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Abstract 
Using the divergence theorem and the coordinate transformation theory for the general Fickian 
second law, fundamental diffusion problems are investigated. As a result, the new findings are ob-
tained as follows. The unified diffusion theory is reasonably established, including a self-diffusion 
theory and an N (N ≥ 2) elements system interdiffusion one. The Fickian first law is incomplete 
without a constant diffusion flux corresponding to the Brown motion in the localized space. The 
cause of Kirkendall effect and the nonexistence of intrinsic diffusion concept are theoretically re-
vealed. In the parabolic space, an elegant analytical method of the diffusion equation is mathe-
matically established, including a nonlinear diffusion equation. From the Schrödinger equation 
and the diffusion equation, the universal expression of diffusivity proportional to the Planck con-
stant is reasonably obtained. The material wave equation proposed by de Broglie is also derived in 
relation to the Brown motion. The fundamental diffusion theories discussed here will be highly 
useful as a standard theory for the basic study of actual interdiffusion problems such as an alloy, a 
compound semiconductor, a multilayer thin film, and a microstructure material. 
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1. Introduction 
First of all, we state that the basic diffusion equation of the general nonlinear Fickian second law is discussed in 
accordance with the fundamental mathematical physics in the present work. The extended diffusion equations in 
detail are not thus discussed. Nevertheless, the new findings, which are extremely dominant in the diffusion 
study, are reasonably obtained. In the diffusion history, the problems relevant to the coordinate transformation 
of diffusion equation had not been discussed in accordance with the Gauss divergence theorem until recently. 
That is just a reason why the new diffusion theories are discussed in the present study. It will be gradually clari-
fied in the text that the coordinate transformation theory is essentially indispensable for the diffusion study. It is 
obvious that analyzing the extended diffusion equation must be based on the fundamental diffusion theory. The 
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new fundamental findings different from the existing diffusion theories obtained here will thus exert a great in-
fluence on the actual diffusion problems in detail, just because of fundamental ones. 

A great many phenomena in various science fields are expressed by using the well-known evolution equations. 
The diffusion equation is one of them and mathematically corresponds to the Markov process in relation to the 
normal distribution rule [1]. In other words, the motion of diffusion particles corresponds to the well-known 
Brown movement satisfying the parabolic law [2] [3]. It is widely accepted that the Brown problem is a general 
term of investigating subjects in various science fields relevant to the Markov process, such as material science, 
information science, life science, and social science [4]-[9].  

In physics, we can also understand the diffusion equation in accordance with the Gauss divergence theorem 
[10]. If we apply the divergence theorem to the diffusion problem for a material under the condition of no sink 
and source of the material, it is found that the material conservation law is valid for the diffusion particles, re-
gardless of a thermodynamic state of material. The diffusion equation is also called “the continuous equation” 
and is extremely fundamental one in physics. In history, the heat conduction equation, which is mathematically 
equivalent to the diffusion equation, was proposed by Fourier, regardless of the Markov process and the diver-
gence theorem [11].  

In accordance with the industrial requirement, the solid materials, such as alloys, semiconductors, and multi-
layer materials, have been widely fabricated. The heat treatment is indispensable for their fabrication processes 
then. The migration of particles in a material is caused by the heat treatment. In relation to the migration of their 
particles, the diffusion problems of various solid materials have been thus widely investigated [12]. Therefore, 
the diffusion problem is a fundamental study subject in the materials science including the cases of liquid and 
gas states. 

In the present work, the fundamental problems of the general Fickian second law where a driving force affects 
the diffusion system are discussed in accordance with the mathematical theory. The present analytical method is 
applicable to interdiffusion problems of an N elements system of every material in an arbitrary thermodynamic 
state. Although the physical validity of the present method is investigated by using the diffusion data concerning 
the solid metals, the mathematical generality discussed here is still kept.  

The heat conduction equation proposed by Fourier in 1822 has been applied to investigating the temperature 
distribution in materials [11]. In 1827, the so-called Brown motion was found, where the self-diffusion of water 
was visualized by pollen micro particle motions [2] [3]. In 1855, Fick applied the heat conduction equation to 
diffusion phenomena as it had been [13]. Nevertheless, the Brown motion had not been recognized as a diffusion 
problem until the Einstein theory of Brown motion in 1905, although it was a typical diffusion problem [3].  

Although the concentration of diffusion particles is a real quantity in physics, the temperature is a thermody-
namic state quantity. As far as the shape of heat conduction material is unchangeable during a thermal treatment, 
the coordinate system of heat conduction equation set in a material is a fixed one, since the coordinate system is 
not influenced by variations of the material internal structure. On the other hand, strictly speaking, the coordi-
nate system of diffusion equation set in the diffusion field (solvent) is a moving one, since it is generally influ-
enced by such variations. 

When the Fickian first and second laws (F1 law and F2 law) were proposed, the Gauss divergence theorem 
had been already reported in 1840 [10]. Nevertheless, the problem of coordinate system of diffusion equation 
was not mathematically investigated in accordance with the divergence theorem. 

In general, it is indispensable for understanding the diffusion problems to discuss their coordinate systems, 
since it is, strictly speaking, considered that the diffusion particles, solvent particles and also the diffusion re-
gion space simultaneously move against the experimentation system in the diffusion region outside. 

Although the Fickian laws were still widely applied to various diffusion phenomena as essential equations in 
physics, the problem between coordinate systems was not discussed. Recently, the diffusion equation was thus 
mathematically investigated in accordance with the divergence theorem and the coordinate transformation 
theory [14]-[16]. It is revealed in the text that the diffusion flux should be determined by taking account of the 
concerned coordinate system of diffusion equation.  

Using the corresponding diffusion flux to the coordinate system of diffusion equation for interdiffusion, one 
way diffusion, impurity diffusion and self-diffusion, they are uniformly discussed in the text. As a result, we 
found that the foundation of diffusion problems is included in interdiffusion problems. The interdiffusion theory 
of an ( )2N N ≥  elements system applicable to every material was thus reasonably established [16]. In the 
analysis of interdiffusion problems, the only difference between a binary system and an N elements system is 
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whether the solvent material is one element or ( )1N −  elements. 
The coordinate transformation theory reveals that the corresponding F1 law to the F2 law is incomplete with-

out a constant diffusion flux relevant to the Brown motion in the localized space. Further, it was also found that 
the Kirkendall effect (K effect) is caused by a shift between the coordinate systems of the diffusion equation like 
the Doppler effect relevant to a wave equation is caused by a shift between the fixed coordinate system and the 
moving one for the wave equation [14]-[17]. At the same time, this means that the concept of intrinsic diffusion 
is unnecessary for understanding the K effect.  

As far as the sink and source of a material is nonexistent in the diffusion system, the Gauss divergence theory 
shows that the general F2 law satisfies the material conservation law even if a driving force affects the diffusion 
system. The driving force affects entropy and jump frequencies of diffusion particles in the material. The influ-
ence of a driving force is thus all incorporated into the diffusivity of diffusion equation then. In the existing dif-
fusion theory, the diffusion fluxes influenced by a driving force are discussed incorporating not influence of 
both entropy and jump frequencies but only that of jump frequencies on the diffusivity into them, for example 
such as a drift velocity. However, such concept as a drift velocity is not necessary for analyzing the diffusion 
equation, since we can solve a nonlinear diffusion equation in accordance with the fundamental theory in the 
mathematical physics, regardless of the discussion about diffusion fluxes. 

The diffusivity is obtained from the Taylor expansion of a probability density function, satisfying the para-
bolic law [3]. This indicates that the analysis of diffusion equation is essentially possible in the parabolic space. 
The diffusivity is defined by an interaction between a diffusion particle and the diffusion field near the diffusion 
particle itself. This indicates that the diffusivity should be essentially investigated in the quantum mechanics, 
since the behavior of a micro particle should be investigated by analyzing the Schrödinger Equation (S equation) 
[18].  

Based on the suggestions mentioned above, the elegant analytical method in the parabolic space is reasonably 
established in the text [19] [20]. As a result, the solutions of the Boltzmann transformation equation for nonli-
near interdiffusion phenomena were, for the first time, obtained as analytical expressions in the parabolic space 
[21].  

From applying the diffusion equation to a problem of diffusion elementary process, we derived the S equation 
[22]. It is revealed in the text that the diffusivity corresponds to the angular momentum operator in the quantum 
mechanics. As a result, the universal expression of diffusivity, which is applicable to every material in an arbi-
trary thermodynamic state, was obtained in proportional to the Planck constant  .  

It was also found that the well-known material wave relation proposed by de Broglie in 1923, which is the 
most fundamental one in materials science, is obtained from a relation between diffusivity expressions [23]. This 
gives evidence for the theory discussed in the present study. 

In the present work, we review the fundamental diffusion theories relevant to the general F2 law, where they 
are systematically reframed in points of view different from the previous works, adding some new discussions to 
them. The new findings obtained here will be widely applicable to fundamental problems as a standard theory in 
various actual diffusion phenomena.  

2. Fundamental Theory of Diffusion Equation 
As far as a material is conserved in the given region, the divergence theory shows that the diffusion equation is 
applicable to diffusion phenomena of every material in an arbitrary thermodynamic state. The diffusion infor-
mation of a material, such as crystal material or amorphous material, and/or solid, liquid and gas states, is all 
incorporated into the diffusivity in the given diffusion equation. The diffusion equation with such an arbitrary 
diffusivity is thus investigated in the following. 

In the present study, an abbreviate differential notation for an arbitrary independent variable ξ  and the well- 
known Dirac’s bracket notation for an arbitrary vector are used as follows [24]; 

( ), , , .x y zξ ξ
∂

∂ = ∇ = ∂ ∂ ∂
∂

  

If an operator Q is Hermite one, { }†
Q Q=  is valid in the Hermite conjugate † . Here, the notation ∇  is 

thus defined as { }†
∇ = − ∇  because of { }†

ξ ξ∂ = − ∂ . 
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2.1. Diffusion Equation 

The function ( ),j jC t r  is defined as a normalized concentration where a diffusion particle in the initial state 

( )0 0,t r  exists in the time and space state ( ),j jt r  after j times jumps. A diffusion particle moves at random. 

It is, therefore, considered that the jump frequency 1 t∆  and jump displacement 1j jr r r r−∆ = − = ∆  are 

equivalent in probability to their mean values of all diffusion particles in the collective system.  
Since it is also considered that the probability of diffusion-jump from the state of ( )1 1,j jt r− −  to ( )2,j jt r −  

is equivalent to one from the same state to ( ),j jt r
 

in the isotropic space, the relation of 

( ) ( ) ( ){ }, , , 2C t t r C t r r C t r r+ ∆ = − ∆ + + ∆                 (2-1) 

is thus valid. The Taylor expansion of both sides of Equation (2-1) yields 

( ) ( ) ( ), , , ,tC t t r C t r t C t r+ ∆ = + ∆ ∂ +                     (2-2) 

( ) ( ) ( ) ( ) ( )
2

, , , , .
2
r

C t r r C t r r C t r C t r
∆

± ∆ = ± ∆ ∇ + ∇ ∇ ±

          (2-3) 

The substitution of Equations (2-2) and (2-3) into Equation (2-1) gives 

( )2

.
2t

r
C C

t
∆

∂ = ∇ ∇
∆

                               (2-4) 

Since the averaged t∆  and r∆  are physically finite, it is considered that ( )2 2r t∆ ∆  becomes a constant 
value 0D  given by 

( )2

0 ,
2

r
D

t
∆

=
∆

                                  (2-5) 

satisfying the well-known parabolic law [3]. Substituting Equations (2-5) into Equations (2-4), the diffusion eq-
uation is obtained as  

0 0 ,tC D C D C D C∂ = ∇ ∇ = ∇ ∇ = ∇ ∇                         (2-6) 

where 0D  is rewritten as D when the diffusion-jump direction is not isotropic resulting from the existence of a 
driving force in the diffusion system.  

The existence of a driving force affects diffusivity 0D  and the diffusivity D becomes a function of the inde-
pendent variables t and r . In that case, Equation (2-6) gives the diffusion flux yielding 

( ){ }0 df , ,J D C D D t r C= − ∇ = − + ∇                        (2-7) 

where ( )df ,D t r  is a diffusivity caused by a driving force.  
On the other hand, using a drift velocity Fv  caused by a driving force F, the approximate diffusion flux is 

expressed as 
*

FJ D C v C= − ∇ +                                (2-8) 

in the usual textbooks (see Appendix A) [25]. However, the diffusion flux F FJ v C=  discussed here is dif-
ferent from one given by  

df df .J D C= − ∇                                    (2-9) 

In the present study, the discussion about diffusion fluxes is not necessary for analyzing the diffusion equation, 
since we can solve the nonlinear diffusion equation in accordance with the fundamental theory in the mathemat-
ical physics, regardless of diffusion fluxes. 

In the following, therefore, Equation (2-6) is directly solved in accordance with the mathematical physics. It is 
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in the nature of things that its analytical method is applicable to the diffusion problems relevant to a driving 
force then. 

For a collective system composed of N ( )1,2, ,j N=   elements in the region ( ), ,V x y z  within the closed 

surface ( ), ,S x y z , the divergence theorem yields 

{ } { }d d d d d d ,j j j
tS S
C x y z D C x y z∂ = ∇ ∇∫∫ ∫ ∫∫ ∫                     (2-10) 

where ( ), , ,jC t x y z  and jD  are a concentration and a diffusivity for an element j under the condition of no 
sink and source of the element. The integral calculation of {}  in Equation (2-10) means an inflow flux from 
the surface outside through the surface element d dy z , and y and z are then accepted as constant values because 
of the multiple integral calculation. Therefore, Equation (2-10) yields the diffusion equation of  

( ) ( ){ }, ,j j j
t x xC t x D C t x∂ = ∂ ∂                            (2-11) 

in the diffusion field. Defining the outflow flux as a plus value, the diffusion flux is   

( ) ( ) ( ){ }, , d , d .j j j j
x t x xJ t x C t x x D C t x x= − ∂ = − ∂ ∂∫ ∫                  (2-12) 

In mathematics, Equation (2-12) yields 

( ) ( ) ( )F eq, ,j j j j
x xJ t x J t x J t J= + +  for ( ) ( )F , , ,j j j

xJ t x D C t x= − ∂              (2-13) 

where ( )F ,jJ t x  is the F1 law and ( ) eq
j j

xJ t J+  is an integral constant against x. In physics, ( )j
xJ t  means a 

movement of a diffusion region space caused by a movement of the diffusion field. In the coordinate system of 
diffusion region inside, it should be thus physically accepted as ( ) 0j

xJ t = . However, ( ) 0j
xJ t ≠  must be taken 

into account in the coordinate system of diffusion region outside. The intrinsic diffusion flux eq
jJ  independent 

of the time and space is relevant to the Brown motion in the localized space. It plays an important role for un-
derstanding a self-diffusion mechanism. 

