ≡  for S cone and 1 2nz n= +  with 
( ) ( ) ( )0 1 2 1 2sr x K sr K scΦ =  and the unknown 0x  for R cone. 
The condition (6) guarantees satisfying the boundary condition at the conical surfaces for field presentation 

(5), as well as the finiteness of energy in the conical vertex. The Equation (5) satisfies the radiation condition at 
infinity. 

We expand the scalar potential of an incident plane acoustic wave (1) in the series of spherical functions. Ac-
counting a definition of indices nz  for S and R cones leads to one 

( ) ( ) ( ) ( ) ( ) ( )2
0

1
1

1, cos
n n

i
n z z

n

sr
U r A P I sr

sr sr
φ

θ θ
∞

−
=

= + ∑                       (7) 

with ( ) 0srφ ≡  for S and ( ) ( )1 2π/2sr I srφ =  for R cases respectively; ( ) ( ) 1 20 2π 1 nz
n nA z−= − . 

To find the unknown expansion coefficients in the (5), we use the mode matching technique 

( ) ( )
[ ]

( ) ( )
[ )

( ) ( )
( ]

0
0,

0
0,π

0
,π

, ;

,
, ;

t
r c

t
r c t

r c

U r
U r

U r

θ γ

θ

θ γ

θ

θ
θ

= −
∈

= +
∈

= −
∈


= 



                             (8a) 

( ) ( )
[ ]

( )

[ )

( )

( ]

0
0,

0
0,π

0
,π

( , ) ;

,
( , ) .

t
r r c

t
r r c t

r r c

U r
U r

U r

θ γ

θ

θ γ

θ

θ
θ

= −
∈

= +
∈

= −
∈

∂
∂ = 
∂


                          (8b) 

Substituting the relationship (5), (7) into Equation (8) leads to the series equations. In order to take into ac-
count the singularity of velocity of particles ( ) ( )1 2grad ,U r Oθ ρ−=  for 0ρ → , where ρ  is the distance to 
the edge in local coordinate system, we present these equations by way of 

( ) ( ) ( ) ( ) ( )
[ ]

( ) ( ) [ )

( ) ( ) ( ]

1

10

1 2
0,

1 2

2

π 1
1

1

2

lim cos , 0, ;
lim cos

lim cos , , π ;

p

n n

k

P

pN P p
n n z z KN n

kK k

y P
sc sc x A I sc P

y P

ν

θ µ

θ θ γ
φ θ

θ θ γ

−→∞ =
−→∞ =

∈ −→∞ =

 ∈ Φ + + + =  
 − ∈

∑
∑

∑
         (9a) 

( ) ( ) ( )
( )

( ) ( ) ( )
[ ]

( ) ( )
( )
( )

[ )

( ) ( ) ( )
( )

( ]

1
1

1
0,0

1

2

2
0,π

1
,

2

2

π

1

1

lim cos ;

lim cos

lim cos ,

p

p
p

n
n n

n k
k

k

P

pP p
N

z
n n z zN Kn z

kK k

I sc
y P

I sc
K sc

sc sc x A I sc P
K sc I sc

y P
I sc

ν
ν

ν
θ γ

µ
θ µ

µ
θ γ

θ

φ θ

θ

−→∞ =

∈
−→∞ =

∈ −→∞ =
∈

′



′  ′ ′ ′Φ + + + =  
′    −




∑

∑
∑

   (9b) 

where the prime indicates the derivation with respect to the argument. 
In order to reduce series Equation (9) to the infinite system of linear algebraic equations (ISLAE), we use a 

property of orthogonality of Legendre functions, which leads to [18] 
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( ) ( )
( )

( )
( )

( )

1 2 2 1 22
1

,
cos , lim cos

n j

P K
j j

z n P K j j n

P q z P
z η

η α η γ
θ γ θ

η

±

− −→∞ =

= ±
−∑ .                (10) 

Here upper sign (“+”) corresponds to [ )0,θ γ∈  and lower sign (“–”) ( ], πθ γ∈  with p pη ν=  and k kη µ=  
respectively; other notations are 

