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Abstract 
Time-varying coefficient models are useful in longitudinal data analysis. Various efforts have been 
invested for the estimation of the coefficient functions, based on the least squares principle. Re-
lated work includes smoothing spline and kernel methods among others, but these methods suffer 
from the shortcoming of non-robustness. In this paper, we introduce a local M-estimation method 
for estimating the coefficient functions and develop a robustified generalized likelihood ratio 
(GLR) statistic to test if some of the coefficient functions are constants or of certain parametric 
forms. The robustified GLR test is robust against outliers and the error distribution. This provides 
a useful robust inference tool for the models with longitudinal data. The bandwidth selection issue 
is also addressed to facilitate the implementation in practice. Simulations show that the proposed 
testing method is more powerful in some situations than its counterpart based on the least 
squares principle. A real example is also given for illustration. 
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1. Introduction 
The defining characteristic of a longitudinal data study is that individuals are measured repeatedly over a given 
time period, longitudinal studies are in contrast to cross-sectional studies, in which a single outcome is measured 
for each individual. The repeated measurements within each subject are generally correlated with each other, but 
different individuals can be assumed to be independent. The primary advantage of a longitudinal study is its ef-
fectiveness for studying changes over time. Statistical research in this field has been very active, and many pa-
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rametric models have been developed. See Diggle et al. [1], Davidian and Giltinan [2], Vonesh and Chinchilli 
[3], and the references therein. 

As overwhelming longitudinal data exist in biomedical studies, there are increasing demands for a generally 
applicable inference tool for analysing these datasets. The parametric models are efficient for analysing longitu-
dinal data but may suffer from mis-specification. To reduce possible modeling bias, different nonparametric and 
semiparametric methods have been studied in the literature, for example Zeger and Diggle [4], Müller [5], Eu-
bank et al. [6], He et al. [7] [8], among others. In particular, a useful nonparametric model for analysing 
time-varying effects of covariates receives much attention. Examples include Hoover et al. [9], Fan and Zhang 
[10], Huang et al. [11] and others. These works focus on the least-squares based estimation. While they are use-
ful in some applications, the shortcoming for lack of robustness is naturally raised. This motivates us to consider 
a robust inference tool for the time-varying coefficient models. 

In this paper, we consider a local M-estimation approach based on local polynomial smoother and a robusti-
fied “generalized likelihood ratio (GLR)” statistic to test if parts of the coefficients are constants or of certain 
parametric forms. This in particular allows one to nonparametrically check the goodness-of-fit of the usual li-
near models widely used in practice (see for example Diggle et al. [1]). We conduct extensive simulations to 
demonstrate that the proposed estimation method is robust against outliers and error distributions, and that the 
robustified GLR tests are powerful than its counterpart when the error deviates away from normality. 

This paper is organized as follows. In section 2, the local M-estimation approach is introduced; a data-driven 
bandwidth selection rule is also given. In Section 3, we focus on the robustified GLR tests. Simulations are con-
ducted in Section 4, where the performances of the different tests are compared, and a real example is also used 
to illustrate the proposed method. Finally, the paper is concluded by a discussion. 

2. Model and Estimation 
2.1. Local M-Estimation 
Consider the following time-varying coefficient model, 

( ) ( ) ( ) ( )T ,t t t tε= +Y X β                              (1) 

where ( ) ( ) ( ) ( )( )T
0 1, , , kt t t tβ β β= β  for 0k ≥  and ( )tε  is a zero-mean correlated stochastic process 

that cannot be explained by the covariates ( )tX . As in Hoover et al. [9] we regard the repeated observations 
( ), ,ij ij ijY X t , for 1, 2, ,i n=   and 1,2, , ij n=  , as a random sample from model (1), that is,  

( ) ( )T ,ij ij ij i ijY t tε= +X β                               (2) 

where ( )ij i ijY Y t=  is the observed response, ( ) ( )T
0 1, , ,ij i ij ij ij ijkt X X X= =X X   is the observed covariates 

for the ith subject at time ijt , and ( )i tε  is a zero-mean stochastic process with covariance function  
( ) ( ) ( )( ), Cov ,i ir s t s tε ε= . For this model, we assume that the measurements on the responses for different 

subjects are independent, but ijX  may be correlated at different time points within each subject, ( )i tε ’s are 
also independent for different subjects. Model (1) or (2) is a useful extension to the usual linear model for lon-
gitudinal/panel data analysis in Lindsey [12], Jones [13], Diggle, et al. [1], Hand and Crower [14], among oth-
ers. 