2.2. Coordinate System of Diffusion Equation 
As discussed later, the unified theory of diffusion problems shows that the foundation of diffusion is in the in-
terdiffusion problems. In the interdiffusion problems, solvent particles as well as diffusion particles move in the 
diffusion region space. When a micro particle in a material jumps from a site M to an interstice space N, if we 
call such an interstice space “micro hole” including a vacancy in case of a crystal material, the micro hole of site 
N is annihilated and a new micro hole is generated at the site M after jumping. 

The diffusion region space interacts with the space of diffusion system outside in accordance with the annihi-
lation and/or generation of micro holes like the diffusion system becomes a thermal equilibrium state resulting 
from an antinomy between the principle of increase of entropy and that of minimum of free energy. 

The coordinate system of the basic diffusion equation must be set in the diffusion field, since the diffusivity 
depends on an interaction between a diffusion particle and the diffusion field near the diffusion particle itself. In 
general, therefore, the diffusion problem should be investigated among three coordinate systems, where the ori-
gins of two coordinate systems are a point P of the coordinate system ( ), ,x y z  set in the diffusion field (solvent) 
and a point Q of the coordinate system ( ), ,x y z    set in the diffusion region space composed of micro holes and 
the third origin is a point R of the coordinate system ( ), ,ξ η ζ  set in the diffusion region outside.  

In the present work, we investigate an interdiffusion problem applicable to every material in an arbitrary 
thermodynamic state. It is thus investigated using the original diffusion equation (2-11) of the coordinate system 
( ),t x  and the diffusion equations transformed into the coordinate systems of ( ),t x   and ( ),τ ξ  under the 
condition of t t τ= = . 

The origins P ( ) ( ), 0,0t x =  and Q ( ) ( ), 0,0t x =

  are set at a point of solvent material and at a point of mi-
cro holes on the initial interface of a diffusion couple. The origin R ( ) ( ), 0,0τ ξ =  is set at a point of the diffu-
sion system outside. The x axis is perpendicular to the interface then. The x  axis and also ξ  axis are parallel 
to the x axis under the condition of 0x x ξ= = =  at 0t t τ= = = . 

It is generally considered that P ( ) ( ), 0,0t x =  and Q ( ) ( ), 0,0t x =

  move with a velocity ( )RPv τ  and with 

a velocity ( )R Qv τ
 

against R ( ) ( ), 0,0τ ξ = , respectively and also that P ( ) ( ), 0,0t x =  moves with a velocity 
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( )QPv t
 

against Q ( ) ( ), 0,0t x =

 , including a possibility of ( ) ( ) ( )RP R Q QP 0v v v tτ τ = . The relation among these 
velocities of 

RP RQ QPv v v= +                                     (2-14) 

must be physically valid. 
Hereafter, we use the suffix P, Q and R for a physical quantity relevant to ( ),t x , ( ),t x   and ( ),τ ξ . Equa-

tion (2-13) is thus rewritten as 

( ) ( )P F eq, ,j j jJ t x J t x J= +   for  ( ) ( )F , ,j j j
xJ t x D C t x= − ∂ .                   (2-13) 

When the coordinate origin of ( ),t x  moves from that of ( ),t x   with a velocity QPv , the relations of 

t t=  , sftx x x= − ∆  for sft QP0
d

t
x v t∆ = ∫                          (2-15) 

are valid under the condition of 0x x= =  at 0t t= = . The relations of 

QP
t x v

t t t t x t x
∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂





 

 

, 
t x

x x t x x x
∂ ∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ ∂







 

               (2-16) 

between differential operators are obtained then. 
Using Equation (2-16) for Equation (2-11), the diffusion equations of ( ),t x   is obtained as  

( )QP ,j j j j
x xt C D C v C∂ = ∂ ∂ −



 

                          (2-17) 

where ( ),j jC C t x= 

  and ( ),j jD D t x= 

 . Equation (2-17) leads to the diffusion flux of 

( ) ( )Q F QP eq, ,j j j jJ t x J t x v C J= + + 

  , ( )F , ,j j j
xJ t x D C= − ∂




                   (2-18) 

since ( ),t x   is in the diffusion region inside. 

In the same manner of the above, the diffusion equation of ( ),τ ξ  is obtained as 

( )RP .j j j jC D C v Cτ ξ ξ∂ = ∂ ∂ −                           (2-19) 

Since ( ),τ ξ  is in the diffusion region outside, the diffusion flux becomes 

( ) ( ) ( )R F R P R eq, ,j j j j jJ J v C J Jτ ξ τ ξ τ= + + + , ( )F ,j j jJ D Cξτ ξ = − ∂ ,             (2-20) 

where ( )R
jJ τ  is the diffusion flux of micro holes caused by the movement of the diffusion field against 

( ) ( ), 0,0τ ξ = .  

3. Interdiffusion Problems 
The interdiffusion problems of an N elements system in a diffusion couple composed of arbitrary materials A 
and B are discussed as follows. 

In an amorphous material, we then estimate a specimen cross section perpendicular to the x axis where each 
cross section interval l corresponds to the averaged jump distance in the solid state or to the averaged collision 
distance in the gas or liquid state. In a crystal material, we estimate the jump distance l between the nearest 
neighbor crystal cross sections perpendicular to the x axis. 

When materials A and B are in the solid state during a thermal diffusion, we conceive that the cross section S 
of the material A is uniform and equal to that of the material B. If materials A and B are in the fluid state, we 
conceive that they are in the receptacle corresponding to the case of solid materials. The interface of diffusion 
couple between materials A and B is smoothly joined. In that case, the origin 0x =  of coordinate system 
( ),t x  is set at a point on the initial interface in the diffusion field and the orientation of x axis is defined as 
A B→ . 

The material A is composed of N elements and we define the normalized concentration A
jC  for 1, 2, ,j N=   
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in the initial state, also including a possibility of A 0mC =  for j m= . The normalized concentration in the ma-
terial B is similarly defined as B

jC .  
The concentration and diffusivity of an element j are jC  and jD  at a diffusion time t in the diffusion re-

gion A Bx x x≤ ≤ . The boundary values of concentration are ( )A A,j jC t x C=  and ( )B B,j jC t x C= . 
The remained ( )1N −  elements are considered to be a solvent, also including a possibility where jC  be-

comes a solvent itself in accordance with a given diffusion system.  
The cross section of diffusion system is uniform and the shape variation of diffusion couple is usually neglig-

ible during the thermal diffusion. In that case, the relation of normalized concentrations yielding 

1
1

N
j

j
C

=

=∑                                       (3-1) 

is usually accepted on each cross section between A Bx x x≤ ≤ . Here, Equation (3-1) is physically valid regard-
less of a coordinate system. 

3.1. Correlation of Diffusion Fluxes with Coordinate Systems  
Equations (2-17) and (3-1) yield 

( ) ( ){ }QP QP
1 1,

0
N N

j j j j k j
x x x x

j j j k
D C v C D D C v

= = ≠

 
∂ ∂ − = ∂ − ∂ − = 

 
∑ ∑
   

              (3-2) 

because of 
1 1

0
N N

j j
t t

j j
C C

= =

∂ = ∂ =∑ ∑ 

. In mathematics, the partial differential equation (3-2) of t  and x  is re-

written as 

( ) ( ){ } QP
1,

,
N

j k j
x

j j k
t D D C v

= ≠

Γ = − ∂ −∑


  

using an arbitrary function ( )tΓ   of t  because of ( ) 0x t∂ Γ =


 . Here, ( )j k j
xD D C− ∂
  means a diffusion flux 

dependent on t  and x . On the other hand, ( ) QPt vΓ +  means a diffusion flux only dependent only on t . 

Therefore, Equation (3-2) means 0j kD D− =  for an arbitrary j . The interdiffusion coefficient D  is thus 
defined as 

1 2 ND D D D= = = ⋅⋅ ⋅ =                                 (3-3) 
in the diffusion region A Bx x x≤ ≤   . We can easily confirm that Equation (3-3) does not depend on a coordinate 
system. Their boundary values are thus obtained as 

( )A A,D Dτ ξ =   and ( )B B, .D Dτ ξ =                             (3-4) 

Using Equation (3-3) for the F1 law, the following relation of 

( )F
1 1 1

, 0
N N N

j j j j

j j j
J D C D Cξ ξτ ξ

= = =

= − ∂ = − ∂ =∑ ∑ ∑                           (3-5) 

is valid regardless of a coordinate system. The relation of  

eq
1

0
N

j

j
J

=

=∑                                          (3-6) 

is also valid as discussed later in the self-diffusion theory. 
Using Equations (3-5) and (3-6) for Equation (2-20), the relation of 

( ) ( )R R R P R
1

,
N

j

j
J J v Jτ ξ τ

=

= = +∑  for ( ) ( )R
1

N
j

R
j

J Jτ τ
=

= ∑                      (3-7) 

is obtained. Here, ( )RJ τ  means the total diffusion flux of micro holes against the origin of ( ),τ ξ . In that sit-
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uation, ( )R RQJ vτ = −  is valid in the present coordinate system because of ( )R RQ 0J vτ < , using a velocity 

RQv  of the origin of ( ),t x   against the origin of ( ),τ ξ . Equation (3-7) is thus rewritten as  

R R P RQ.J v v= −                                   (3-7) 

In the same manner, the following relations 

( )P P
1

, 0
N

j

j
J J t x

=

= =∑                                 (3-8) 

( )Q Q QP
1

,
N

j

j
J J t x v

=

= =∑ 

                                 (3-9) 

are also obtained from Equations (2-13) and (2-18). Equations (3-7)-(3-9) show that the diffusion flux indepen-
dent of the space coordinate corresponds to the velocity between the coordinate systems. The relation of 

R Q PJ J J= +                                   (3-10) 

must be physically valid because of t t τ= = . Equation (3-10) then yields the previous equation of 

( ) ( ) ( )RP RQ QPv v vτ τ τ= +                              (2-14) 

because of Equations (3-7)-(3-10). 
In the following, ( )Q QPJ v=  is investigated by using the concentration difference B A

j j jC C C∆ = −  and the 

diffusion junction depth junx D tγµ∆ = 



  between Ax x=   and Bx x=  . Taking account of their concentration 

gradients, the flux of diffusion field for an element k ( j k≠ ) is obtained as 

( ) { }Q A B
1, 1,jun

1 ,
2

jN N
k j j

j j k j j k

CJ t D D C C
x tγ γ

= ≠ = ≠

∆
= − = −

∆∑ ∑ 





                  (3-11) 

where the suffix γ  means Aγ →  if A B
j jC C≥  or Bγ →  if A B

j jC C≤  and 2µ =  is tentatively adopted. 

Here, ( )Q
kJ t  is adopted instead of ( )Q ,kJ t x   as an approximate equation because of ( )Q QPJ v t=  . 

Equation (3-11) yields 

( ) ( ) { }Q QP Q A B
1 1

1 .
2

N N
k j j

k j

NJ v t J t D C C
t γ

= =

−
= = = −∑ ∑ 

 



                  (3-12) 

Equation (3-12) shows the movement of ( ),t x  against ( ) ( ), 0,0t x =

 . Substituting Equation (3-12) into Equa-
tion (2-14) yields  

{ }R P RQ A B
1

1
2

N
j j

j

Nv v D C Cγτ =

−
= + −∑                           (3-13) 

because of t t τ= = . 

3.2. Kirkendall Effect in Interdiffusion Problems 
In the metallurgy field, the interface of ( ) ( ), 0,0t x =  is the so-called Matano interface (M interface) and that of 
( ) ( ), 0,0t x =

  is the Kirkendall interface (K interface) [17] [26]. In 1947, Kirkendall found in the binary system 
interdiffusion experimentation that the inert marker set on the K interface in the initial state moves from the M 
interface during a thermal diffusion and also that the M interface does not move during thermal diffusion, i.e., 

RP 0v = . Since then, the displacement between the M interface and the K interface has been called the Kirken-
dall effect (K effect). Using an experimental value m, the K effect effx∆  is obtained as 

eff ,x m t∆ =                                     (3-14) 

regardless of the space coordinate and it satisfies the parabolic law. 
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As far as the material shape of a diffusion couple is unchangeable, the K effect also reveals that the total 
quantity of element I diffusing across the K interface is different from that of element II. In other words, for the 
micro hole concentration HC  and its thermal equilibrium value H

0C  between A Bx x x≤ ≤ , the relation of  
H H
0 0C C− <  is valid between A 0x x≤ ≤  if H H

0 0C C− >  is valid between B0 x x≤ ≤  during thermal diffu-

sion, and vice versa. The value of H H
0C C−  becomes gradually zero in accordance with the thermodynamic 

principle. 
In the binary system interdiffusion problems, the F1 law shows that the relation of 

( )I II I II II 0xJ J D D C+ = − ∂ =  

is valid because of I II 1C C+ = , and I IID D D= =  is valid then for an interdiffusion coefficient D . On the 
other hand, it was also considered that the K effect is caused by a difference between the diffusion flux of ele-
ment I and that of element II across the K interface. In other words, the so-called intrinsic diffusion coefficient 
satisfying the relation of I II

int intD D≠  was newly conceived to understand the K effect then.  
However, the definition of diffusivity shows that the diffusivity is proportional to a statistical jump frequency 

of a diffusion particle at a point ( ),t x  occupied by the diffusion particle itself. It is, therefore, physically diffi-
cult to accept what a diffusion particle of the element I or II has two diffusivities ID  and I

intD  or IID  and 
II
intD  at the same point ( ),t x  in the concerned diffusion field under the condition of I IID D D= = , since the 

statistical jump frequency value of a diffusion particle should be physically only one in the concerned diffusion 
field. 