( ) ( )1 2, cos
nn zq z Pγ γ−= , ( ) ( )1

1

2, 2 cosPν ν η
α η γ γ ν

−±
− =

 = − ∂ ± ∂  , 1 2, 1,2,3,nz n n= − =   for S;  (11a) 

( ) ( )1 2
1, cos
nn zq z Pγ γ−= , ( ) ( )1 2

11, 2 cosPν ν η
α η γ γ ν

−±
− =

 = ∂ ± ∂  , 1 2, 1,2,3,nz n n= + =   for R.  (11b) 

First, we analyze the series Equation (9) for soft cone (S-case). For this purpose we substitute series (10) into 
Equation (9). Next, limiting the finite number of unknowns and excluding ( )1

py , ( )2
ky  we come to finite system 

of linear algebraic equations as follows: 

( ) ( )
( )

( ) ( )
0

2 2 2 2
1 1

n p n p

n p n p

N Nz zsc sc
n n

n np n z p n z

scW K I scW I I
x A

z K sc I sc z I sc I sc

ν ν

ν νν ν= =

   
   =

   − −   
∑ ∑ ;             (12a) 

( ) ( )
( )

( ) ( )
0

2 2 2 2
1 1

n k n k

n k n k

N Nz zsc sc
n n

n nk n z k n z

scW K I scW I I
x A

z K sc I sc z I sc I sc
µ µ

µ µµ µ= =

      =
   − −   

∑ ∑ ,            (12b) 

where ( ),n n nx q z xγ= , [ ] ( ) ( ) ( ) ( )W
φ

αβ α φ β φ α φ β φ′ ′= − , ( ) ( ) ( ) ( )0 0,
nn n n zA q z A I scγ= − , 1,p P= , 

1,k K= , N P K= + . 
The main reason of this limitation is to provide the correct transition from Equation (12) to ISLAE 

( , ,P K N →∞ ), the solution of which satisfies the Meixner condition at the conical edge. For this purpose, we 
introduce a growing sequence of roots { } 1p p

ν
∞

=
, { } 1k k

µ ∞

=
 of transcendental Equation (6a) as: 

{ } { } { } 11 1q p k kq p
ξ ν µ

∞ ∞ ∞

== =
=  .                            (13) 

Next, in Equation (12) we pass to limit , ,P K N →∞  ( N P K= + ) and arrange the ISLAE according to se-
quence (13) as: 

11A X F= .                                  (14) 

Here { } 1n n
X x ∞

=
= ; 11A  is the infinite matrix with the elements given as: 

( )

( ) ( )
11

11 2 2

, 1

: n q

n q

z sc
qn

q n z
q n

scW K I
A a

z K sc I sc

ξ

ξξ

∞

=

  
  = 

 −   

,                     (15) 

where { } 1n n
F f ∞

=
=  is the known vector 

( )

( ) ( )
0

2 2
1

n q

n q

z sc
q n

n q n z

scW I I
f A

z I sc I sc

ξ

ξξ

∞

=

 
 =

 − 
∑ .                        (16) 

Then we turn to analysis of rigid cone (R-case). To obtain the correct solution we take into account the values 
of pressure independent from θ  in domains 1 3, ,D D , which are determined by the unknowns 0x , ( )1

1y , 
( )2
1y , separately. This is done because the minimal (first) positive roots of the Equation (6b) 1 2η = . Substitut-

ing (10) into (9) and limiting the finite number of the unknowns, we exclude 0x , ( )1
py , ( )2

ky  ( , 1,k p = ∞ ) and 
come to ISLAE, where the first equation for indices 1p k= =  looks as: 

( ) ( )
( )

( ) ( )
0

2 2

1 2 1 2

1 2 11 211 4 1 4
n n

n n

N Nz zsc sc
n n

n nn z n z

scW K I scW I I
x A

z K sc I sc z I sc I sc= =

  
    

  


=

− −
∑ ∑ ,              (17) 

and the others are determined by Equations (12a), (12b) with 2,p P=  and 2,k K=  respectively. Here 
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1N P K= + − . 
According to our previous step for S-case, we introduce a growing sequence { }

1q q
ξ

∞

=
 in the following: 

{ } { } { } { } 21 2
1 2q p k kq p

ξ ν µ
∞ ∞ ∞

== =
=   .                         (18) 

For this case we use the definition of roots of transcendental equations by way of (6b). 
Further, passing to limit , ,P K N →∞  ( 1N P K= + − ) and arranging (12) and (17) according to (18), we ar-

rive at ISLAE in form of (14) with 1 2nz n= + . Thus, it is easy to prove that 0 0x ≡  for the other unknown
0x . 