There are several methods for estimating the coefficient ( )tβ , for example, the smoothing spline method in 
Brumback and Rice [15], Hoover et al. [9], and Chiang et al. [16], the kernel smoother in Hoover et al. [9], Wu 
et al. [17], Wu and Chiang [18], and Chiang et al. [16], and other methods such as the two-step estimation in 
Fan and Zhang [10] and the global smoothing procedure using basis function approximations in Huang et al. 
[11]. These methods are all based on the least squares principle and suffer from the shortcoming of 
non-robustness. It is worthy of developing a robust estimation and testing method for the model (1). Generally 
speaking, one can develop different testing methods for different estimating approaches. To introduce our me-
thod, we begin with the local polynomial estimation (see Hoover et al. [9]), that is, to find rlb ’s to minimize  

( ) ( )
2

1 1 0 0
,

nn k di r
ij ijl ij rl h ij

i j l r
Y X t t b K t t

= = = =

 − − −  
∑∑ ∑ ∑                       (3) 

where ( ) ( )1
hK h K h−⋅ = ⋅ , and d denotes the order of the polynomial used in smoothing. 
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The above local least squares based estimation is not robust against outliers and heavy tailed errors. To fix 
this problem, we propose to estimate the coefficient function by minimizing  

( ) ( )
1 1 0 0

,
nn k di r

ij ijl ij rl h ij
i j l r

Y X t t b K t tρ
= = = =

 − − − 
 

∑∑ ∑ ∑                       (4) 

where ( )ρ ⋅  is an outlier resistant function. The coefficient functions ( )l tβ ’s is estimated by 0̂lb ’s 
( )0, ,l k=  , the solutions of the above optimization problem. The resulting estimators are so-called the local 
M-type estimator of ( )tβ . If ( )ρ ⋅  has a derivative ( )ψ ⋅ , then the solutions of (4) solve the following equa-
tions:  

( ) ( ) ( )
1 1 0 0

0,
nn k di r r

ij ijl ij rl ij ijl h ij
i j l r

Y X t t b t t X K t tψ
= = = =

 − − − − = 
 

∑∑ ∑ ∑                 (5) 

for 0, ,l k=   and 0, ,r d=  . 
The above method is in the same spirit of the local M-estimation studied for cross-sectional data in Fan and 

Jiang [19] and Jiang and Mack [20]. It can be shown that the estimator is n -consistent under certain condi-
tions. The estimator involves a selection of the outlier resistant function. Much work in the literature has dem-
onstrated that the Huber’s kψ -class, i.e., ( ) ( ){ }max ,min ,k x k k xψ = − , is satisfactory for robust estimation in 
the location model and nonparametric regression (Huber [21]; Jiang and Mack [20]), where a method for deter-
mining the parameter k was studied in Jiang and Mack [20]. However, our experience shows that a rule of thumb 
for the choice of k, such as 1.35k s=  where s is the robust standard deviation of the residuals (Serfling [22]), is 
simple and satisfactory in the present situation. Other choices of the outlier resistant function are also possible, 
such as ( )x xρ =  which leads to the least absolute deviation estimation (Jiang et al., [23]). 

The Newton algorithm can be used to find the solutions to the Equations (5). If the initial values of the para-
meters for iteration are good enough, for example, from the least squares estimation, then the iterative solutions 
can be found in a few steps, which is theoretically verified in Jiang and Mack [20]) for nonparametrically mod-
eling dependent data. In our simulations, the least squares based estimators in (2) will be employed as the initial 
values. 

2.2. Bandwidth Selection 
The performance of the estimator in (4) depends on the smoothing parameter h. There are several approaches to 
the selection of the bandwidth, such as the cross-validation (CV) and generalized cross-validation (GCV) criteria 
in Hastie and Tibshirani [24]. We here extend the CV method to the present situation for determining the band-
width h. Specifically, denote by ( ) ( )ˆ i t−β  the solution of (4) or (5) based on all the observations without the 
measurements for ith subject. Then the bandwidth h can be estimated by the minimizer ĉvh  of  

( ) ( ) ( )( )T

1 1

1 ˆ ,
nn i

i
ij ij ij

i j
CV h Y t

N
ρ −

= =

= −∑∑ X β                           (6) 

where 1
n

iiN n
=

= ∑ . 
The minimization of (6) is time-consuming for simulations, even though it is not for real data analysis. We 

here suggest a pre-determination of ĉvh  before simulations. Specifically, the procedure is detailed as follows:  
1) Generate several samples (20 for instance) from (2), then minimize (6) to get the ĉvh  for each sample  

and compute the average cvh  of the ĉvh ’s;  
2) Fix the bandwidth cvh  in each simulation to find the estimator in (4).  
In step 1), the computational burden can be further reduced if one uses an easy-evaluated bandwidth as initial 

value, such as the one from the GCV criterion for the local least squares based estimator. Since the estimated 
bandwidths for the local least squares estimation and the local M-estimation are highly correlated in general, the 
minimization of ( )CV h  will be achieved in a few iterations. 