In the present diffusion theory, the behavior of micro holes is visualized by the movement of an inert marker 
in the diffusion region because of the inert characteristic. Therefore, the K effect means a shift between the 
coordinate systems ( ),t x  and ( ),t x   after the thermal diffusion. In other words, Equation (3-12) yields the 
displacement between the K interface and the M interface because of RP 0v =  in accordance with the experi-
mental results. The K effect is thus obtained as 

( ) ( ) { }eff Q P A B0
1

d 1 ,
Nt j j

j
x v t t N D C C tγ

=

∆ = = − −∑∫ 

                     (3-15) 

satisfying the parabolic law.  
The concept of intrinsic diffusion is thus unnecessary for understanding the K effect. Further, the K effect 

occurs in the interdiffusion not only of metal crystal but also of every material, since it is caused by a shift be-
tween the coordinate systems. 

Equation (3-15) gives evidence that the K effect is caused by a shift between the coordinate systems, since it 
does not depend on the space coordinate. Substituting 2N =  into Equation (3-15) and comparing it with Equa-
tion (3-14) give 

( )( )I I
A B A B .m D D C C= − −                                (3-16) 

Here, we must notice that 2µ =  is tentatively adopted in the diffusion junction depth jun Dγξ µ τ∆ =   in 
the present case. Therefore, the µ  value in the relation of 

( )( )I I
A B A B

2m D D C C
µ

= − −   

must be concretely investigated so as to be suitable for the concerned interdiffusion problems, since the m value 
is experimentally obtained. 

3.3. Unified Theory of Diffusion Problems 
The experimental results show that the relation of RP 0v =  is valid in the metallurgy field. This means that the 
shape of diffusion system is unchangeable before and after diffusion treatment. In that case, Equation (2-19) is 
thus rewritten as 

( ).j j jC D Cτ ξ ξ∂ = ∂ ∂                                 (3-17) 

Equation (3-17) of ( ),τ ξ  is thus equivalent to Equation (2-11) of ( ),t x . However, the diffusion flux of Equa-
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tion (2-20) is rewritten as 

( ) ( ) ( )R F R eq, ,j j j jJ J J Jτ ξ τ ξ τ= + + , ( )F , .j j jJ D Cξτ ξ = − ∂  

In the following, various diffusion problems are systematically investigated by applying the diffusion flux of 
Equation (2-18) to them for I, IIj = , under the condition of 

( )( )I I
QP A B A B 2v D D C C t= − − 

 . 

Equation (2-18) is then expressed as 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

I I I I I I I
Q F QP eq F

II II II II II II II
Q F QP eq F

i , , , , , , ,
ii , , , , , , .

xJ t x J t x v C t x J J t x D C t x
J t x J t x v C t x J J t x D C t xξ

 = + + = − ∂
 = + + = − ∂



    

    

    

    

          (3-18) 

(a) Interdiffusion: 
Under the condition of I IID D D= = , Equation (3-18) becomes 
(i) ( ) ( ) ( )I I I I

Q QP eq, , , ,xJ t x D C t x v C t x J= − ∂ + +




  

    

(ii) ( ) ( ) ( )II II II II
Q QP eq, , ,xJ t x D C t x v C t x J= − ∂ + +





  

   . 
(b) One-way diffusion: 
Under the condition of II 0D = , Equation (3-18) becomes 

(i) ( ) ( ) ( )I I I I I
Q QP eq, , ,xJ t x D C t x v C t x J= − ∂ + +



  

   , 

(ii) ( ) ( )II II II II
Q QP eq, ,J t x v C t x J= + 

  . 
(c) Impurity diffusion:  
Under the condition of II 0D =  and II II

A BC C= , Equation (3-18) becomes 

(i) ( ) ( )I I I I
Q eq, ,xJ t x D C t x J= − ∂ +



 

  , (ii) ( )II II
Q eq,J t x J=

 . 
(d) Self-diffusion: 
Under the condition of I I I

A BC C C= =  and II II I I
A BC C C= = , Equation (3-18) becomes 

(i) ( )I I
Q eq,J t x J=

 , (ii) ( )II II
Q eq,J t x J=

 . 

If we rewrite ( )I
Q ,J t x   and ( )II

Q ,J t x   as  

( ) ( )I
Q Q, ,kJ t x J t x→ 

   and ( ) ( )II
Q Q

1,
, ,

N
j

j j k
J t x J t x

= ≠

→ ∑ 

   for 1, 2, , , ,j k N=    

the above theory is still valid in the N elements system. In the diffusion problems, it was thus found that the be-
havior of diffusion region space plays an important role for understanding diffusion mechanisms.  

3.4. Self-Diffusion Theory 
The diffusivity expression of Equation (2-5) is valid regardless of pure materials [3]. The Einstein theory of 
Brown motion shows that the self-diffusion of water is visualized by diffusion phenomena of pollen micro par-
ticles. It is thus obvious that the self-diffusion occurs in a pure material. However, even if we apply the F2 law 
to the self-diffusion problems in a pure material, we cannot understand whether the self-diffusion occurs or not, 
since the concentration is unchangeable in the self-diffusion system.  

Langevin theoretically investigated not the diffusion equation of collective motion but the motion equation of 
a diffusion particle with a viscosity resistance in a pure liquid material [27]. It was thus revealed that the diffu-
sion particle moves in accordance with the normal distribution rule.  

The theories of Langevin as well as Einstein are relevant to diffusion particles with a driving force in a pure 
material. In other words, the diffusion phenomena of a pure material itself are not directly investigated. However, 
Equation (2-5) shows that the self-diffusion occurs in a pure material even if there is no driving force in the dif-
fusion system.  

The self-diffusion problems have been also experimentally investigated as an impurity diffusion problem by 
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using small quantities of the isotope material. Strictly speaking, however, the self-diffusion problems are obviously 
different from the impurity ones, as can be seen from the difference of (i) between (c) and (d) in Section 3.3. 

As discussed in Section 2.1, the corresponding F 1 law to the F2 law is incomplete without the intrinsic diffu-
sion flux. In the following, therefore, the self-diffusion problems of a pure material are directly investigated in 
accordance with the intrinsic diffusion flux, regardless of a driving force. 

(1) Application of intrinsic diffusion flux to self-diffusion problem 
We cannot experimentally confirm eq

jJ  in Equation (2-13). The theory of Brown motion reveals that the dif-
fusion phenomena occur in a material even if the macro concentration gradient is zero. The concept of intrinsic 
diffusion flux should be thus valid in a localized region space. The coordinate notation ( ),τ ξ  is, for conveni-
ence, used instead of ( ),t x   and/or ( ),t x  in the following. 

Using the coordinate notation ( ),τ ξ  for the equation of ( )Q eq,j jJ t x J=



 
relevant to the self-diffusion, the 

relation of 

( ) ( ){ }0

0
eq 0 0, , dj j jJ C C

ξ ξ

ξ
τ τ τ ξ τ ξ ξ

+∆
∆ = − + ∆ −∫                       (3-19) 

is obtained. If the concentration difference between ( )0 0,τ ξ  and ( )0 0,τ τ ξ ξ+ ∆ + ∆  is defined as jC∆ , Equ-
ation (3-19) is rewritten as 

eq
j jC J τ ξ∆ = − ∆ ∆ .                                 (3-20) 

Taking account of ( )0 0,τ τ ξ ξ+ ∆ − ∆  in Equation (3-19) and using Equation (2-5) for Equation (3-20), we 
have the relation of 

eq 0 .
j

j jC J D
ξ

∆
= −

∆
                                  (3-21) 

Equation (3-21) shows an instantaneous concentration gradient in the localized time τ∆  and space ξ∆  in 
the cause of the thermal fluctuation, even if the macro concentration gradient is zero. In other words, although 
the concentration gradient of a pure material is zero in macro behavior, it is nonzero in the minute region. 

The behavior of concentration distribution in the local space is thus obtained as 

( ) ( )eq

0

0 .
j

j j
j

J
C C

D
ξ ξ= − +                               (3-22) 

In a pure material or a material in the thermal equilibrium state, Brownian particles move in accordance with 
Equation (3-22). If eq 0jJ = , the Brownian particles get a standstill state inconsistent with the Einstein theory of 
Brown motion. The intrinsic diffusion flux eq

jJ  is thus an important concept in the fundamental diffusion 
theory. At the same time, the F1 law is incomplete without eqJ . 

If we apply Equation (3-22) to the interdiffusion problems, the relation of 

( ) ( )eq
1 1 1

0
N N N

j j j

j j j
C J C

D
ξ

ξ
= = =

= − +∑ ∑ ∑


                          (3-23) 

is valid in accordance with Equation (3-3). Equation (3-23) reveals that Equation (3-6) is valid because of  

( ) ( )
1 1

0 1
N N

j j

j j
C Cξ

= =

= =∑ ∑ . 

Using the notation eq
j jJ Dα =   for Equation (3-22), the concentration behavior of an element j in the ther-

mal equilibrium state is expressed as 

( ) ( )0j j jC Cξ α ξ= − +                                (3-24) 

under the condition of 
1

0
N

j

j
α

=

=∑  in the localized space. 

The diffusion region of self-diffusion problem of a pure material is, for convenience, divided into 2 regions as 
a binary system interdiffusion problem composed of a pure material I of 0ξ <  and the pure material II of 
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0ξ >  at 0τ = . The diffusion region is between A Bξ ξ ξ≤ ≤  at a time τ  then. The boundary values are 
I
A 02C C=  for Aξ ξ≤  and II

B 02C C=  for Bξ ξ≥  under the condition of 0 0.5C = . 
Using Equation (3-24) for I, IIj = , the relations of  

( )I
0C Cξ αξ= +  and ( )II

0C Cξ αξ= − +                        (3-25) 

are obtained, where eqJ Dα =  . Equation (3-25) shows that ( )IC ξ  and ( )IIC ξ  depend on ξ  and that 

( ) ( )I IIC Cξ ξ≠  is valid if 0ξ ≠ . If we pay attention only to one side of IC  or IIC , it is obvious that the par-
ticle migration occurs via the random movement in the pure material. In other words, the diffusion occurs in a 
pure material, even if the macro concentration gradient is zero. 

On the other hand, if we pay attention to both sides of IC  and IIC  in Equation (3-25), ( ) ( )I II
0, ,C C Cτ ξ τ ξ= =  

seems to be valid, since we cannot actually distinguish their diffusion particles between A Bξ ξ ξ< <  whether 

they were ones of IC  or IIC  in the initial state at 0τ = . 
(2) Physical meaning of intrinsic diffusion flux 
Here, we estimate the eqJ  value in the following. When the averaged jump distance or the averaged collision 

distance is written as l in a pure material, the substitution of A lξ = −  and B lξ =  into Equation (3-25) yields 

eq self 0 ,J D C l= −                                  (3-26) 

where D  is rewritten as selfD  and 0C l  corresponds to the concentration gradient. It is considered that the 
order of l is several angstroms and the diffusion junction depth in a usual experiment is several micrometers. 
Therefore, the absolute value of FJ D Cξ= − ∂  is considerably small, compared with that of eq self 0J D C l= − .  

We cannot actually observe eqJ  in the macro state because of Equation (3-6). However, we can approx-
imately estimate it by using the relation of 

*
eq self 0 ,J D C l= −  

where *
selfD  is a self-diffusion coefficient obtained from the tracer diffusion experiment for the concerned ma-

terial, 0 0.5C =  and l corresponds to the averaged jump distance or the averaged collision distance of the diffu-
sion particle. 

Equation (3-25) independent of τ  means the time-averaged concentration profile caused by the Brown mo-
tion in the localized region space. The diffusion occurs even in a pure material, resulting from the chain reaction 
of instantaneous jumping of diffusion particle into micro holes caused by a thermal fluctuation in a material 
minute region. Equation (3-26) thus gives evidence that the Brown motion occurs in a pure material, even if an 
external force does not exist in the diffusion system.  

From the historical point of view, if the F1 law were investigated at an early stage in accordance with the 
Gauss divergence theory, we might understand the Brown motion behavior before the Einstein theory [2] [3] 
[14]. 

3.5. Diffusion Equation of Micro Holes 
The space coordinate dependence of micro holes has been neglected in the diffusion theory mentioned above. In 
the metallurgy field, however, the experimental results of multiple markers show that their movements depend 
on the space coordinate in accordance with a marker position set in the initial diffusion couple [28]-[30]. This 
indicates that we must investigate the space coordinate dependence of micro holes in the diffusion study in detail, 
since the behavior of micro holes is visualized by the characteristic of inert markers.  

In that case, Equation (3-1) is rewritten as 

H

1
1,

N
j

j
C C

=

+ =∑                                  (3-27) 

where HC  is the normalized concentration of micro holes between A Bx x x≤ ≤ . In general, there is a differ-

ence ( )H H H
A BC C C∆ = − −  between the thermal equilibrium concentration of micro holes ( )H

A AC x x≤  in the  
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material A and that of ( )H
B BC x x≥  in the material B. When the difference HC∆  is not negligible, the diffu-

sion of micro holes occurs between A Bx x x≤ ≤ .  
For the thermal equilibrium concentration of micro holes H

0C  in the diffusion region A Bx x x≤ ≤ , the gen-
eration/annihilation term of the diffusion equation is expressed as 

( )H H
H 0 ,k C C−                                    (3-28) 

where Hk  is a chemical reaction constant. Taking account of Equation (3-28), the diffusion equation of micro 
holes is expressed as 

( ) ( )H H H H H
H 0 ,t x xC D C k C C∂ = ∂ ∂ + −                          (3-29) 

where HD  is a diffusivity of micro holes between A Bx x x≤ ≤ .  
The K-effect shows that the concentration of micro holes yields a supersaturated section and an unsaturated 

one in the diffusion region. Therefore, the averaged value of diffusion flux yielding 

( ) ( )B

A

1 H H
B A H 0 d

x

x
x x k C C x−− −∫                            (3-30) 

is considered to be negligible. We thus assume that the averaged contribution of the generation/annihilation term 
to the total diffusion flux in the diffusion system is negligible.  

