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Abstract 
This paper provides a reformulation of Phillips’s multiplier-accelerator model with stabilization 
policy in terms of the Laplace transform. Applying the Laplace transform, the differential equa-
tions of the economy are transformed into the algebraic ones on a complex variable. The transfer 
functions of economic variables are defined by these algebraic equations. With this representation, 
we show the effects of Phillips-type policy on equilibrium level and derive the necessary and suffi-
cient condition for asymptotic stability. 
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1. Introduction 
A. W. Phillips analyzed the stabilization policy for a multiplier-accelerator model [1]. Phillips’s stabilization 
problem is to design an endogenous policy rule capable of recovering the original equilibrium level from anoth-
er equilibrium level shifted by an exogenous change of autonomous demand, while suppressing the economic 
fluctuations. This analysis provided the basis for subsequent advances in economic stabilization theory. It is 
important to reconsider the Phillips model in view of control theory because recent studies have provided ana-
lytic frameworks for economic policy by using novel control theoretical approaches [2]. Phillips defined the 
time lag operators in terms of a differential operator, but this operational method is not generally rigorous. In 
addition, the range of policy parameters to ensure the stability is not clear, because Phillips merely showed the 
effects of the stabilization policy with numerical examples. We therefore provide a reformulation of the Phillips 
model based on the Laplace transform, which is known as a rigorous justification of Heaviside’s operational 
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calculus by Bromwich [3], Carson [4], and other mathematicians1. The Laplace transform has been widely used 
in physics and engineering, especially in classical linear control theory. The Laplace transform is a linear opera-
tor, which transforms the linear ordinary differential equation into an algebraic equation. Based on this approach, 
we show the effects of Phillips-type policy on equilibrium level and derive its asymptotic stability condition. 

2. Laplace Transform and Transfer Function 
We briefly explain the Laplace transform defined as a Riemann integral below2. Let s be a complex variable. 

sR  denotes the real part of s. Let ( )f t  be a real-valued function of a real variable t. The Laplace transform 
of ( )f t  is defined by  

( ) ( ) ( ) ( )
0 0

ˆ e d lim e d
bst st

b

f s f t f t t f t t
εε−

∞ − −

−→
→∞

= = =   ∫ ∫                       (1) 

where ε  is a positive quantity. 
( )f t  is said to be of exponential order if there exist real constants M and γ  so that  

( ) e .tf t M γ≤                                      (2) 

If ( )f t  is piecewise continuous on every finite interval in [ )0,∞  and of exponential order, then the Lap-
lace transform exists for s γ>R , i.e.,  

( ) ( ) ( ) ( )

( )

0 0 0

0 0

e d e d e e d

e d e e d

st st t i t

t t t

f t f t t f t t f t t

Mf t t M t

σ ω

σ γ σ

σ γ

∞ ∞ ∞− − − −
− − −

∞ ∞− −
− −

= ≤ =  

= ≤ =
−

∫ ∫ ∫

∫ ∫


                (3) 

where s iσ ω= +  with real numbers ,σ ω . For example, 
2

et  is not of exponential order. Such functions with 
extremely fast growth are ignored as economic variables, but there would be no problem in practice. 

We consider the Laplace transform of derivatives. Suppose that ( ) ( ) ( ) ( )1, , , nf t f t f t−′
  are continuous on 

( )0,∞  and of exponential order and that ( ) ( )nf t  is piecewise continuous on [ )0,∞  and of exponential order. 
Then  

( ) ( ) ( ) ( ) ( ) ( ) ( )11 20 0 0 .n nn n nf t s f t s f s f f −− − − − −  ′= − − − −                     (4) 

We obtain ( ) ( ) ( )n nf t s f t  =       with initial condition ( ) ( ) ( ) ( )10 0 0 0nf f f −− − −′= = = = . Each ini-

tial value is considered as left-hand limit at the origin. Suppose that ( )limt f t→∞  exists. Consider  