3. Robustified GLR Tests 
For simplicity, consider the following testing problem  
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( ) ( )0 1: : ,H t H t= ↔ ≠β β β β                            (7) 

where ( ) ( ) ( ) ( )( )T
0 1, , , kt t t tβ β β= β , and ( )T

0 1, , , kβ β β= β  is an unspecified constant vector. Let  

0
1 1 0

ˆ ,
nn ki

ij ijl l
i j l

RSS Y Xρ β
= = =

 = − 
 

∑∑ ∑  

( )1
1 1 0

ˆ ,
nn ki

ij ijl l
i j l

RSS Y X tρ β
= = =

 = − 
 

∑∑ ∑  

where ˆ
lβ ’s are the usual M-estimators of the coefficients under 0H , and ( )ˆ

lβ ⋅ ’s are the local M-estimators of 
the coefficient functions under 1H . Define the following testing statistic for the testing problem (7):  

0 0 1

1 1

log .
2 2N

RSS RSS RSSN NT
RSS RSS

−
= ≈                           (8) 

Intuitively, large values of NT  provide evidences against 0H . The proposed statistic is basically based on 
the comparison of residuals between the null and the alternative. It can be regarded as a robustification for the 
GLR testing statistic studied in Fan et al. [25], Fan and Huang [26], and Fan and Jiang ([27] [28]). In particular, 
if ( ) 2x xρ =  is employed, then NT  is in the same formulas as those in the afore-mentioned papers. For the 
errors departing away from normality, one can expect the NT  to be robust and more powerful than its local 
least-squares counterpart with ( ) 2x xρ = . For more general testing problems such as ( ) ( )0 :H θ′ ⋅ = ⋅β β  for 
θ ∈Θ , which tests whether ( )⋅β  admits a certain parametric form, the above testing statistic can be similarly  
constructed if one replaces the ˆ

lβ  with the local M-estimator under 0H ′ . 

Bootstrap Estimate of Null Distribution 
To implement the robustified GLR tests, one needs to obtain the null distribution of NT  under 0H . In the fol-
lowing, we use simulations to compute the null distribution of the test statistic for a finite sample. It can be ap-
plied to both the local least squares and the local M-estimation methods. The computational algorithm is given 
as follows. For an easy illustration, we first consider the situation with 1 2 nn n n= = = .  

1) Obtain the nonparametric estimate ( )ˆ ⋅β  along with its associated bandwidth ĥ .  
2) Compute the testing statistic NT  and the residual vectors ( )îε ⋅  under the alternative, for 1, 2, ,i n=  .  
3) For each given iX , draw a bootstrap residual vectors ( )*

iε ⋅  from the centered empirical distribution of 

( )îε ⋅  and compute * T *
i i iY ε= +X β .  

4) Use the generated random sample ( )*,ij ijYX  ( 1, ,i n=  ; 1, , ij n=  ) and the bandwidth ĥ  to calculate 

the value *
NT  of the robustified GLR testing statistic.  

5) Repeat steps 3 and 4 B times to obtain the bootstrap statistics * *
1, ,N NBT T .  

6) The P-value of the testing statistic NT  is the percentage of the bootstrap statistics { }* *
1, ,N NBT T  that ex-

ceed NT .  
Similar simulation approaches to determining the p-value of a testing statistic were given in Fan and Jiang [27] 

for additive models and Hui and Jiang [29] for DTARCH models. For the case that in ’s are not equal, the con-
ditional bootstrap method is infeasible, but one can use a resampling subject bootstrap method (see for example  
Huang, Wu and Zhou, [11]) to replace the bootstrap method above. Specifically, let { }; 1, , , 1, ,p

ij iY i n j n= =   
be generated as follows:  

T ˆ ˆ ,p
ij ij ijY X ε= +β  

where β̂  is the estimate under 0H  and îjε ’s are the residuals from the null model. Resample n subjects with 

replacement from ( ){ }, , ; 1, , , 1, ,p
ij ij ij iY X t i n j n= =   to obtain a bootstrap sample  

{ }* * * *, , :1 , 1ij ij ij iY t i n j n≤ ≤ ≤ ≤X . Let *
NT  be the value of the testing statistic for the bootstrap sample. With B 
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independent replications, we obtains B bootstrap estimators { }* *
1, ,N NBT T . Then p-value of the testing statistic  

NT  can be obtained as in step 6 above. 