Here, if we integrate Equation (3-29) with respect to x, the diffusion flux relation of  

( )H H H H H H H H
H 0d dx t x xJ C x D C k C C x D C= − ∂ = − ∂ − − ≅ − ∂∫ ∫                (3-31) 

is obtained by neglecting the contribution of Equation (3-30). In that case, Equations (3-27), (2-11) and (3-31) 
yield 

( )
1

H

1 1
0,

N N
j j j j

x x x x
j j

D C D D C
+

= =

   
∂ ∂ = ∂ − ∂ =   
   
∑ ∑  

under the condition of 1 HN + = . Equation (3-3) is thus rewritten as 
H 1 2 N .D D D D D= = = = ⋅⋅⋅ =                            (3-32) 

Equation (3-32) shows that we can accept a micro hole as a virtual diffusion particle. 
The diffusion equation of Hj ≠  in the N elements system interdiffusion becomes 

( ) ,j j
t x xC D C∂ = ∂ ∂                                (3-33) 

using a common interdiffusion coefficient D . It seems that Equation (3-33) is an independent equation of jC . 
However, it is not independent because of Equation (3-27). When we must investigate the influence of HC∆  on 
the interdiffusion problems in detail, the diffusion equation of micro holes yielding  

( ) ( )H H H H
H 0t x xC D C k C C∂ = ∂ ∂ + −                           (3-34) 

should be investigated. Equation (3-34) shows that the behavior of multiple markers depends on the time and 
space, since the obtained HC  dependent on the time and space is visualized by the inert markers. 

3.6. Application of Present Theory to Actual Diffusion Problems 
Hereinbefore, we discussed some fundamental problems in the bulk diffusion of an ideal diffusion couple. The 
interdiffusion problems for a many elements system, such as an alloy, a compound semiconductor, a multilayer 
thin film, a microstructure material and so on, have been widely investigated [4] [31]-[34]. It is then fundamen-
tally indispensable for the material science investigation to understand the N ( 2N ≥ ) elements system interdif-
fusion theory, since the migration of each element in a material occurs during the thermal treatment in the ma-
terial fabrication process. 

In the diffusion study history, the concept of intrinsic diffusion has been accepted in order to understand the K 
effect. In the existing theory of interdiffusion problems, the Darken equation derived from the intrinsic diffusion 
concept has been widely used for analyzing them [35]. The application of the Darken theory to a many elements 
system interdiffusion was extremely complicated even if it was a ternary elements system [36]. On the other 
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hand, the simple relation among interdiffusion coefficients obtained here will be extremely useful for analyzing 
various interdiffusion problems. 

As can be seen from the Appendix [B], we revealed that the Darken equation is not mathematically valid. It is 
also reported that the analytical results obtained by using the Darken equation are not consistent with the expe-
rimental results [37]. This fact is consistent with the present theory where there is no such concept of intrinsic 
diffusion in the diffusion phenomena. 

Under the condition of Equation (3-27), therefore, it is necessary for analyzing a many elements system inter-
diffusion problem to solve the diffusion equations (3-33) and (3-34) of each element in accordance with their in-
itial and boundary conditions. Here, it seems that these diffusion equations are independent of each other since 
they have a common interdiffusion coefficient. However, it is not independent because of Equation (3-27).  

In the parabolic space discussed later, the analytical method of a nonlinear diffusion equation is established. 
The analytical solutions of Equations (4-48) and (4-49) are thus obtained then. Using them for analyzing each of 
the above equations, we can fundamentally solve an N ( 2N ≥ ) elements system interdiffusion problems. The 
theory discussed here is thus widely applicable to analyzing the fundamental problems of N elements system in-
terdiffusion.  

Since the present analytical theory is fundamental, it will be necessary for actual diffusion problems to modify 
it partly in accordance with the concerned problems like the Boyle Charles law for an ideal gas state is modified 
into the van der Waals equation in the actual case by incorporating an interaction between gas particles into it. 

4. Analysis of Diffusion Equation in Parabolic Space 
Einstein theoretically revealed that the Brownian particles randomly move in accordance with the parabolic law 
[3]. After that, it was experimentally confirmed by Perrin [38]. The parabolic law is universally shown in phe-
nomena relevant to the normal distribution in a probability problem. The Brown problem is a study subject not 
only in the material science but also in the complex-system sciences relevant to the Markov process. Therefore, 
the analytical method of the Brown problem is mathematically common in various science fields.  

The diffusion junction depth is directly relevant to the parabolic law. The diffusion problem is justifiably one 
of the Brown problems. This indicates that the solutions of diffusion problems are possible in the parabolic 
space. In other words, the analytical method discussed here is widely applicable to various Brown problems. 

The F2 law is a continuous equation in the conservation system under the condition of no sink and source of 
diffusion particles, and it is one of the basic equations in physics. When the existence of a driving force or the 
sink and/or source of diffusion particles is negligible in a given diffusion system, Equation (2-6) is a parabolic 
type linear partial differential equation in the evolution equations. A lot of diffusion problems have been inves-
tigated by solving the diffusion equation of the time and space ( ), , ,t x y z  since 1855.  

When the diffusivity depends on the concentration, the diffusivity becomes a function of the independent va-
riables ( ), , ,t x y z  via the concentration. Even if the diffusion equation depends only on ( ),t x , the mathemati-
cal solutions of the nonlinear partial differential equation are almost impossible. A new analytical method in the 
parabolic space, which is extremely superior in analyzing to the existing ones, is discussed in the following. 

4.1. Definition of Parabolic Space 

For convenience, hereafter we use the coordinate notation ( ) ( )1 2 3, ,nθ ξ ξ ξ ξ=  transformed from the time and 

space ( ), , ,t x y z  into the parabolic space and they are correlated to j jx tξ =  and tτ =  under the condi-

tion of ( ) ( )1 2 3, , , , , ,t x x x t x y z≡ . The relations of differential operators are obtained as 

31 2

1 1 1 1 11 2 3 1

1
x x x x x

ξξ ξτ
τ ξ ξ ξ ξτ

∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
 

and 

31 2
1 2 3

1 2 3 1 2 3

1 .
2t t t t t

ξξ ξτ ξ ξ ξ
τ τ τξ ξ ξ ξ ξ ξ

 ∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + = − + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ 
 

From the similar calculation, the differential operators in the parabolic space are obtained as 



T. Okino 
 

 
2123 

( )1 2 3
1 1, , στ τ

∇ = ∂ ∂ ∂ = ∇  , 1 ,
2t σθ

τ τ
∂ ∂
= − ∇

∂ ∂
                   (4-1) 

where 
j jj ξ ξ∂ = ∂ = ∂ ∂  and { }†

σ σ∇ = − ∇  because of the Hermite characteristic.  

4.2. Diffusion Equation in Parabolic Space 
If we directly apply Equation (4-1) to homogeneous partial differential Equation (2-6), the ellipse type differen-
tial equation is obtained as 

( ) ( )1 2 3 1 2 3
1 , , , , ,
2

C D Cσ σ σθ ξ ξ ξ ξ ξ ξ− ∇ = ∇ ∇                      (4-2) 

where ( )1 2 3, , 0Cτ ξ ξ ξ∂ =  is physically valid in accordance with initial conditions [21].  
If 1n =  for ( )nθ ξ , Equation (4-2) becomes  

( ) ( )1 11

1 1 1

d dd
d d 2 d

C C
D

ξ ξξ
ξ ξ ξ
 

= − 
 

                            (4-3) 

which is the well-known Boltzmann transformation equation [21]. Further, it is rewritten as 

( ) ( )1 2
1 11

2
1 1 1

d d1 d .
2 d d d

C CD
D D

ξ ξξ
ξ ξ ξ

−
 

− = +  
 

                         (4-4) 

The integral calculation of Equation (4-4) yields the integro-differential equation given by 

( ) ( )
( )

11 1
1 0 0

1

d
exp d ,

d 2
C

D J
D

ξξ ηξ η
ξ η

 
= − 

  
∫                         (4-5) 

where ( ) ( )
1

1
0 1 1 1 0

J D C
ξ

ξ ξ
=

= ∂ .  

Here, if we define 

( ) ( )
11

1 0 0
exp d ,

2
J J

D
ξ ηξ η

η
 

= − − 
  
∫                           (4-6) 

the expression of 

( ) ( ) ( )1
1 1

1

d
d

C
J D

ξ
ξ ξ

ξ
= −                               (4-7) 

is obtained from using Equation (4-6) for Equation (4-5). Boltzmann transformation equation (4-3) is essentially 
equivalent to Equation (4-7).  

We can accept Equation (4-7) as a diffusion flux in the parabolic space. The F1 law in the time and space 
cannot be used directly for analyzing a diffusion problem. However, the diffusion flux of Equation (4-7) is 
possible for analyzing a diffusion problem under the initial condition of Equation (4-6). 

Further, as described later, the solutions of three dimensions problems in the parabolic space ( )1 2 3, ,ξ ξ ξ  are 
obtained as a linear combination among the solutions of each one dimension diffusion problem. Therefore, Equ-
ation (4-7) is the most important essential equation relevant to the diffusion problems in the parabolic space. 

In the parabolic space ( )1 2 3, ,ξ ξ ξ , the diffusion flux is defined as 

( ) ( )1 2 3 1 2 3, , , , ,J D Cσξ ξ ξ ξ ξ ξ= − ∇                           (4-8) 

where the component of ( ) ( )1 2 31 2 3, , , ,J J J Jξ ξ ξξ ξ ξ =  is expressed as 

0 0
exp d

2
j

j

jJ J
D

ξ
ξ

η
η = − −  ∫  for ,jη ξ=                         (4-9) 
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using ( )0 0j

j
j nJ D C

ξ
ξ

=
= ∂  for 1, 2,3n = . Here, note that the initial and/or boundary condition is taken into 

account in the diffusion flux of Equation (4-6) or (4-8), although it is not taken into account in the F1 law. 
Equation (4-8) in the parabolic space ( )1 2 3, ,ξ ξ ξ  is equivalent to Equation (2-6) in the time and space 

( ), , ,t x y z . In mathematics, the following relation of 

( )d for 1,2,3
d j n j

j

C C D j
D

ξ
ξ

∂
= ∂ + ∂ =

∂
                       (4-10) 

is generally valid, if the diffusivity D depends on independent variables. Equation (4-10) is extremely useful for 
analyzing a nonlinear diffusion equation.  

4.3. Analytical Solutions of Linear Diffusion Equation 
The utility of the present method is confirmed through solving some typical diffusion problems by concrete cal-
culations. The mathematical method used here is also widely applicable to the Brown problems in various 
science fields.  

(1) One dimension parabolic space  
We first solve the linear diffusion equation given by 

( ) ( )2
0, ,t xC t x D C t x∂ = ∂                               (4-11) 

under the initial and boundary conditions of 

( ) ( )
( ) ( )

A B

A B

0, 0 : 0, 0 : 0, ,
0, , , , .

t x C x C x C x C
t C t C C t C
 = < = > =
 > −∞ = ∞ =

                   (4-12) 

The initial condition of Equation (4-12) is rewritten as 

( ) AC C−∞ = , ( ) BC C∞ =                               (4-13) 

in the parabolic space 1ξ . 
Substituting 0D D=  and 1 0ξ =  into Equation (4-5), the initial value of 

( )11
0 0 0J D C=  for ( ) ( )

1

1 1
0

1 0

d
d

C
C

ξ

ξ
ξ

=

=                          (4-14) 

is obtained. Using Equation (4-14) for Equation (4-5), the ordinary differential equation of  

( ) ( )
2

11 1
0

1 0

d
exp

d 4
C

C
D

ξ ξ
ξ

 
= − 

 
                             (4-15) 

is obtained.  
From the definition of the well-known error function, the general solution of Equation (4-15) is obtained as 

( ) ( )1 1
1 0 0

0

π erf ,
2

C D C C
D γ
ξ

ξ
 

= +  
 

                          (4-16) 

where Cγ  is an integral constant. Using the initial condition of Equation (4-13) for the general solution, the 
well-known solution is obtained as 

( ) A B A B 1
1

0

erf .
2 2 2

C C C CC
D
ξ

ξ
 + −

= −   
 

                       (4-17) 

In the analytical method in the parabolic space, the solution is thus easily obtained only by the elementary 
integral. It is, therefore, obvious that the present analytical method is extremely superior in analyzing diffusion 
equations to the existing methods. 

(2) Parabolic space of n dimensions 
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In case of 0D D= , Equation (4-9) is rewritten as  

( )
2

1
0 0

0

exp
4j

j
jJ D C

Dξ

ξ 
= − − 

  
 for ( ) ( )1

0 0
.

j
j j nC C

ξ
ξ

=
= ∂  

Using this equation for 3n = , the relation of 

( ) ( )

( )

( )

( )

1 2
10 1 0

1 2
20 2 0

1 2
30 3 0

exp 4

exp 4

exp 4

n n

C D

C C D

C D

σ

ξ

ξ ξ

ξ

  −  
  ∇ ∂ = −  
  −  

                        (4-18)  

is obtained from Equation (4-8).  
The operation of σ∇  on both sides of Equation (4-18) yields the Poisson equation given by 

( ) ( )12 2
0 0

1 10

1 exp 4 .
2

n n

j n j j j
j j

C C D
D

ξ ξ ξ
= =

 ∂ = − − ∑ ∑                     (4-19) 

We solve the ellipse type differential equation (4-19) corresponding to Equation (2-6) under the initial and 
boundary conditions in the following.  