4. Regularization of ISLAE 
Taking into account the asymptotic properties of the modified Bessel and Macdonald functions for large indices, 
it is found that 

( )
( )( )

( )( )

1

11

2

, , ;1

2 , 0,

q n q n q n

qn
q n

O z z z sc
a

z O sc sc

ξ ξ ξ

ξ

− −
= + −  →





                  (19) 

which is correct for S and R cones. 
Let us introduce the operator formed with the main parts of the asymptotic expression (15) as 

{ }1
, 1

: qn q n
q n

A a zξ
∞−

=
= − ,                             (20a) 

and 

( ){ } ( )( )
1

1 1

, 1

: , ,kq q k k q

k q

A M M z zτ ξ γ γ ξ
∞−

− −
− −

=

  ′ ′= − 
  

.                 (20b) 

Here 

( ) ( )d, ,
d

k

k
z

M z M
ν

γ ν γ
ν− −

=

′ =    , ( ){ } ( )
1 1d, ,

d
q

qM M
ν ξ

ξ γ ν γ
ν

− −

− −
=

′
  =     , 

where ( ),M ν γ−  is determined from the factorization of the even meromorphic function ( ),M ν γ , which is 
regular in the strip { }1: Re 2νΠ <  with simple zeroes and poles at kzν = ± , qν ξ= ±  that are located at the 
real axis out of the Π ; 

( ) ( ) ( )
( ) ( ){ }
( ) ( ){ }

1 2

1

1
11

1 2

1 2 1 2
1

cos cos for S,
, , , π cos π

cos cos for R,

P P
M M M

P P

ν ν

ν ν

γ γ
ν γ ν γ ν γ ν

γ γ

−

− −−
+ − −

− −

 −= = 
− −

        (21) 

( ),M ν γ+ , ( ),M ν γ−  are split functions, regular in the right Re 1 2v > −  and in the left Re 1 2v <  half- 

planes respectively; ( ) ( )1,M Oν γ ν ±=  and ( ) ( ) ( )1 2, ,M M Oν γ ν γ ν ±
+ −= − =  if ν →∞  in the regularity 

region, where upper sign corresponds to S and lower to R cones. Furthermore, the product of operators (20) 
represent the identity matrix I, 1A A I− = . 

Next, we formulate original diffraction problem (14) via the ISLAE of the second kind as follows: 

[ ]1 1
11X A A A X A F− −= − + .                              (22) 

The technique described above is elaborated in [18] [19] and called the analytical regularization procedure. 

ISLAE (22) admits the solution in the class of sequences ( ) { }: sup , lim 0n nnn
b X x x nσσ

→∞
= =  with 

0 3 2σ≤ <  for S and 0 1 2σ≤ <  for R cases. This fulfils all the necessary conditions for the existence of a 
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unique solution of ISLAE (22), including the Meixner condition on the edge [18]. 
We represent the other unknown coefficient in both S and R cases through the solution (22) by way of 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( )

1
02 1

2 2 2 2
1 1

,
,

n

nn
n zp p p p

k k k k n nn np p
k k

q zxy sc A I sc
z z

γ
φ δ η α η γ

η η

∞ ∞
±

= =

 
  

= + +  − −  
 

∑ ∑ , 

where , 1, 2,3,p k =  ; n
pδ  is Kronecker symbol; upper indexes in brackets correspond to region 1D  with 

pη ν=  and lower ones to region 2D  with kη µ= ; 1 2nz n= −  and 1 2nz n= + , 1, 2,3,n =   for S and R 
cases respectively. 