( ) ( ) ( )0f t s f t f −′ = −        . From the left-hand side, we have  

( ) ( ) ( ) ( ) ( )0 00 0
lim lim e d d lim 0 .st

s s b
f t f t t f t t f b f

∞ ∞− −
− −

→ → →∞
 ′ ′ ′= = = −    ∫ ∫  

Then, it follows that  

( ) ( )
0

lim lim
s t

s f t f t
→ →∞

=                                   (5) 

with initial condition ( )0 0f − = . This is called the final value theorem. 
Let us consider the Laplace transform of integrals. Let ( )f t  be piecewise continuous on [ )0,∞  and of 

exponential order. Putting ( ) ( )
0

d
t

g t f τ τ= ∫ , we have  

( ) ( ) ( ) ( ) ( )
0

0 d .
t

f t g t s g t g s f τ τ−  ′= = − =             ∫                      (6) 

We obtain the Laplace transform of constants as follows:  

 

 

1Some later work used the Laplace transform only to solve the differential equations of the Phillips model [5] [6]. 
2See e.g., [5] [7]. 
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[ ]
0

0

e d e .st stA AA A t
s s−

∞
∞ − −

−

 = = − =  ∫                            (7) 

We define a transfer function of economic variables. Let economic variables ( )1f t  and ( )2f t  be of expo-
nential order. Consider the following linear ordinary differential equation with constant coefficients:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 0 1 2 1 2 0 2 .n n m m

n n m ma f t a f t a f t b f t b f t b f t− −
− −+ + + = + + +             (8) 

Suppose that ( ) ( ) ( ) ( )1
1 1 1, , , nf t f t f t−′

  and ( ) ( ) ( ) ( )1
2 2 2, , , mf t f t f t−′

  are continuous on ( )0,∞  and of 
exponential order and that ( ) ( )1

nf t  and ( ) ( )2
mf t  are piecewise continuous on [ )0,∞  and of exponential or-

der. It follows from (4) that  

( )
( )

1
1 1 1 0

1
1 1 02

ˆ
ˆ

m m
m m

n n
n n

f s b s b s b s b
a s a s a s af s

−
−

−
−

+ + + +
=

+ + + +




                           (9) 

with initial conditions ( ) ( ) ( ) ( )1
1 1 10 0 0 0nf f f −− − −′= = = =  and ( ) ( ) ( ) ( )1

2 2 20 0 0 0mf f f −− − −′= = = = . The 

ratio of the Laplace transforms ( ) ( )1 2
ˆ ˆf s f s  is called the transfer function. We assume that all the economic 

variables are of exponential order and that the above continuities and initial conditions hold to obtain the form of 
(9). 

3. The Model 
The Phillips’s multiplier-accelerator model is described by  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

1

1 0 1
1

Y

I

Z t C t I t A t G t

Y t Z t Y t

C t l Y t l

I t vY t I t

τ

τ

= + + +

′ = −

= − < <

′ ′= −

                            (10) 

where aggregate economic variables ( )Z t , ( )Y t , ( )C t , ( )I t , ( )A t , ( )G t  denote demand, production, 
consumption, investment, autonomous demand, and government spending, respectively. These values can be 
negative on 0t >  because they represent the deviations from the levels at 0t = . l is a positive constant 
representing the marginal leakage. The positive constants ,Y Iτ τ  denote the response speeds in production lag 
and investment lag, respectively. Since the time unit can be taken arbitrarily, we suppose 1Iτ = . 

The desired production level is taken as a reference, ( )0 0Y = , and hence ( )Y t  denotes the deviation be-
tween current and desired level of aggregate production. We suppose that the same equilibrium level is held in 

0t ≤ , i.e.,  

( ) ( )0 0 .Y t t= ≤                                   (11) 

The exogenous constant deviation in autonomous demand ( )A t  over 0t ≥  is written as  

( ) ( )
( )

0
0 0
A t

A t
t

 ≥=  <
                                  (12) 

where A is a bounded constant. Clearly the initial values are 0, i.e., ( ) ( )0 0 0Y A− −= = . 
If such an exogenous change in autonomous demand occurs, the equilibrium level of aggregate production 

will shift to another level, involving cyclical fluctuations. Thus, Phillips proposed a policy function ( )P t  for 
government spending as follows:  