The initial and boundary values of Equation (2-6) given by 

( )
( )
( )
( )

0
1

0
2

0
3

, , , for 0, 0, 0 and 0

, , , for 0, 0, 0 and 0

, , , for 0, 0, 0 and 0

, , , 0 for 0, 0, 0 and 0

C t x y z C t y z x

C t x y z C t x z y

C t x y z C t x y z

C t x y z t x y z

= ≥ > > =

= ≥ > > =

= ≥ > > =

= = > > >

                  (4-20) 

correspond to 

( ) ( ) ( ) ( )0 0 0
1 2 30, , , ,0, , , ,0 , , , 0C C C C C C C∞ ∞ = ∞ ∞ = ∞ ∞ = ∞ ∞ ∞ =              (4-21) 

in the parabolic space ( )1 2 3, ,ξ ξ ξ . 
In the analysis of Equation (4-19), it is easily found that the equation of 

( ) ( )1
0 0 0

1
π erf 2

n

S n j j
j

C D C Dξ ξ
=

 =  ∑                         (4-22) 

satisfies Equation (4-19). In other words, Equation (4-22) is the particular solution of Equation (4-19). When the 
general solution of Laplace equation of 

( )2

1
0

n

i n
i

C ξ
=

∂ =∑                                  (4-23) 

is obtained as ( ) ( )n L nC Cξ ξ= , the general solution of Equation (4-19) is expressed as 
( ) ( ) ( )n L n S nC C Cξ ξ ξ= +                             (4-24) 

in accordance with the mathematical theory. 
Assuming the equation of 

( ) ( )
1

n

L n j j
j

C Fξ ξ
=

=∏                                 (4-25) 

and using the variable separation method, the solution of Equation (4-23) is possible. Substituting Equation 
(4-25) into Equation (4-23), the relation of 

( )
( )2

2
1

d1 0
d

n j j

j jj j

F

F

ξ

ξξ=

=∑  
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is valid. In order to satisfy this equation for an arbitrary jξ , the equation of 

( )
2

2
2

d 0
d j j j

j

Fλ ξ
ξ

 
− =  

 
                               (4-26) 

must be valid under the condition of 

2

1
0

n

j
j
λ

=

=∑ .                                     (4-27) 

Equation (4-27) yields 1 0λ =  for 1n =  and solution of Equation (4-26) is expressed as 

( )1 1 1 1LC A Aξ ξ+ −= + , 

where 1 1andA A+ −  are arbitrary constants. ( )( )10
1 1 1 0 100 and πA A C D C+ −= = = −  are determined by the initial 

condition. The well-known solution of Equation (4-19) is thus obtained as 

( ) ( )0
1 1 1 01 erf 2C C Dξ ξ = −   .                         (4-28) 

In case of 2, 3n =  and 
1

0
n

j
j
λ

=

≠∏ , substituting the solution of Equation (4-26) given by 

( ) e ej j j j
j j j jC A Aλ ξ λ ξξ −

+ −= +  

into Equation (4-25), the general solution of Equation (4-23) is obtained as 

( ) ( )
1

e e ,j j j j

j

n

L n j j
j

C A Aλ ξ λ ξ

λ
ξ −

+ −
=

 
= + 

 
∑ ∏                         (4-29) 

where andj jA A+ −  are arbitrary constants. However, there is no solution satisfying the initial and boundary 
conditions because of Equation (4-27). As a result, the general solution of Equation (4-23) is obtained as 

( ) ( )
1j

n

L n j j j
j

C A A
λ

ξ ξ+ −
=

 
= + 

 
∑ ∏                            (4-30) 

under the condition of 1 2 3 0λ λ λ= = = . Since the initial and boundary conditions yield 0jA + = , the present 
solution of Equation (4-23) is thus obtained as 

( ) 0

1
,

n

L n j
j

C Cξ
=

= ∑  

where ( )10
0 0πj jC D C= −  in accordance with the initial and boundary conditions. 

The solution of Equation (4-19) is thus obtained as 

( ) ( )0
0

1
1 erf 2 .

n

n j j
j

C C Dξ ξ
=

 = −  ∑                          (4-31) 

If we use ( ) ( )erfc 1 erfη η= −  for 3n = , the solution is also presented as 

( ) 0 0 0
1 2 3

0 0 0

, , , erfc erfc erfc .
2 2 2

x y zC t x y z C C C
D t D t D t

     
= + +     

          
            (4-32) 

The present study reveals that the particular solution is easily possible and the complementary function of 
Equation (4-19) is a constant value to satisfy the given initial and boundary conditions because of the singular 
characteristic of initial conditions. In other words, the diffusion behavior is incorporated into the inhomogeneous 
term of the Poisson equation. As a result, the solution is obtained as a linear combination of the error functions. 

Although the diffusion problems have not ever been investigated in the parabolic space, it is obvious that the 
present solution is thus exceedingly simple and elegant, compared with the usual solution of  
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( ) ( )
3

1
, , , e e ej j j jk x k xt

j j
j

C t x y z A Aµ

µ

−−
+ −

=

 
= + 

 
∑ ∏                     (4-33) 

for 
3

2

1
j

j
kµ

=

=∑ , where 1 2 3, ,x x x y x z= = = . 

(3) Analysis of inhomogeneous diffusion equation 
The research subjects of linear diffusion phenomena in detail are often expressed by an inhomogeneous par-

tial differential equation. Therefore, the application of the present method to those problems is investigated. 
Generally, such linear diffusion equations are expressed as 

( ), , , ,Ly g t x y z=                                 (4-34) 

where L is the linear operator of 

0 .tL D= ∂ − ∇ ∇                                 (4-35) 

From the mathematical theory, the solution of inhomogeneous Equation (4-34) is obtained as 
( ) ( )C S, , , , , , ,y f t x y z f t x y z= +                            (4-36) 

where ( )C , , ,f t x y z  is the complementary function, i.e., the general solution of homogeneous equation given 
by 

0,Ly =                                     (4-37) 

and ( )S , , ,f t x y z  is a particular solution of  

( ) ( )1
S , , , , , , .f t x y z L g t x y z−=                           (4-38) 

Equation (4-1) shows that the differential operators in the parabolic space are not able to apply to Equation 
(4-34). However, the linear operator in the parabolic space given by 

P 0
1
2

L Dσ σ σθ= ∇ + ∇ ∇                          (4-39) 

is possible for analyzing the homogeneous Equation (4-37). In other words, we can obtain the complementary 
function by the present method. In order to obtain a solution of an inhomogeneous diffusion equation, therefore, 
we must obtain a particular solution by the existing methods. 

4.4. Analytical Solutions of Nonlinear Diffusion Equation 
Using the experimental profile ( )1C ξ  for Equation (4-3), Matano obtained the ( )1D ξ  profile in the interdif-
fusion problems between solid metals in 1933 [26]. The empirical Boltzmann Matano method has been widely 
applied to the analysis of the interdiffusion experiments between solid metals. However, the mathematical solu-
tions of Equation (4-3) had not yet been obtained since 1894 for such a long time until the recent work [19]. If 
the analytical solutions of Equation (4-2) or (4-8) obtained, we can understand the effect of a driving force on 
the diffusivity. In other words, dfD  of Equation (2-7) will be analytically obtained.  

(1) Analytical method in parabolic space 
When the diffusivity is affected by a driving force, the mathematical solutions of the nonlinear equations 

(2-11) and (4-3) or (4-7) are impossible if no other relation between diffusivity and concentration is given. In 
that case, the diffusivity depends on the independent variables and Equation (4-10) is generally valid in mathe-
matics then. Equations (4-7) and (4-10) are thus simultaneously solved in the following. 

The integro-differential equation (4-5) is superior in the approximate calculation to the second order differen-
tial equation (4-3). For example, using an effective diffusivity effD  for the exponential part in Equation (4-5), 
the relation of 

( )
1

2
1

0
eff

d
2 4D D

ξ ξη
η

η
=∫

 

 

is valid because of the characteristic of the integral calculation, where D is rewritten as an interdiffusion coeffi-
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cient D . 
In order to clarify the validity of the present method, we applied the present method to the typical problems of 

a binary system interdiffusion where the complete solid solution is formed in the interdiffusion region between 
solid metals. The reason for that is as follows. The Boltzmann Matano method has been widely used for the 
analysis of various interdiffusion problems. Uncountable papers have been reported and useful findings have 
been thus accumulated. Even if the present results are thus evaluated by comparing them with the Boltzmann 
Matano results, the generality of present method is still kept from the viewpoints of mathematical physics. 

In the following analysis, the relations of 

( ) ( ) ( ) ( )A B A B, , ,C C C C D D D D−∞ = ∞ = −∞ = ∞ =                     (4-40) 

are adopted as an initial condition in the parabolic space. The coordinate origin 0x =  is set at a point on the in-
itial interface of a diffusion couple between materials A and B similar to the one under the condition of 2N =  
in Section 3. The interdiffusion region of A Bx x x≤ ≤  corresponds to 1A 1 1Bξ ξ ξ≤ ≤  in the parabolic space  
because of 1 x tξ = . Here, the suffix I or II of C and D  is deleted since the diffusion equation of I is equal 

to that of II because of I II 1C C+ = . 
The countless experimental results always reveal that the ( )1C ξ  profile becomes an S-letter curve or a re-

verse one similar to the profile of Equation (4-17) [39]. In the typical interdiffusion problems, the Boltzmann 
Matano method shows that the ( )1D ξ  profile is also an S-letter curve or a reverse one. These indicate that 
( )1C ξ  and ( )1D ξ  are expressed as a superposition of the error functions with various inflection points. 
The relation of A BD D<   is conveniently adopted in this section. In such a case, the exponential part of Equ-

ation (4-5) satisfies 

( )
1

2 2
1 1

0
A B

exp exp d exp
4 2 4D D D

ξξ ξη
η

η
    

− < − < −    
     
∫

  

. 

Using a constant value intD  between A int BD D D< <   , it is thus defined as 

( )
( )1

2
1

10
int

exp d exp ,
2 4D D

ξ ξη η α ξ
η

   
− = − −   
    
∫

 

                     (4-41) 

where ( )1α ξ  is a function to correct the error caused by using intD  instead of ( )1D ξ . 
Substituting Equations (4-5) and (4-41) into Equation (4-10) yields the diffusion flux relation of 

( ) ( ) ( )1
2

1 1
1 1 0

1 1 int

d e exp .
d 4

C C DD D J
D D

α ξ ξ
ξ ξ

ξ ξ
−  ∂ ∂

+ = − ∂ ∂  



 

 

                    (4-42) 

For the diffusion flux, the physical speculation produces the relation yielding 

( ) ( )1
1 0 1

1

,CD Jξ β ξ
ξ
∂

=
∂

                               (4-43) 

where ( )1β ξ  is a function of 1ξ  satisfying ( )
1

1lim 0
ξ

β ξ
→±∞

= . Equations (4-42) and (4-43) yield      

( ) ( ) ( ) ( )1 1
2

1 1
1 0 1

1 int

d e exp e .
d 4

C DD J
D D

α ξ α ξξ
ξ β ξ

ξ
−   ∂  = − −  ∂    





 

                    (4-44) 

In relation to a behavior of the error function, Equation (4-44) is divided into following two equations. One is 

( ) ( )
2

1
1 1

1 int

d exp
d 4

D S
D

ξ ε
γ ξ

ξ

  − = − −  
    





                          (4-45) 

and the other is 

( )
( )

2
2 1

1
1 int

2
exp ,

4
C
D D D

γ εξ ε
α ξ

ξ
 −∂

= − − ∂    

                         (4-46) 
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where ε  is a shift parameter caused by the dependence of ( )1D ξ  on ( )1C ξ  and 

( ) ( ) ( )
2

1
1 1 1

int

2exp
4

S
D

εξ ε
ξ α ξ β ξ

 −
= + 

 

 and 1
1 2 0 .Jγ γ =  

There is evidence for the validity of the above division as shown in the following. When the relation of 

( )
2

1
1

int

2 1
4D
εξ ε

α ξ
−

+ 



 

is valid, Equation (4-46) is approximately rewritten as 2d dD C Dγ=   and its integral calculation yields 

( ) ( )1A B A B
1

A B A B

ln
2 ln ln

DC C C CC
D D D D

ξ
ξ

 + −  = +
 −  



 

 

                      (4-47) 

under the condition of Equation (4-40). In the typical interdiffusion problems between solid metals, Equation 
(4-47) has been widely accepted [40]-[43]. The derivation of Equation (4-47) gives evidence for the validity of 
division of Equation (4-44) into Equations (4-45) and (4-46). 

Since it is thus confirmed that the division of Equation (4-44) into Equations (4-45) and (4-46) is reasonable, 
Equation (4-45) is analyzed in accordance with mathematical theory. As can be seen from the analyzing process 
in Ref. [19], the calculations are considerably complex. As a result, the general solution of 

( ) 11 IF m IF
1

int int

erf erf
2 2

m
D DD D D

DD D

ξ ξ
ξ −

∆
∆+

  − = − − +     

 

  



 

               (4-48) 

was obtained as an analytical expression using initial values, where 

int intD D +=   for 0ξ ≥  and int intD D −=   for 0.ξ <  

Here, the relation of 0mD D=  for I II
0 dfD D D D D= = = +  is valid in the present diffusion system. There-

fore, the effect of a driving force and/ or a concentration dependence on the diffusivity, which is discussed in 
Section 2.1, is obtained as 

11 IF m IF
df

int int

erf erf .
2 2

D DD D
DD D

ξ ξ −
∆

∆+

  − = − − +     

 





 

                   (4-49) 

Subsequently, using the obtained solution of Equation (4-48) for Equation (4-46), Equation (4-46) was ana-
lyzed also through considerably complex calculations. The general solution of  

( ) 1IN m IN1
1 m

int int

erf erf
2 2

C CC C C
CD D

ξξ
ξ −

∆
∆−

  − = − − +     
 

 

                (4-50) 

was thus obtained also as an analytical expression. 
Here, the notations used for Equations (4-48) and (4-40) are as follows: 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( )

( )

A B A B

A B A B

IF A B A B

IF IN A B A B A B

IN m m IF

int A B int A B

2, 2

2, 2

ln ln

0, 2

2 and

m

m

D D D D D D

C C C C C C

D D D D D

D D D D D D

C C C D D D

D D D D D D

ξ ξ

∆

∆

∆ ∆

+ −

 = + = −

 = + = −


= − −

 = = − +


= − −

 = + =
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The validity of the present analytical method is numerically investigated by comparing Equations (4-48) and 
(4-50) with the results of the Boltzmann Matano method. As a result, we found that the present solutions agree 
well with those of the Boltzmann Matano method [19]. 