4.1. Low-Frequency Solution 
Let us rewrite the basic ISLAE (22) for both Dirichlet and Neumann cases by way of 

( )( )11

1 1
k kq qn qn n kq q

q q
x a a x fτ τ

∞ ∞

= =

= − +∑ ∑ ,                           (23) 

where 1,2,3,k =  . 
We take into account the low frequency asymptotic (19) and estimate the terms in expression (16) as: 

( ) ( ) ( ){ } ( ) ( )( )1 1 22 2 2
n q n qz q n z q nsc

scW I I z I sc I sc z O scξ ξξ ξ
− −  − = + +   for 0sc → .         (24) 

Neglecting the terms of order ( )( )22O sc , we immediately derive the approximate solution (23) as: 

( ) ( )

( )( )
0

1 1

,
21

nz
n n

k kq
q n n q n

q z A scx
z z

γ
τ

ξ

∞ ∞

= =

 = −  Γ + +  
∑ ∑ .                       (25) 

Let us introduce a contour integral 

( )
( )( )

,1 d
2π

R

nk
C n k

M t
J t

i z t z t
γ−=

+ −∫ ,                           (26) 

where the circle RC  with radius t R=  that envelopes the simple poles of the integrand at qt ξ=  
( 1, 2,3,q =  ) and nt z= − . The integrand (26) decays as t ε− , if R →∞ , where 3 2ε =  for S and 5 2ε =  
for R cases. Next, using the residual theorem, it is found that 

( ){ } ( )( )

( )
11

,1

,

n

q n k
q k q q n

M z
z z

M z z

γ

ξ γ ξ ξ

∞
+

−=

−

= −
+′

  − + 

∑ .                 (27) 

Substituting (20b) into (25) and taking into consideration the expression (27) we arrive at 

( )
( ) ( ) ( )

( ) ( )1

1 21 , ,2π
, 2

n nz z
n n

k
nk n k n

q z M z scx
M z z z z

γ γ
γ

−∞
+

=−

−  =  ′ + Γ  
∑ .                 (28) 

The expression (28) gives the approximate solution of the diffraction problem in low-frequency case as series 
of sc . 

4.2. Transition from Finite Cone to Disc 
Let us consider the particular case of the problem when cone opening angle π 2γ =  and becomes the disc. For 
this case, it is found that indices nz  and qξ  are determine as: 

2 ,  2  for S;

2 , 2   for 

3 2 1 2

1 2 ,2 R3
n q

n q

z n q

z n q

ξ

ξ

= − = −

= − = −
                        (29) 

with , 1, 2,3,n q =  . 
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Let us present the kernel function (21) in explicit form with split function ( ) ( ), π 2 , π 2M Mν ν+ −= −  as: 

( )
( )

( )
( )

21

2

3 42 2 for S,2, π 2
π 2 f1 2 1 4 or R.

M
i

ν ν
ν

ν ν

−

+

 Γ += 
Γ + Γ +

                  (30) 

Then, the couple of the regularization operators (20) is simplified and looks as: 

( )
( )

1

1

2 2 1 for S;

2 2 1 for R,
qn

q n
a

q n

−

−

 + += 
+ −

                                      (31a) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1

2 1 1

1 2 2 2 1 for S;1 2 1 28
π 1 2 2 2 1 for R.

kq

k k qq k
q k q k q

τ
− −

− −

 − − −Γ + Γ + = 
Γ Γ − − +

             (31b) 

Summarizing the above results, we prove that the solution of the wave diffraction problem for soft and rigid 
disc is reduced to the ISLAE, which we obtain from (22), taking into account expressions (29)-(31). 

5. Numerical Calculation 
All characteristics of the scattered field are calculated by reduction of ISLAE (22). The order of reduction has 
been chosen from the condition N sc q= +  with ( )4 10q = ÷ . Based on the solution we consider a far-field 
characteristics for soft and rigid cones and near-field characteristics for rigid cone as they are more practical in 
use. 