( ) ( ) ( ) ( )1 2 30
d

t
P t Y t Y Y tµ µ τ τ µ ′= − − −∫                          (13) 

where 1 2 3, ,µ µ µ  are positive constants. The target of stabilization policy is to achieve the asymptotic stability 
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( )lim 0t Y t→∞ = . In this process, cyclical fluctuations are preferably suppressed. 
The policy lag until demand is affected is supposed as  

( ) ( ) ( )( )1

G

G t P t G t
τ

′ = −                                (14) 

where Gτ  is a positive constant representing the response speed of policy lag. 
Taking the Laplace transform of (10), (13), (14), we obtain3 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )1 2 3

ˆ ˆ ˆˆ ˆ

1ˆ ˆ
1

ˆ ˆ1 0 1

ˆ ˆ
1
1 1ˆ ˆ ˆ ˆ .

1

Y

G

Z s C s I s A s G s

Y s Z s
s

C s l Y s l
vsI s Y s

s

G s Y s Y s sY s
s s

τ

µ µ µ
τ

= + + +

=
+

= − < <

=
+

 = − − − +  

                      (16) 

Thus, the transfer function of ( )Ŷ s  and ( )Â s  is given by  

( )
( )

( )( )
( ) ( ) ( )4 3 2

3 1 3 1 2 2

ˆ 1 1
.ˆ

G

G Y Y G G Y G Y G

s s sY s
s l v s l l v s l sA s

τ
τ τ τ τ τ τ τ µ τ τ µ µ µ µ µ

+ +
=

+ + + − + + + + − + + + + + +
  (17) 

We assumed that ( ) ( ) ( ) ( )4, , ,Y t Y t Y t′
  and ( ) ( ) ( ) ( ), , ,A t A t A t A t′ ′′ ′′′  are continuous on ( )0,∞  and of 

exponential order and that ( ) ( )4Y t  and ( )A t′′′  are piecewise continuous on [ )0,∞  and of exponential order4. 
Here, all the initial values are 0. 

4. Shift of Equilibrium Level 
We should qualitatively verify the capability of Phillips-type policy to achieve the asymptotic stability of origi-
nal equilibrium level. First, we see the effect of exogenous change in ( )A t  without policy.  

Theorem 1. An exogenous change in ( )A t A=  shifts the equilibrium level of production from 0 to A/l.  
Proof. Put ( )ˆ 0G s =  in (16). We have  

( )
( )

( )2

1 ˆˆ .
Y Y

sY s A s
s v l s lτ τ

+
=

− − − +
                           (19) 

Thus, it follows from (5), (7), (19) that  

( ) ( ) ( )
( )20 0

1ˆlim lim lim .
t s s

Y Y

s s A AY t sY s
s ls v l s lτ τ→∞ → →

+
= = =

− − − +
                   (20) 

 
Next, we analyze the effects of both the proportional and derivative policies ( )1Y tµ− , ( )3Y tµ ′− .  
Theorem 2. For ( )A t A= , the proportional policy can recover the equilibrium level to ( )1A l µ+ . The de-

rivative policy does not affect the equilibrium level.  

 

 

3As shown in (16), the Phillips’s notation with differential operator D is justified by the Laplace transform. For instance, Phillips wrote the 
production lag as 

( ) ( )1 .
1Y

Y t Z t
Dτ

=
+

                                             (15)
 

4It is easy to see that (16) corresponds to the following differential equation: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4
3

1 3 1 2 2

1 .

G Y Y G G Y G

Y G

G G

Y t l v Y t

l l v Y t l Y t Y t

A t A t A t

τ τ τ τ τ τ τ µ

τ τ µ µ µ µ µ

τ τ

′′′+ + + − +

′′ ′+ + + − + + + + + +

′′′ ′′ ′= + + +

                            (18)
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Proof. Put 2 0µ =  in (17). We have  

( ) ( )( )
( ) ( )

( )3 2
3 1 3 1

1 1 ˆˆ .G

G Y Y G G Y G Y G

s s
Y s A s

s l v s l l v s l
τ

τ τ τ τ τ τ τ µ τ τ µ µ µ
+ +

=
+ + + − + + + + − + + + +

      (21) 

Thus, it follows from (5), (7), (21) that  

( ) ( )( )
( ) ( )3 20

13 1 3 1

1 1
lim lim .G

t s
G Y Y G G Y G Y G

s s s A AY t
s ls l v s l l v s l

τ
µτ τ τ τ τ τ τ µ τ τ µ µ µ→∞ →

+ +
= =

++ + + − + + + + − + + + +
 (22) 

The terms 2
3 3s sµ µ+  originate from the derivative policy. Since they converge to 0 as 0s → , the deriva-

tive policy does not affect the equilibrium level. The derivative policy is used in order only to suppress cyclical 
fluctuations.                                                                               

Finally, we confirm the asymptotic stability by using the integral policy ( )2 0
d

t
Yµ τ τ− ∫ .  