When the diffusivity does not depend on independent variables, the relation of A B 0D D D= = 

 is valid. In 
that case, the above relations become 

int int int m 0D D D D D+ −= = = =    , IF 0D D∆ = =  , IF IN 0ξ ξ= =  and IN m.C C=  

Equations (4-48) and (4-50) agree with ( )1 0D Dξ =  and Equation (4-17) then, respectively. The obtained solu-
tion of Equations (4-48) and (4-50) are thus accepted as a generalized ones. 

The K effect effσ∆  in the parabolic space is easily obtained as  

( )( )eff eff A B A Bx t D D C Cσ∆ = ∆ = − −   

by transforming Equation (3-15) into the parabolic space under the condition of 2N = . The K effect in the pa-
rabolic space is thus determined only by the initial values. 

(2) Meaning of general solutions obtained as analytical expressions 
Since the general solutions are obtained as Equations (4-48) and (4-50), the interdiffusion problems are fun-

damentally solved as follows: 
We denote an impurity diffusivity I

impD  of a diffusion element I in a pure material B composed of an ele-

ment II and also denote an impurity diffusivity II
impD  of the diffusion element II in the pure material A com-  

posed of the element I. We first investigate an interdiffusion problem of the diffusion couple between pure ma-
terials A and B. It is then well-known that the relations of 

( ) II
A 1A impD D Dξ= =   and ( ) I

B 1B impD D Dξ= =                       (4-51) 

are physically valid. 
The solution ( )1C ξ  is determined by using I I

A B1, 0C C= =  and the values of Equation (4-51) for Equation 

(4-50). It gives two independent variable values satisfying 1 αξ ξ=  at ( )1C ξ α=  and 1 βξ ξ=  at ( )1C ξ β=  
as follows: 

( ) ( ){ }1 1 int
int IN IN

int

2 erf 1 2 erf 1 2
DD C
Dαξ α ξ− −

−

= − − − +






                 (4-52) 

( ) ( ){ }1 1 int
int IN IN

int

2 erf 1 2 erf 1 2
DD C
Dβξ β ξ− −

−

= − − − +






                 (4-53) 

Substituting these 1 αξ ξ=  and 1 βξ ξ=  and the values of Equation (4-51) into Equation (4-48), we can deter-

mine ( )AD αξ  and ( )BD βξ  for ( )1C ξ α=  and ( )1C ξ β= . 

Subsequently, using ( )AD αξ  and ( )BD βξ  for Equations (4-48) and (4-50) as boundary values of interdif-
fusion coefficients in the binary system, we can obtain the solutions of the interdiffusion problems for the diffu-
sion couple between the material A composed of I

AC α= , II
A 1C α= −  and the material B composed of 

I
BC β= , II

B 1C β= − . 
The solutions of an arbitrary binary system interdiffusion problem are thus possible by using impurity diffu-

sivities in the concerned diffusion system. In the N elements system interdiffusion problems, using an impurity 
diffusivity of an element in the concerned diffusion couple, their solutions are also possible. 

In the diffusion history, the nonlinear F2 equation had not been analytically solved until recently, although the 
numerical solutions were possible. In order to understand the diffusion problems, the corresponding diffusion 
fluxes to the F2 equation had been thus widely discussed in the existing theories, since it was considered that the 
mathematical solutions of nonlinear diffusion equation are impossible. For example, such a diffusion flux in the 
Appendix A has been discussed.  
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However, the discussion about such a diffusion flux is now unnecessary for understanding the diffusion prob-
lems, since the analytical solutions of Equations (4-48) and (4-50) relevant to the nonlinear F2 equation are ob-
tained, regardless of the diffusion fluxes. In other words, as can be seem from Equation (4-49), we can under-
stand the influence of a driving force on the diffusion flux from the obtained solutions. 

Based on the above discussions, it is extremely meaningful that the solutions of the nonlinear F2 equation are 
obtained as analytical expressions. 

(3) Nonlinear problems of three dimensions in parabolic space 
The analytical solutions of linear diffusion equations were obtained in the parabolic space. Further, we could 

also obtain the physically meaningful solutions of nonlinear diffusion equation as analytical expressions in the 
one dimension parabolic space.  

In mathematics, it is almost impossible to solve two or three dimensional nonlinear diffusion equation. How-
ever, we investigate two or three dimensional problems in the parabolic space in the following. 

We rewrite Equation (4-2) into 

( ) ( )2

1
,

n

j n n
j

C Wξ ξ
=

∂ =∑                               (4-54) 

where  

( ) ( ) ( )
1

1 1 .
2

n

n j j n j j n
j

W D C C
D

ξ ξ ξ ξ
=

 = − ∂ ∂ + ∂ 
 

∑ 



                   (4-55) 

It is impossible to analyze Equation (4-54) exactly since ( )nD ξ  exists in ( )nW ξ . By reference to the one di-

mensional case, if we use the effective diffusivity int
jD  independent of nξ  instead of ( )nD ξ  for Equation 

(4-55) as an approximation, Equation (4-54) becomes 

( ) ( )2

1 int

1 0
2

n

j n j j nj
j

C C
D

ξ ξ ξ
=

 
∂ + ∂ = 
 

∑


                           (4-56) 

because of int 0j
j jD D∂ = ∂ =  . 

By reference to Equation (4-19), the solution of Equation (4-56) is obtained as 

( ) 1

1 int int

erf erf ,
2 2

j j jn
j IN m IN

n j j jj jj

C C
C A B

CD D

ξ ξ
ξ −

= ∆−

   −  = + − +        
∑

 

            (4-57) 

where andj jA B  are integral constants.  

5. Universal Expression of Diffusivity 
From applying the diffusion equation to a collision problem between two micro particles in the diffusion ele-
mentary process, the S equation is reasonably derived. It is revealed that the diffusivity corresponds to the angu-
lar momentum operator in the quantum theory. The universal diffusivity expression, which is applicable to every 
material in an arbitrary thermodynamic state, is obtained using an essential diffusion constant then. Further, the 
correlation between the well-known material wave relation and the diffusivity expression is discussed in a 
minute time and space region. 

5.1. Derivation of Schrödinger Equation 
If the movement of a material particle is not the Markov process but the continuous process, Equation (2-1) is 
rewritten as 

( ) ( ) ( ){ }, , , 2 ,C t t r C t r r C t r r± ∆ = − ∆ + + ∆                    (5-1) 

where ( ) ( )1 2 3, , , ,r r r r x y z= ≡ . 
From the Taylor expansion of both sides of Equation (5-1), the well-known wave equation is obtained as 
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2 2 ,t C v C∂ = ∇ ∇                                    (5-2) 

where v r t= ∆ ∆  is a phase velocity under the condition of 0t∆ → . The general solution of Equation (5-2) is 
given by 

( ) ( ), exp ,C t r A i k r tω α = − +                             (5-3) 

where A and α  are a wave amplitude and an initial phase, and 2πj jk λ=  and 2π Tω =  mean a compo-
nent of the wave number vector ( )1 2 3, ,k k k k=  relevant to a wavelength component jλ  and an angular ve-
locity relevant to a period T.  

The collective behavior of micro particles relevant to the Markov process is expressed by Equation (2-6) de-
rived from their random movements. However, it is revealed in the quantum mechanics that a micro particle has 
a wave characteristic. The relation of material wave yielding 

p k=                                        (5-4) 

was thus proposed by de Broglie in 1923, where p  and 


 are the momentum of a material particle and the 
Planck constant 2πh=  [23]. The motion of a micro particle relevant to Equation (5-4) should be thus essen-
tially investigated by using the S equation of 

,ti ψ ψ∂ = Η                                      (5-5) 

where ψ  is the wave function and Η  the Hamiltonian meaning the total energy in the given physical system 
[18]. In case of a free particle, the Hamiltonian H is given by 

,
2
p p

m
Η =                                      (5-6) 

where m is the particle mass and p  the momentum or its operator.  
When Equation (5-4) is applied to a micro particle behavior, the left-hand side of Equation (5-4) means the 

particle motion in accordance with the Markov process. On the other hand, the right-hand side means the conti-
nuous process resulting from the wave characteristic of the micro particle during a free motion because of the 
wave factor 2πj jk λ= . This suggests that the S equation correlates with the diffusion elementary process re-
sulting from a random movement caused by a collision between a micro particle and a force field near the micro 
particle itself. 

An activation energy caused by a local thermal fluctuation generates micro holes in a material and at the same 
time micro particles are possible to jump instantaneously to the nearest neighbor micro holes through each 
energy barrier. The macro behavior of their collective motion is investigated by using the diffusion equation 
(2-6).  

On the other hand, behavior of a micro particle of mass m in the diffusion field is investigated by the 
well-known Langevin equation of  

( )L

d
,

d
v

m k v F t
t
= − +                                (5-7) 

where d dv r t=  and Lf k v= −
 

are the velocity and the viscosity resistance using a resistance factor 

Lk  [27]. Here, ( )F t  is a force caused by a collision and the time-averaged value is considered to be 

( ) 0F t = . 
The Langevin equation shows that the behavior of a Brown particle in the minute time and space region is in-

corporated into the force ( )F t . Therefore, we cannot discuss the Brown motion in the minute region by using 

the Langevin equation because of ( ) 0F t = . Hereafter, we do not discuss ( )F t  but the acceleration of 

( )

2 2

2 20

d
lim

d t

r r
a

t t∆ →

∆
= =

∆
                               (5-8) 

caused by a collision between two micro particles in the minute time and space region. 
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Since the physical essence is still kept even if we consider the simplest collision problem of one dimensional 
case, we thus investigate a perfect elastic collision problem between micro particles A and B of the same kind. 
We consider that the particle A moves with a velocity v  for a r  direction and collides at time 0t =  with 
the particle B in the standstill state.  

If we can then clarify the distinction between A and B after the collision, the particle A decelerates from the 
velocity v  to the velocity zero and the particle B accelerates from the velocity zero to the velocity v  be-
tween 0 t t≤ ≤ ∆ .  

On the other hand, if we cannot clarify the distinction between the particles A and B after the collision, it 
seems that the particle A decelerates from the velocity v  to the velocity zero between 0 tt ε≤ ≤  and subse-
quently accelerates again from the velocity zero to the velocity v  between t t tε ≤ ≤ ∆ . In other words, it 
seems as if there is no collision process in the particle motion.  

If we accept the above latter case, the relation of a aγ− →  ( 0γ > ) must be valid in Equation (5-8) be-
tween 0 tt ε≤ ≤  and t t tε ≤ ≤ ∆  in the collision process. This indicates that the impossibility of discrimination 
between the particles A and B yields t it→±  between t t tε ≤ ≤ ∆ , as can be seen from the expression of Equ-
ation (5-8).  

It is considered that the above former case corresponds to the Markov process caused by a collision and the 
latter case corresponds to a continuous process caused by the impossibility of identification between the micro 
particles. It is thus mathematically necessary for the transformation from the Markov process into the continuous 
process to introduce the imaginary time into a collision problem between micro particles. 

In physics, it is difficult to accept the imaginary time in accordance with the continuity of time. In mathemat-
ics, however, the product of a physical quantity Q and an imaginary time it  is equal to iQt  and also that of a 
physical operator iQ  and a real time t is equal to the same result. It is thus considered that the latter case is 
physically reasonable. However, it is possible that we mathematically analyze the diffusion equation using the 
imaginary time in accordance with the mathematical equivalence relation. The diffusion equation is thus applied 
to an elementary diffusion problem using the imaginary time itτ =  in the following. 

Rewriting the concentration ( )1 2 3, , ,C t r r r  of diffusion particles into a quantity of state expressed by a com-
plex function ( )1 2 3, , ,r r rϕ τ , Equation (2-6) yields 

0 .Dτϕ ϕ∂ = ∇ ∇                                      (5-9) 

Assuming ( ) ( ) ( )1 2 3 1 2 3, , , , ,r r r T S r r rϕ τ τ= , Equation (5-9) can be solved by the separation method of variables. 

Using complex numbers n
jk , jA +  and jA −  determined by the initial and boundary conditions, the general 

solution of Equation (5-9) is obtained as 

[ ] ( )
3

1 1
exp exp exp ,n n

n j j j j j j
n j

A k r A k rϕ µ τ
∞

+ −
= =

   = + −   ∑ ∏                   (5-10) 

where ( )
3 2

1

n
n j

j
kµ

=

=∑ . Substituting itτ =  into Equation (5-10) yields  

( )
3

1 1
exp exp .n n

j j j n j j j n
n j

A k r i t A k r i tϕ µ µ
∞

+ −
= =

   = + + − +   ∑∏  

Here, using the real functions ( )1 1 2 3, , ,t r r rψ  and ( )2 1 2 3, , ,t r r rψ , we rewrite the complex function ϕ  into the 
complex-value function yielding 

1 2 .iϕ ψ ψ ψ≡ = +                                   (5-11) 
Further, substituting Equation (5-11) into Equation (5-9) and multiplying both sides by 


, we have 

0ti Dψ ψ∂ = − ∇ ∇                                 (5-12) 

because of i tτ∆ = ∆ . 
From the partial differential equation of probability, the diffusivity of 

( )2

0 2
r

D
t

∆
=

∆
                                      (2-5) 
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is obtained. When a micro particle randomly jumps from a position to another one, the jump orientation be-
comes the spherical symmetry in probability. Using the relation of L r p r pδ∆ = ∆ × = ∆ ×  relevant to the 

angular momentum L r p= ×  defined by a position vector r  and a momentum p m v= , Equation 
(2-5) is rewritten as 

( )2

0

d
,

2 2 d 2 2
rr r r LD m p

t m t m m
δ

∆ ∆ ∆ ∆
= = = × =

∆
 

where 
1 2 3r r rL L L L∆ = ∆ = ∆ = ∆ , r r r= , r rδ = , 0pδ =  is valid in the spherical symmetry space. 