5.1. Far-Field Characteristics of Soft and Rigid Cones 
Let us express the far-field pattern as 

( ) ( ) ( )lim , exp
r

D rU r ikrθ θ
→∞

= − ,                         (32) 

where ( ),U r θ  for its physical matter determines the scattered field in region 3D . 
With the help of (32), we analyze a diffraction pattern for soft and rigid finite cones when the incident plane 

wave (7) illuminates the apex ( 30γ =  ) directly and aperture ( 150γ =  ), particularly for 18kc =  and 30kc = . 
The curves in Figure 2 show the far-field patterns for soft cone. From Figure 2(a) we can observe a formation 
of the main lobe of diffraction pattern in the direction of forward scattering 0θ =   (curve 1), while backscat-
tering ( 180θ =  ) radiation tends to zero. The side lobes are formed for observation angles 20 80θ< <  . The 
main lobe essentially grows with increasing kc . We also observe a typical peak about 60θ =  , which corres-
ponds to specular reflection (see curve 2) and the wide deep shadow region for 80 180θ< ≤  , whereas the 
contribution of radiation can be neglected. In Figure 2(b), we can observe the far field patterns in the case of 
plane wave irradiation of the cone aperture ( 150γ =  ). As it is seen from the behavior of curve 1 (compared to 
curve 1 and 2 in Figure 2(a)), the magnitudes of field scattering in direction 0θ =  is almost the same and sig-
nificant radiation is observed in the range of 130 180θ< <  . 

In order to obtain a profound knowledge of the scattering mechanism, we compare the scattering properties of 
soft and rigid finite cones. Figure 3 shows the far-field patterns scattered by the rigid cone with the same geo-
metrical parameters as in the previous case. Comparison of the curves in Figure 2(a), Figure 2(b) and Figure 
3(a), Figure 3(b) visually, we find the similar scattering properties for soft and rigid finite cones illuminated by 
the plane wave, which propagates along the conical axis. The main difference is the inherent backscatter effect 
for the sharp rigid cone and its lack for the same soft cone. 

We verified our results by comparing them with those obtained for circular soft (rigid) disc when 90γ =   
and 5kc = . In Figure 4, the magnitudes of the velocity potential is plotted as a function of the polar angle θ . 
The solid curve 1 (3) is obtained by us for soft (rigid) disc, while the dashed ones 2 (4) are obtained in [6]. There 
is an excellent agreement for all values of θ . 

Our further examination aims at studying the energy characteristics of scattering. First of all, we determine 
the directivity factor [23] as: 
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(a)                                              (b) 

Figure 2. Far-field patterns scattered by the soft cone for different wave parameter kc. (a) 30γ =  ; (b) 150γ =  . Curve 1 
corresponds to 18kc =  and curve 2 to 30kc = . 
 

  
(a)                                              (b) 

Figure 3. Far-field patterns scattered by the rigid cone for different wave parameters kc. (a) 30γ =  ; (b) 150γ =  . Curve 1 
corresponds to 18kc = , curve 2 to 30kc = . 
 

  
(a)                                              (b) 

Figure 4. The angular dependence of far field pattern. (a) Soft disc; (b) Rigid disc. Full line 1 (2) gives our calculation, bro-
ken line 3 (4) the values acording to [6]. 
 

( ){ } ( ){ }
π

2 2

0

2 0 sin dD D θ θ θΩ = ∫ .                       (33a) 

Applying (32) for (33a) it is found that 
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( ) ( )

2 2

2 2
1 1 2

n n

n n

n n
z n z

x x

K sc z K sc

∞ ∞

= =

   
   Ω =
   
   
∑ ∑ .                  (33b) 

In Figure 5(a), we can see the monotonous increase of the directivity factor Ω  for soft finite cone with the 
growth of wave parameter kc  and cone-generating angle γ . In the case of a rigid cone (Figure 5(b)), the 
growth of Ω  is similar, however with oscillations. This indicates that the formation of far-field radiation in di-
rection 0θ =  is not monotonuous. The maximum value is expected to be observed for wide cones ( π 2γ → ). 
For long wave ( 0kc → ), we have about 1Ω =  ( 3Ω = ) for a soft (rigid) cone. The latter corresponds to the 
case of the pulsating (oscillating) disc. So we see that directivity factor can be improved only by increasing the 
wave parameter kc  and cone-generating angle γ . Besides, one can obtain a good concentration of energy in 
forward direction. 