Theorem 3. For ( )A t A= , the Phillips-type policy (13) can recover the equilibrium level to 0.  
Proof. It follows from (5), (7), (17) that  

( )

( )( )
( ) ( ) ( )

2

4 3 20
3 1 3 1 2 2

lim

1 1
lim

0.

t

G

s
G Y Y G G Y G Y G

Y t

s s s A
ss l v s l l v s l s

τ
τ τ τ τ τ τ τ µ τ τ µ µ µ µ µ

→∞

→

+ +
=

+ + + − + + + + − + + + + + +

=

  (23) 

 

5. Stability Condition 
Notice that since the final value theorem can be used when ( )limt Y t→∞  exists, the time path is not ensured to 
be stable. Various combinations of policy parameters can be taken to achieve the stability, but the parameter 
constraints are not clear. We therefore focus on the condition on policy parameters to ensure the stability. As is 
well-known in control theory, the necessary and sufficient condition of asymptotic stability is that all roots of 
the denominator of transfer function have negative real parts5. 

Theorem 4. The necessary and sufficient condition for asymptotic stability of the multiplier-accelerator 
economy with policy (16) is as follows:  

3

1 3

0
0

Y G G Y G

Y G

l v
l l v

τ τ τ τ τ µ
τ τ µ µ

+ + − + >

+ + − + + >
                              (24) 

and all the leading principal minors of a matrix  

3 1 2

1 3 2

3 1 2

1 3 2

0 0
0

0 0
0

Y G G Y G

G Y Y G

Y G G Y G

G Y Y G

l v l
l l v

l v l
l l v

τ τ τ τ τ µ µ µ
τ τ τ τ µ µ µ

τ τ τ τ τ µ µ µ
τ τ τ τ µ µ µ

+ + − + + + 
 + + − + + 
 + + − + + +
 

+ + − + + 

      (25) 

are positive.  
Proof. The Routh-Hurwitz theorem6 gives the necessary and sufficient condition for all the roots of a nth-  

degree polynomial  
1

1 1 0
n n

n na s a s a s a−
−+ + + +                               (26) 

with real coefficients to have negative real parts. The condition is as follows: the coefficients 0 1, , , na a a  ex-
ist and have the same sign. In addition, all the leading principal minors of the Hurwitz matrix  

 

 

5See e.g., [8]. 
6See e.g., [9] and mathematical appendix B in [10]. 
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a

a

− − −

− −

− −

−

−

 
 
 
 
 
 
 
 
 
 
 











    



                              (27) 

are positive. We can apply the Routh-Hurwitz theorem to the denominator polynomial of (17). From definition, 
we obtain 4 1 1 2 0 20, 0, 0G Ya a l aτ τ µ µ µ= > = + + > = > . Similarly, the coefficients 3 2,a a  must have the 
same sign. Namely, 3 3 0Y G G Y Ga l vτ τ τ τ τ µ= + + − + >  and 2 1 3 0Y Ga l l vτ τ µ µ= + + − + + >  must be satis-
fied. Moreover, the matrix (25) is the corresponding Hurwitz matrix.                                  

6. Conclusion 
We have established a novel analytic framework on Phillips’s stabilization problem by using the Laplace trans-
form method. On the basis of this formulation, the effects of Phillips-type policy on equilibrium level have been 
analyzed rigorously and qualitatively. Furthermore, we have derived the stability condition of the model by us-
ing the Hurwitz theorem. The present study has shown that the Laplace transform approach is powerful to ana-
lyze the stabilization problem. This method will give a fresh insight into the problem on stabilization policy de-
sign. 
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