The relation of Lψ ψ∆ =   leads to an operator relation of  

0 .
2 2

L
D

m m
∆

→ →
                                  (5-13) 

Substituting Equation (5-13) into Equation (5-12) gives 
2

.
2ti

m
ψ ψ∂ = − ∇ ∇





                                (5-14) 

Here, if we define the imaginary differential operator given by 

p i= − ∇ , { }†
,p p i= = − ∇                          (5-15) 

Equation (5-14) is rewritten as 

.
2t

p p
i

m
ψ ψ∂ =                                  (5-16) 

Further, the substitution of Equation (5-6) into Equation (5-16) yields the S Equation (5-5). The defined Equa-
tion (5-15) is one of the essential operators in the quantum mechanics. 

It is considered that the relation of 2π rλ = ∆  and 2πT t= ∆  is valid for a wave packet existing in the 
minute time and space. In that case, the de Broglie equation 

p k=                                        (5-4) 

is thus easily obtained because of  

( ) ( )
2

02 2
r

D
t m

∆
= =

∆
 , p m r t= ∆ ∆  and 2π .rλ = ∆  

At the same time, this gives evidence for the validity of Equation (5-13) derived from the correlation between 
the diffusion equation and the S equation. It is, therefore, considered that the diffusivity is fundamentally rele-
vant to the Planck constant 


 and it should be determined from the quantum mechanics. 

5.2. New Universal Diffusivity 
The definition of diffusivity shows that the diffusivity should be essentially determined by analyzing the S equa-
tion, since the diffusion particle such as an atom and/or a molecule moves as a material wave packet in the 
minute space. However, the existing diffusivity has been defined by the classical mechanics. In the following, 
therefore, a new diffusivity is investigated. 

The existence probability P of a micro particle in the collective system of a heat quantity Q and an absolute 
temperature T is given by the well-known Boltzmann factor of 

[ ]Bexp ,P Q k T= −                                   (5-17) 

where Bk  is the Boltzmann constant [44]. It is necessary for a jumping of diffusion particle to obtain an activa-
tion energy Q caused by a thermal fluctuation. In a collective system composed of micro particles, the diffusivi-
ty is thus directly proportional to the probability factor of Equation (5-17).  

The jump frequency of a diffusion particle is relevant to a factor ρ  derived from an atomic configuration in 



T. Okino 
 

 
2135 

the diffusion field near the diffusion particle itself, and also it depends on entropy S relevant to a state change of 
diffusion field. If we define these effect on a diffusivity as ( ), SρΩ , the diffusivity expression 0D  of Equa-
tion (2-5) or (5-13) is rewritten as  

( )
N

B

,
exp ,

S QD D
n k T
ρΩ  

= − 
 

                             (5-18) 

where the molecular or the atomic weight n is expressed as 3
A10n mN=  using the particle mass m and the 

Avogadro constant AN . Here, ND  is an essential constant in the diffusion phenomena and it is  
2 8 2 1

N A5 10 3.18 10 m s .D N − − = × = × ⋅                         (5-19) 

Equation (3-32) shows that diffusion particles move randomly with a common diffusivity in the concerned 
diffusion field. On the other hand, Equation (5-18) shows that the diffusivity depends on the mass of diffusion 
particle. For the diffusion experimentation in a super gravity field, therefore, it is considered that an individuali-
ty of a micro particle resulting from the mass effect will be shown in the diffusivity, compared with one in a 
usual laboratory. 

Hereafter, the investigation of ( ), SρΩ  will become a dominant subject in the diffusion study as a problem 
of a few many bodies system in the quantum mechanics, since the essential diffusion constant of Equation (5-19) 
is thus reasonably obtained. 

5.3. Influence of a Driving Force on Diffusivity 
The new diffusivity of Equation (5-18) is derived regardless of the bulk diffusion problems. However, it is con-
siderably difficult to determine ( ), SρΩ  of Equation (5-18) from the quantum theory in a physical system with 
an interaction between micro particles [45] [46]. Further, if we consider Equation (5-18) in accordance with the 
existing diffusivity theory, it seems that there is no room to incorporate a driving force effect into the diffusivity 
expression of Equation (5-18), since the essential constant ND  has already the diffusivity dimension. On the 
other hand, the diffusivity expression of Equation (4-48) is derived from analyzing the nonlinear interdiffusion 
equation with a driving force.  

If we incorporate the potential energy dfQ  caused by a driving force into the activation energy Q in the ex-
pression of Equation (5-18), the relation is obtained as 

( ) 1 df
N

B 1

, exp ,
Q Q

S n D D
k T

ρ
 −

Ω =  
 

                          (5-20) 

for a material composed of micro particles in the state of an absolute temperature 1T T=  and a heat quantity 

1Q Q= , since Equation (5-18) corresponds to Equation (4-48) then. In the actual interdiffusion problems, 

( ), SρΩ  obtained here is useful for fundamental knowledge relevant to a microstructure of material. 
Equation (5-18) is thus valid when a driving force is nonexistent in the diffusion system. In other words, the 

relation of 

( ) 1
0 N

B 1

,
exp

S QD D
n k T
ρΩ  

= − 
 

                           (5-21) 

is considered to be valid between Equations (2-6) and (5-18) for the common 1T T=  and 1Q Q= .  
As can be seem from Appendix A in the existing theory, the effect of a driving force on the diffusivity is in-

corporated into the difference of a jump frequency between nearest neighbor crystal plane 1 and plane 2. In rela-
tion to the situation, we discuss the difference between the present diffusivity expression and the existing one as 
follows. 

The existence probability of a micro particle in a material depends on the Boltzmann factor of Equation (5-17). 
The potential energy dfQ  as well as the activation energy Q gives motive energy and vibrational one to each 
micro particle in a material. In that case, the potential energy dfQ  causes that the vibrational energy of micro 
particle on the crystal plane 1 is different from that of one on the plane 2, since the potential energy dfQ  de-
pends on the space coordinate. In other words, the existence probability of a micro particle on the plane 1 is dif-
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ferent from that of one on the plane 2.  
The difference of existence probabilities between a micro particle on the plane 1 and one on plane 2 corres-

ponds to that of the frequencies between them. The effect of a driving force on diffusivity should be thus incor-
porated into the Boltzmann factor as a potential energy dfQ  in the present case. 

When the potential energy is not so much large, i.e., df B 1 1Q k T  , the diffusivity D of Equation (2-7) cor-
responds to 

( ) df df1
N 0 0

B 1 B 1 B 1

,
1 exp ,

S Q QQD D D D
n k T k T k T
ρΩ    

= + − = +   
   

                   (5-22) 

incorporating a driving force effect into the Boltzmann factor for 1T T=  and 1Q Q= . Equations (2-7) and 
(5-22) show that the relation of 

df
df 0

B 1

Q
D D

k T
=                                   (5-23) 

is valid. Although the diffusivity gradient of 

df df
0 0

B 1 B 1

1D Q FD D
x k T x k T

∂ ∂
= = −

∂ ∂
                           (5-24) 

has the velocity dimension, it is directly relevant to a driving force F because of the definition of mechanics 
dfF Q x= −∂ ∂ . The left-hand side of Equation (5-24) is thus called the drift velocity in the existing diffusion 

field (See Appendix A). However, the diffusivity gradient relevant to a driving force is obviously not the veloc-
ity concept but the force one. 

Substituting Equations (5-22)-(5-24) into the one dimension diffusion equation of the general nonlinear Fick-
ian second law given by  

{ }t x xC D C∂ = ∂ ∂                                   (5-25) 

the diffusion equation is obtained as 

2 2df df
0 0 0 0

B 1 B B 1

1 ,t x x x x x
Q S FC D C D C D C D C
k T k k T

   ∂ = ∂ + ∂ = ∂ + ∂ − ∂  
   

            (5-26) 

where df df 1S Q T=  is entropy caused by a driving force. It is considered that the second term and third term in 
the right-hand side of Equation (5-26) mean entropy effect and a frequency effect caused by a driving force F, 
respectively. The general diffusivity expression is thus obtained by rewriting Equation (5-18) into  

( ) df
N

B

,
exp .

S Q Q
D D

n k T
ρΩ  −

= − 
 

                          (5-27) 

In view of the derivation process, the diffusivity expression of Equation (5-27) is applicable to every material in 
an arbitrary thermodynamic state.  

5.4. Operators in Quantum Mechanics 

In the quantum mechanics, energy E, momentum p  and angular momentum L  are expressed as operators 
yielding  

E i
t
∂

=
∂
 , p i= − ∇ , 

3
3

rL i
θ
∂

= −
∂
 . 

We cannot observe imaginary physical quantities. Therefore, the eigenvalues of their operators are meaningful 
in the quantum theory. 

In a collision problem mentioned above, the concept of acceleration disappears in the quantum theory because 
of a a →∞ . However, Equation (5-4) shows that the velocity is still a real physical quantity in the minute 
time and space region, since the momentum conservation law is valid in the collision process. 
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It is physically considered that the wave image of a micro particle disappears in the quantum theory when the 
corresponding wave packet exists in the minute space region 0 2πr r< < ∆ . Substituting j jk ik→  and iω ω→ −  
into Equation (5-3) yields the relation of 

( ), exp ,C t r A k r tω α= − − +                             (5-28) 

and it converges at zero in a minute time. For the wave image, the relations of j jk ik→  and iω ω→ −  ma-
thematically correspond to the relations of r irξ→ =  and t itτ→ = −  then, compared with irξ =  and 

itτ =  for the particle image. 
In mathematics, except for physical constant quantities, physical variables with odd time or space dimensions 

should be thus accepted as physical operators in the minute time and space region.  
The kinetic energy k 2E p p m=  of Hamiltonian is acceptable as a physical quantity and/or a usual diffe-

rential operator since it is a real variable for the sake of even time or space dimensions. On the other hand, the 
photon energy ( )pE hυ ω= =   expressed by using a frequency ( )2πυ ω υ=  should be accepted as an oper-
ator, since h is the Planck constant and 1υ τ→ ∆  is an imaginary variable because of itτ = −  in accordance 
with the wave image of υ . Therefore, the relation of i tυ → ∂ ∂  yields the operator pE i t→ ∂ ∂  described 
above.  

Using relations of j jr ir→ , 2πj jk λ=  and 2πj jrλ = ∆  for the wave packet in the time t∆  and space 

jr∆  region, the relation of 

j jp k=                                     (5-29) 

yields the operator j jp i r= − ∂ ∂  described above. Further, using p i= − ∇
 

for the definition of an an-

gular moment L r P= × , the above angular moment operator 
3 3rL i θ= − ∂ ∂  is also obtained.  

We investigate a characteristic of diffusivity in the minute time and space regions in the following. Equation 
(2-5) is rewritten as 

( ) ( )2 2
0 2 2j jD i r tξ τ= ∆ ∆ = ∆ ∆                         (5-30) 

for a particle image. Equation (5-4) is also rewritten as 

j jm r t r∆ ∆ = ∆                                (5-31) 

because of 2πj jrλ = ∆  and jv r t= ∆ ∆ . Substituting Equation (5-31) into Equation (5-30), the diffusivity ex-
pression of  

0 2D i m=                                    (5-32) 

is obtained as an operator.  
Substituting Equation (5-32) into Equation (2-6), we have 

2tC i C
m

∂ = ∇ ∇


                               (5-33) 

Multiplying both sides of Equation (5-33) by i  and rewriting C into ψ , the S Equation (5-14) is thus ob-
tained again. In mathematics, the diffusion equation and the S equation are thus correlated only to the replace-
ment of 0 2D i m   between their equations in the real time and space. 

6. Results 
In 1855, Fick applied the heat conduction equation proposed by Fourier in 1822 to diffusion phenomena as it 
had been. In general, however, the discussion of coordinate transformation of the general nonlinear F2 law is in-
dispensable for understanding the diffusion phenomena. Nevertheless, the coordinate transformation of a diffu-
sion equation had not been discussed for a long time until the recent works [14]-[16] [19] [20] [22]. 

Applying the divergence theorem to a diffusion equation, therefore, we investigated the problems of coordi-
nate transformation in the diffusion systems. In relation to the investigation, a new diffusion flux of Equation 
(2-13) was defined in accordance with the mathematical physics. The new diffusion flux revealed that the F1 
law is incomplete without the intrinsic diffusion flux.  
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The coordinate transformation theory shows also that the K effect is caused by a shift between the coordinate 
systems like the Doppler effect of the wave equation is caused by a shift between them. The theoretical Equation 
(3-15) relevant to the K effect was reasonably obtained in accordance with the empirical Equation (3-14) then. 
At the same time, it was also revealed that the concept of intrinsic diffusion is nonexistent in the diffusion theory, 
although we had accepted as an indispensable concept for understanding the K effect for a long time until re-
cently. 

In relation to the coordinate transformation theory, further, using the new diffusion flux applicable to various 
diffusion problems, the unified diffusion theory relevant to every material in an arbitrary thermodynamic state 
was established, including a self-diffusion theory and also an N elements system interdiffusion theory.  

The self-diffusion theory has been indirectly discussed in the existing one, where the self-diffusion behavior 
of a pure material is visualized by any other diffusion particles in the pure material. In the present theory, the 
self-diffusion mechanism of a pure material itself is discussed using the intrinsic diffusion flux. In an N elements 
system interdiffusion, it was found that each of diffusion particles moves randomly with a common diffusivity 
D  of Equation (3-32) in the diffusion field, as if the gas molecules in a given space move randomly, regardless 
of their species in accordance with the Boyle Charles law. 