Let us express the total scattering cross section sσ  [23] as: 

( ) ( )

2

2 2 2
1

π
2π 2

n

ns

n
n z

x
c kc z K sc

σ ∞

=

= ∑ .                           (34) 

The scattering cross section sσ  as a function of the parameter kc  for soft and rigid cones with different 
opening angles γ  is shown in Figure 6(a), Figure 6(b) respectively. 

The curves shown in Figure 6(a) have different origins and these are shown in Table 1. They indicate to bet-
ter scattering properties of the soft structure than of the rigid one in low-frequency range (see Figure 6(b)). The 
further increase of kc  curves come to almost constant value (Figure 6(a)). The behavior of the curves in Figure 
6(b) shows the decay of their oscillations with the increase of kc , as well as the shift of the major peaks 
 

  
(a)                                                         (b) 

Figure 5. The series of the directivity factor. (a) Soft cone; (b) Rigid cone. 
 

  
(a)                                                         (b) 

Figure 6. The series of the scattering cross section. (a) Soft cone; (b) Rigid cone. 
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with the increase of γ  to the low-frequency region. This is observed as a result of the well-known piston ac-
tion in low-frequency range. Its lowest level is observed for cone-generating angle 20γ =   and wave parameter 
about 3kc ≤ , with the higher peaks for a wide cone, for instance, when 90γ =  , the wave parameter is 

2kc ≤ . 

5.2. Some Near-Field Characteristics 
Let us derive the total field potential representation at the point 0r =  located on the finite rigid conical surface 
as a function of the dimensionless parameter kc  as follows: 

( ) ( )
( )

( )

1
1 1

20
1 2

, for region ;
,

sh , for region .
t

r

y DscU r
sc y D

γ
=

= 


 

This gives the value of the total field potential at the vertex, if π 2γ <  and at the deepest point of the bot-
tom of conical cavity, if π 2γ > . Dependences of the normalized sound pressure from kc  at the point 0r =  
for these two cases are shown in Figure 7. The curve in Figure 7(a) is plotted for 30γ =   and shows the in-
terference of the periodical oscillations at the vertex for 12kc >  with the period of about 7kc = . In Figure 
7(b), the same dependence at the bottom of the cone with 150γ =   is shown. The pressure also has almost pe-
riodical oscillation with the period 45kc = . So we see that one can obtained a good amplification of pressure 
for some frequencies. For example, when 150γ =   and value of kc  is near 25, then the amplification is about 

( )30 iU  in comparison with an incident wave. 
In Figure 8(a), the dependences of the normalized sound pressure from kc  at the center of rigid disc 

( 90γ =  ) is shown. The curve on this figure shows the tripling of the pressure near πkc =  and a minimum at 
2πkc = , where the pressure almost equals that of the incidence plane wave ( )iU . Further increase of the fre-

quency leads to the periodical alternation of the maxima and minima. It indicates the formation of Fresnel zones. 
Comparison of our results with those obtained theoretically and experimentally [24] are also shown in Figure 
8(b). The difference of our theoretical results (curve 1) and experimental results (curve 3) is caused by two rea-
sons: the finite thickness of the disc (0.25 in) used in experiment, and the experimental errors specified by ex-
ternal probe microphone. From Figure 8(b), we can observe the excellent agreement our result (see curve 1) and 
theoretical result of [6] (see curve 2). 

A more complicated diffraction effect ( ) ( )t iU U  can be obtained, if we put down θ γ=  and observe it for 
range 0 r c≤ ≤ . It give us the cone’s surface pressure distribition along the cone-generating lengh c which is 
shown in Figure 9 and calculated by way of 

 
Table 1. First term of scattering cross-section expansion for soft cones (see also Figure 6(a)). 

Scattering 
cross-section 

Cone-generating angle ( 0kc → ) 

10˚ 20˚ 30˚ 40˚ 50˚ 60˚ 70˚ 80˚ 90˚ 
22πs cσ  0.108625 0.211077 0.325297 0.443974 0.558198 0.658833 0.737536 0.787636 0.810569 

 

  
(a)                                             (b) 

Figure 7. Normalized total field at the apex of the rigid cone. (a) 30γ =  ; (b) 150γ =  . 
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(a)                                             (b) 

Figure 8. Normalized total field magnitude at the center of the rigid disc. (a) Our calculations for large range of kc ; (b) 
Comparison of our data calculation (curve 1) with curve 2 obtained in [6] and experimental results (curve 3) from [24]. 
 