4. Numerical Studies 
4.1. Robustness of the Estimation 
In this section, we compare the performance of the local M-estimation with the local least squares estimation. 
For the outlier-resistant function, we opt for the Huber kψ -functions in our numerical study:  

( ) ( )( )min ,max , .u k u kψ = −  

The rule of thumb in Section 2.1 for the choice of k will be employed. 
Example 1. Consider the following model,  

( ) ( ) ( ) ( )0 0 1 1 ,i ij ij ij ij ij i ijY t X t X t tβ β ε= + +                         (9) 

where ( )0 0.5 3t tβ = + , ( ) ( )2
1 2exp 16t t tβ = + − , { }0ijX  and { }1ijX  are respectively from ( )1AR  models 

in such a way that ( )0 01 00.2ij iji jX X −= +  , ( )2
0 ~ 0,0.4

iid

ij N , ( )1 11 10.2ij iji jX X −= +  , and ( )1 ~ 0,1
iid

ij N . For 

simplicity, we used the time points 0.1ijt j=  which are equally spaced for each i. The errors ( ){ }i ijtε  are iid 

for all i and j. We considered the following four distributions for the errors:  
(A1) ( ) ( )~ 0,1i ijt Nε ;  

(A2) ( ) ( )3~i ijt tε ;  

(A3) ( ) ( )
2
5~ centeredi ijtε χ ;  

(A4) ( ) ( ) ( )2~ 0.9 0,1 0.1 0,5i ijt N Nε + .  

We simulated 200 samples of size 100n =  and 20in =  from the model (9). The averages of ( )ˆ tβ  and 
the 2.5% and 97.5% sample quantiles of ( )ˆ tβ  among simulations were calculated at each time points. In addi-
tion, we also computed the mean absolute deviation error (MADE) of the estimators at the time points (for 

1, 2k = ),  

( )( ) ( ) ( )
,

1

1ˆ ˆMADE .k k ij k ijn
i j

i
i

t t t
n

β β β

=

= −∑
∑

 
The average of values of the above MADE over simulations was calculated and reported in Table 1 for the 

error models (A1) and (A3). The results show that the local LS estimator and the local M-estimators have simi-
lar accuracy if the error is normal, but the latter performs better than the former if the error deviates away from 
normality. We display in Figure 1 the estimators of the coefficient functions along with the widths of the enve-
lopes formed by pointwise 2.5% and 97.5% quantiles of the estimators among simulations, where ( )0 tβ  is 
easier to estimate than ( )1 tβ  and the estimated envelopes’ widths for ( )0

ˆ tβ  are not reported for saving space. 
It is evident that both the local LS estimator and the local M-estimator have little biases, and the latter is much 
better than the former in terms of the envelopes’ widths when the error deviates away from the normal distribution. 

We did simulations with the error distributions in (A2) and (A4). The results are similar and omitted for sav-
ing space. 

 
Table 1. MADEs under the errors (A1) and (A3) for Example 1. 

MADE 
(A1) (A3) 

( )0
ˆ tβ  ( )1̂ tβ  ( )0

ˆ tβ  ( )1̂ tβ  
Local LS-estimator 0.1124 0.0415 0.3541 0.1060 
Local M-estimator 0.1150 0.0420 0.2810 0.0978 
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Figure 1. Estimated curves and widths of envelopes. Upper panel: results for the error in (A1); lower panel: results for the 
error in (A2). (a) and (c): the average of estimated curves; solid—true curves, dash-dotted—local LS estimator, 
dashed—local M-estimator. (b) and (d): pointwise widths of envelopes for ( )1 tβ , which were formed by the pointwise 2.5% & 
97.5% quantiles of the estimators among simulations; solid—local LS estimator, dashed—local M-estimator. 
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Example 2. In this example, we consider the model (9) with much more complex structures for the covariates, 
the errors, and the coefficient functions than those in Example 1. Different from Example 1, the two co- 
variates are now correlated, and the error ( )i ijtε  are correlated within subjects. Specifically,  