  
(a)                                             (b) 

Figure 9. Distribution of the pressure on lateral conical surface and disc. (a) Cone-generating angle is equal 30 degree; (b) 
Cone-generating angle is equal 90 degree. Sign “+” denotes the illuminating side ( 2D ) and “–” corresponds to the shadow 
side ( 1D ); curves 1 are for 1kc =  and curves 2 are for 6kc = . 

 

( ) ( ) ( ) ( )
( )
( )

1
2

1
1 20

1, cos p

p
p

t
pr c

p

I sr
U r y P

I sсsr
η

η
θ γ η

θ γ
∞

−≤ ≤
==

= ±∑ . 

Here the upper sign and p pη ν=  correspond to 1D  region and the lower sign and p pη µ=  correspond to 
2D  region. Besides, for 90γ ≤  , 1D  and 2D  represent the shadow and illuminated sides of the cone respec-

tively. 
In our investigation, we limit oneself to angles 30γ =   and 90γ =  . As can be seen from the foregoing 

Figure 9 in low frequency range ( 1kc = ) the distribution of pressure (see curves 1 in Figure 9(a), Figure 9(b)) 
over cone and disc surfaces in the shadow ( 1D ) and the illuminated ( 2D ) sides is not greater than the incident 
field. Futhermore, for the disc (see Figure 9(b)), the pressure along surfaces gradually tends to the incident 
field and equalizes with it at the edge. The situation is rather different for 6kc =  (see curves 2 on Figure 9(a), 
Figure 9(b)). As it is seen from Figure 9(a), the pressure on the lateral conical surface from the region 2D  is 
distributed almost symmetrically with two maxima about 0.25c , 0.75c . At the rear side the main maximum  
( ( ) ( )3t iU U≈ ) is observed at the conical bottom, where pressure ( ) ( )t iU U>  and remains on the same level  

along 0 0.25r c≤ < . It is because the piston mode gives the main contribution for pressure formation at the 
bottom of the conical cavity. This shows that the cone cavity is applicable for accumulation of acoustic energy. 
Another behavior of the pressure we observe for the disc surface (see Figure 9(b)). Here the main maximum is 
formed near 0.75c  with the good amplification ( ( ) ( )2.6t iU U= ) for the illuminated side 2D  while with  



D. B. Kuryliak et al. 
 

 
205 

( ) ( )t iU U<  near the center. On the back side of the disc surface 1D  the pressure is lower than incident wave  

( ( ) ( )t iU U< ), except for the center. 

6. Conclusions 
The mode matching technique together with the analytical regularization procedure is developed for the solution 
of the canonical diffraction problem of a plane acoustic wave by finite soft and rigid cones in axial irradiation. 
The diffraction problem has been reduced to ISLAE of the second kind, which satisfies all the necessary condi-
tions. The simple analytical solution in the static case has been derived. In addition, the limit cases of soft and 
rigid discs are considered, and the inverse operators in explicit form for these cases are obtained. 

Numerical solution is used for examination of the finite cone scattering characteristics in a wide frequency 
range. It is shown that for soft and rigid cases, the main lobe of the far-field pattern is formed in the forward di-
rection for vertex irradiation, while in both the forward and the back directions they are formed for opposite ir-
radiation. The global minima in low-frequency range for scattering cross section in soft case have been obtained, 
and the feebly resonating character of scattering cross section in 3kc <  for rigid case has been shown. For oth-
er frequency 10kc > , the scattering cross section does not exceed the double square of the disc 2πs cσ < 2  for 
both cases. 

By examination of the near field diffraction effect, the formation of periodical oscillations and good amplifi-
cation in maxima of these are shown. Distribution of pressures along lateral conical surface indicates the effect 
of acoustic energy accumulation in rigid conical cavity. 
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