( ) ( )( ) ( )( )2 2
0 0.3exp 7 0.3 0.7exp 7 1.3t t tβ = − − + − − , ( ) 2

1 0.5 0.3 4t t tβ = + + , 0ijX  and 1ijX  are from the 

following two-dimensional AR model,  

( )

( )

1 00 0

1 11 1

0.3 0.4
,

0.1 0.6
i jij ij

ij iji j

XX
X X

−

−

     
 = +          




 

where ( )2
0 ~ 0,0.4ij N  and ( )1 ~ 0,1ij N . We used the same ijt ’s as in Example 1. The errors ( )i jtε  are 

iid for all different subjects but may be correlated within subjects, which were generated from the following 
three distributions:  

(B1) ( ) ( )~ 0,1i ijt Nε ;  

(B2) ( ) ( ) ( )( )10.5i ij i ij i i jt z t z tε −= + , where ( ) ( )~ 0,1i ijz t N ;  

(B3) ( ) ( ) ( )( )10.5i ij i ij i i jt z t z tε −= + , where ( ) ( )~ 3i ijz t t .  

We conducted 400 simulations. In each simulation, a samples of size 100n =  and 20in =  was drawn. We 
calculated the estimators along with the related MADEs and envelopes. Table 2 reports the MADEs for the es-
timated coefficient functions. It is evidenced that the local M-estimator is better than its counterpart under the 
heavy tailed error in (B3). Both estimators have similar MADEs under the other two errors in (B1) and (B2). 

Since ( )1 tβ  is much simpler than ( )0 tβ , we now consider only the the estimated curves for ( )0 tβ . Figure 
2 displays the estimated curves for ( )0 tβ  along with the 95% confidence intervals under the error (B2), and the 
widths of the envelopes for ( )0 tβ  under the errors in (B2) and (B3). The average of the estimator in Figure 
2(a) and the corresponding 95% confidence intervals in Figure 2(b) show that the local M-estimator well cap-
tures the structure of the true curve ( )0 tβ . It is seen from Figure 2(c) and Figure 2(d) that the local 
M-estimator is better than the local LS estimator when the error deviates away from the norm distribution. 

4.2. Null Distribution and Power of Test 
In this section, we conduct simulations to show that our conditional bootstrap method gives a good estimate of 
the null distribution, and to compare the powers of different nonparametric tests. 

Example 3. To compare the powers of different tests, we consider the testing problem (7) for the model (9). 
The null model is the constant-coefficient model with ( )0 0.5tβ = , ( )1 0.05tβ = , 0ijX  and 1ijX  are the 
same as in Example 1. The error ( )i ijtε  is generated from one of the following distributions:  

(C1) ( ) ( )~ 0,1i ijt Nε ;  

(C2) ( ) ( )3~i ijt tε ;  

(C3) ( ) ( ) ( )2~ 0.9 0,1 0.1 0,5i ijt N Nε + .  

We use a sequence of alternative models, ( ) [ ]0 0.5 , 0, 2t tβ θ θ= + ∈ , to calculate the powers of the tests. 
We conducted 400 simulations. The sample size is the same as in Example 1. The bootstrap replicates num-

ber is 600B = . Figure 3 displays the histograms and the estimated probability densities of the testing statistic 
based on the common kernel method under the null model. It is seen that the null distributions of the testing sta-
tistics are very close, which shows that in finite samples the two tests hold close levels and hence have approx- 

 
Table 2. MADEs for Example 2. 

MADE 
(B1) (B2) (B3) 

( )0β̂ ⋅  ( )1̂β ⋅  ( )0β̂ ⋅  ( )1̂β ⋅  ( )0β̂ ⋅  ( )1̂β ⋅  
Local LS-estimator 0.0713 0.0529 0.0828 0.0589 0.1408 0.0884 
Local M-estimator 0.0733 0.0534 0.0860 0.0534 0.1164 0.0740 
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Figure 2. Estimated curves and envelopes. Upper panel: estimated curves for ( )0 tβ  along with its 95% confidence inter-
vals based on the local M-estimation; solid—true curve, dashed—estimated curves. Lower panel: widths of envelopes 
formed by 2.5% and 97.5% sample quantiles among simulations, solid—for local LS estimator, dashed—for local 
M-estimator. (a) (b) (d): the results under the error in (B2); (c): the results under the error in (B3).  

 

 
Figure 3. Histograms and estimated probability densities of TN’s. Left panel: based on the local LS-estimator; right panel: 
based on the local M-estimator with Huber kψ -function. (a) (b): results under the error in (C1); (c) (d): results under the er-
ror in (C2); (e) (f): results under the error in (C3).  
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imately equal type I errors. Figure 4 shows the powers of the tests based on the local LS and local M-estimators. 
It demonstrates that the proposed test is more powerful than that based on local LS-estimator when the error de-
viates away from the normal distribution. Both tests are approximately the same powerful under the normal er-
ror. 

4.3. A Real Example 
We here illustrate how to use the proposed method in practice. Consider the body-weight of male Wistar rats 
dataset in Brunner et al. ([30], Table A11). For this dataset, the objective of the experience is to assess the toxic-
ity of a drug on the body-weight evolution of Wistar rats. A group of ten rats was given a placebo, while a 
second group of ten was given a high dose of the drug. For each rat in the study, its body-weight was observed 
once a week over a period of 22 weeks. Figure 5(a) and Figure 5(b) displays the data curves for the two groups. 

To check if the body-weights of the two test groups differ in their evolution over time, Brunner et al. [2] 
compared the time curves of the mean body-weights for both groups, and evaluated the ANOVA-type statistics. 
Their results do not support the conjecture of different body-weight evolutions in the two groups. 

We are interested in investigating the conjecture. Since Figure 5(a) and Figure 5(b) exhibit the time-varying 
feature of the body-weights of rats, it seems reasonable to model the dataset via the following time-varying 
coefficient model:  

( ) ( ) ( ) ( ) ( )0 1 1 ,Y t t X t t tβ β ε= + +                          (4.10) 

where ( )1X t  equals 1 if in the treatment group and equals 0 if in the control group. Then ( )0 tβ  reflects the 
evolution of average body-weight for the control group, and ( )1 tβ  reflects that for the treatment group. 

Since in the beginning the average body-weight of the rats in the placebo group is bigger than that in the  
 

 
Figure 4. Powers of TN’s. Left panel: powers under significance level 95%; right panel: powers under significance level 90%. 
(a) (b): results under the error in (C1); (c) (d): results under the error in (C2); (e) (f): results under the error in (C3). Solid - 
power based on the local LS-estimator; dash-dotted—power based on the local M-estimator with Huber’s kψ -function.  
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Figure 5. Data curves and the estimated coefficient functions. Left panel: (a) body-weights for the placebo group; (b) 
body-weights for treatment group. Right panel: (c) estimated curve for ( )0 tβ ; (d) estimated curve for ( )1 tβ ; solid—the 
local LS estimator, dash-dotted—the local M-estimate. 

 
treatment group, we subtract the average body-weight in each group from the body-weight of each subject. This 
will make the estimators of the coefficient functions be approximately zeros at the beginning. Figure 5(c) and 
Figure 5(d) report the estimators of ( )0 tβ  and ( )1 tβ . It seems that the ( )0 tβ  is time-varying but the ( )1 tβ  
is not, which plausibly reflects that the drug did not affect the average body-weights of rats. 

Now we consider the following two hypothesis testing problems:  

1) ( ) ( )01 1: :H t H t= ↔ ≠β β β β , where ( )1 2,β β ′=β  is an unknown parameter vector. This is used to 
test if the average body-weights of rats evolve over time.  

2) ( ) ( )02 1 1 1: 0 : 0H t H tβ β= ↔ ≠ . This checks if the drug affects the average body-weights of rats in study.  
We used 600B =  bootstrap replicates for computing the null distributions of the testing statistics. For 01H , 

the P-values are 0.0117 and 0.005 respectively for the local LS-estimation based test and the local M-estimation 
based test. It seems that the null hypothesis does not hold, which means that the average body-weight of rats for 
each group changes over time. For 02H , the P-values are 0.9633 and 0.8833 for the tests respectively based on 
the local LS and local M-estimation methods. This evidences that for the dataset the drug has no effect on the 
average body-weights of rats. This is consistent to the result of Brunner et al. [30]. 

5. Discussion 
We have introduced a robust inference method based on the local M-estimation method and the robustified GLR 
test. It is demonstrated that the local M-estimators are robust against outliers and error distributions, and the 
proposed robustified GLR test is more powerful than its counterpart (the GLR test) under certain situations with 
heavy tailed errors, while both of them perform well under the normal error. The proposed inference approach 
seems appealing in robustly modeling longitudinal data. 

Our method is also applicable to other estimating methods, such as the global smoothing one in Huang et al. 
[11], but will not be discussed further. 
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