The essence of diffusion phenomena is shown in the parabolic law. Based on the concept, a new diffusion 
flux applicable to analyzing diffusion problems was derived as Equation (4-7) and/or (4-8) in the parabolic 
space. The analytical method in the parabolic space was thus established. It was then revealed that the analysis 
in the parabolic space is exceedingly superior in calculation to the existing analytical methods. For example, the 
solutions of nonlinear diffusion equation were, for the first time, obtained as the analytical expressions of Equa-
tions (4-48) and (4-50). The effect of a driving force on the diffusivity was then obtained as Equation (4-49) 
from the solution of Equation (4-48). 

The definition of diffusivity indicates that the diffusivity should be essentially investigated as a few many bo-
dies problem in the quantum mechanics. Based on the concept, the S equation was derived from applying the 
diffusion equation to a diffusion elementary process. In the analytical process, we found that the diffusivity cor-
responds to an angular momentum operator in the quantum mechanics. The new universal diffusivity expression 
was thus obtained as Equation (5-27) using an essential diffusion constant of Equation (5-19). It is essentially 
applicable to every material in an arbitrary thermodynamic state.  

It was also found that the material wave equation proposed by de Broglie, which is the most fundamental re-
lation in the materials science, was derived from the relation between diffusivity expressions of Equations (2-5) 
and (5-13) in the diffusion elementary process. This gives evidence for the validity for the present diffusion 
theory. 

7. Discussion 
Even if a driving force exists in the diffusion system under the condition of no sink and source, the divergence 
theorem shows that a collective behavior of micro particles depends only on a diffusivity of the general nonli-
near F2 law. Whenever the diffusivity of a micro particle in a material is given, the collective behavior of micro 
particles is thus determined only by solving the diffusion equation. The diffusivity depends on a material inter-
nal structure composed of micro particles. Therefore, the investigation of diffusivity is the most important sub-
ject in the diffusion study. Based on the concept discussed here, the present study was performed. 

In relation to the Darken equation, even if a concentration profile is reasonably reproduced by using intrinsic 
diffusion coefficients as parameters, we cannot directly evaluate its validity of the used diffusivity values, since 
the diffusivity profile is not obtained by a direct observation. In other words, we can usually perform the numer-
ical simulation to a high precision only by using fitting parameters for the given equation, regardless of a physi-
cal validity. As far as the Darken equation is not mathematically correct as shown in the Appendix B, it is thus 
necessary for us to reexamine a great many results of interdiffusion problems obtained by using the unsuitable 
Darken equation.  

As revealed in the text and Appendix B, we believe that the F1 law and the intrinsic diffusion concept as well 
as the Darken equation are misunderstanding matters in the diffusion history. Nevertheless, they have been ac-
cepted as reasonable ones for such a long time in the concerned field. 

If we consider serious influences of their misunderstanding matters on student education and young re-
searcher training in the concerned field, they should be solved as soon as possible, since they have been still 
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described as plausible ones in a lot of existing textbooks. One of the present work aims is thus to make them un-
iversally known in the concerned field.  

Since the general solutions of nonlinear diffusion equation are analytically obtained in the parabolic space, the 
diffusion problems under the condition of no sink and source are essentially solved. The influence of a driving 
force on the diffusivity is thus reasonably obtained as Equation (4-49) from the analytical solutions of Equations 
(4-48) and (4-50). The discussions about diffusion fluxes are thus now essentially unnecessary for fundamental 
diffusion problems. 

In the actual diffusion problems in detail, further investigation will be required for various difficult problems, 
for example, such a problem where the sink and source exists in the concerned diffusion system. Even in that 
case, however, it is no doubt that the fundamental theories discussed here are still useful for their fundamental 
investigations, just because of fundamental ones. 

The investigations relevant to the many elements system interdiffusion problems, such as an alloy, a com-
pound semiconductor, a multilayer thin film, and a microstructure material, are extremely important as an actual 
problem. Under the condition of Equation (3-27), corresponding Equations (4-48) and (4-50) to solutions of 
Equation (3-33) and using solutions of Equation (3-34) obtained numerically for a many elements system inter-
diffusion problems, their solutions are possible. 

As mentioned at the beginning of this section, the foundation of diffusion problem is relevant to not the diffu-
sion flux but the diffusion equation for the concerned diffusion system. The influence of a driving force on a 
diffusion system should be thus incorporated into the diffusivity of the concerned diffusion equation, e.g., Equa-
tion (5-25), although the problem relevant to a driving force is discussed in the existing theory using a drift ve-
locity in the diffusion flux representation (see Appendix A). 

In the present study, the fundamental diffusion problems are surveyed in accordance with the mathematical 
physics. As a result, the new useful findings for the diffusion study are reasonably derived from the essential 
discussions about the general nonlinear Fickian diffusion equation. In particular, the analytical method estab-
lished in the parabolic space will be applicable not only to diffusion problems but also to Brown problems in 
various science fields as a useful method. 

Finally, we hope that the new findings are useful for the material science researches and also that the present 
aims are accomplished. 
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Appendix A 
In Ref. [25], the influence caused by a driving force in the planar diffusion phenomena is investigated in relation 
to jump frequencies of diffusion particles between the nearest neighbor crystal planes. 

The net diffusion flux J of diffusing particles across a plane between two nearest neighbor crystal planes 1 
and 2 is expressed as 

1 12 2 21J n n= Γ − Γ ,                                (A-1) 

where ( )1n x x− ∆  and ( )2n x x+ ∆  are the atom concentrations per unit area on each plane, and ( )12 x xΓ − ∆  

and ( )21 x xΓ + ∆  are the jump frequencies for an atom to jump from plane 1 to plane 2 and from plane 2 to 
plane 1. The coordinate axis x is perpendicular to each plane and equal to the diffusion direction. 

The relation between concentration ( )C x  per unit volume and concentration ( )n x  per unit area is ex-
pressed as 

( ) ( )n x aC x=                                   (A-2) 

where a is a lattice constant and 2a x= ∆  in the present case.  
Here, the following relations are considered as; 

1

2

d
2 d

d
2 d

a nn n
x

a nn n
x

 = −

 = +


,                                  (A-3) 

where ( )2 1d dn x n n a= − . 
Substituting Equations (A-2), (A-3) into Equation (A-1), the relation of 

( ) ( )
2

12 21 12 21
d

2 d
a CJ a C

x
= − Γ + Γ + Γ −Γ                           (A-4) 

is obtained. Using the notations given by 

( )
2

* 2
12 212

aD a= Γ + Γ = Γ  and ( )F 12 21 ,v a= Γ −Γ                    (A-5) 

the diffusion flux of 

*
F

d
d
CJ D v C
x

= − +                                 (A-6) 

is derived. Here, *D  is defined as a diffusivity of tracer diffusion. If 12 21Γ = Γ , *D  means the diffusivity 
when a driving force is nonexistent in the diffusion system. 

On the other hand, if we use the Taylor expansion in the above calculations, the relation of  

( ) ( )

( ) ( )

1

2

d
d
d
d

nn x x n x x
x
nn x x n x x
x

 − ∆ = − ∆

 + ∆ = + ∆


                            (A-7) 

and 

( ) ( ) ( )

( ) ( ) ( )
12

21

d
d

d
d

x
x x x x

x
x

x x x x
x

Γ
Γ − ∆ = Γ − ∆


ΓΓ + ∆ = Γ + ∆

                         (A-8) 

are valid. Using Equations (A-7), (A-8) for Equation (A-1), the relation similar to Equation (A-6) is obtained as 
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*
* d d

d d
C DJ D C
x x

= − − ,                              (A-9) 

where ( )* 2d d d dD x a x= Γ . Equations (A-6) and (A-9) show that Fv  corresponds to the diffusivity gradient 
given by 

*

F
d
d
Dv
x

= − .                                  (A-10) 

Equation (A-9) should be essentially equivalent to Equation (2-7) as shown by 
*

*
0 df

d d d d .
d d d d
C C C DD D D C
x x x x
+ = +                         (A-11) 

However, it seems that Equation (A-11) is not generally valid. The reason is as follows. 
When a driving force exists in the diffusion system, it affects entropy and jump frequencies of diffusion par-

ticles. As a result, the diffusivity is affected by a driving force, since the diffusivity depends directly on entropy 
and a frequency. The problem of entropy is extremely important for the diffusion phenomena. However, the ef-
fect of entropy is not taken into account in the derivation process of Equation (A-6) or (A-9). Therefore, the dif-
fusion flux discussed here is not generally applicable to the diffusion problems relevant to a driving force.  

Equations (4-48) and (4-50) reveal that we can solve a nonlinear diffusion equation even if a driving force ex-
ists in the diffusion system. Further, the effect of a driving force on the diffusivity is obtained as Equation (4-49). 
The diffusion flux discussed here is thus unnecessary for solving a nonlinear diffusion equation. 

Further, the divergence theorem shows that the diffusion equation is obtained from the diffusion flux of Equa-
tion (A-9) as 

2 * 2 *
*

2 2

d d d d2
d dd d

C C D C DD C
t x xx x

∂
= + +

∂
.                          (A-12) 

As discussed in Section 2.1, even if a driving force exists in the diffusion system, the diffusion equation (2-6) of  
2

2

d d d
d dd

C C D CD
t x xx

∂
= +

∂
                                 (A-13) 

must be valid for the diffusion particles, except such an external force as Coulomb force for an ion particle.  
Equation (A-12) is obviously inconsistent with Equation (A-13). This is evidence that Equation (A-6) neg-

lecting an influence of entropy caused by a driving force is incorrect. In relation to the Equation (5-24), the dif-
fusivity gradient is directly relevant to a driving force. Although the last term in the right-hand side of Equation 
(A-12) is the derivation term of a driving force because of Equation (5-24), we cannot understand such an effect 
of F x∂ ∂  relevant to the random movement of diffusion particles in the diffusion system inside. If the force F 
is an external one where it is deliberately introduced into the diffusion system from the diffusion system outside, 
such phenomena may be possible. In other words, such diffusion flux of Equation (A-6) is not suitable in the 
present discussion, since the influence of a driving force should be incorporated into the Boltzmann factor as a 
potential energy caused by a driving force, as discussed in Section 5.3.  

For example, one can easily notice that a force moment of vector quantity is not relevant to a kinetic energy of 
scalar quantity, although they have the same dimension of 2 2kg m s− ⋅ ⋅   each other. Even if the drift velocity 
has the dimension of 1m s− ⋅   in the present case, it is thus not relevant to a velocity itself, since it is relevant 
to a driving force F as can be seem from Equation (5-24). 

In general, the diffusion problems should be discussed using not the diffusion flux but the original diffusion 
equation, since the mathematical theory shows that the diffusion flux should be originally understood after the 
diffusion equation has been solved. 

Appendix B 
In the text, the K-effect was reasonably understood as a shift between the coordinate systems. This indicates that 
the intrinsic diffusion concept is not only needless but also nonexistent in the diffusion phenomena. 

Based on the intrinsic diffusion concept, Darken derived a relation between the interdiffusion coefficient and 
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intrinsic diffusion coefficient [35]. However, he repeated misunderstandings inconsistent with the fundamental 
mathematics theory in the analyzing process. Nevertheless, the so-called Darken Equation (D equation) has been 
widely applied to interdiffusion problems for such a long time since 1948. In the following, we reveal that the D 
equation is incorrect in mathematics. 

When a driving force exists in the diffusion system, the diffusion phenomena are expressed as 

.tC D C∂ = ∇ ∇                                    (2-6) 

In that case, using the Equation (2-17) transformed from Equation (2-6) for I, IIj = , the relation of 

{ } ( ){ }I II I I II II I IIC C D C D C v C Cτ ξ ξ ξ∂ + = ∂ ∂ + ∂ − +                      (B-1) 

is valid, where the coordinate notation ( ),t x   and the velocity QPv  are, for convenience, rewritten as ( ),τ ξ  
and v. Here, the velocity ( )QPv v=  used in Equation (2-15) means the velocity of diffusion region space 
caused by the diffusion of solvent particles. At the same time, it is visualized by an inert marker set on the initial 
interface because of the inert characteristic of markers. 

Equation (B-1) yields 

( ){ }I II II 0D D C vξ ξ∂ − ∂ + =                              (B-2) 

because of I II 1C C+ = . Here, note that Equation (B-2) is obviously a partial differential equation of τ  and 
ξ . Therefore, the mathematical theory shows that Equation (B-2) corresponds to 

( ) ( )I II II ,D D C vξ τ− ∂ + = Γ                               (B-3) 

where ( )τΓ  is an arbitrary function of τ .  
Nevertheless, Darken solved Equation (B-2) as an ordinary differential equation with respect to ξ . In other 

words, using k as an integral constant value instead of the ( )τΓ , he thought that the relation of 

( )I II IID D C v kξ− ∂ + =                                (B-4) 

is valid. Using an unsuitable initial value 0k =  for Equation (B-4), it was rewritten as 
I II II II .v D C D Cξ ξ= − ∂ + ∂                                (B-5) 

Here, the functional equation (B-5) is not valid, since the left-hand side depends only on τ  and the right- 
hand side depends on τ  and ξ . Thus, he failed again to notice the mistake in the fundamental mathematics. 

Under the condition of eq 0J =
 

in Equation (2-18) in accordance with the existing theory, the diffusion flux 
becomes 

I I I I
QJ D C vCξ= − ∂ + .                                (B-6) 

In any case, if we substitute Equation (B-5) into Equation (B-6), the relation of 

( )I I II II I I
QJ D C D C Cξ= − + ∂                               (B-7) 

is obtained. By comparing Equation (B-7) with the F1 law of I I
FJ D Cξ= − ∂ , the D equation is perfunctorily de-

rived as 
I II II ID D C D C= +                                  (B-8) 

He also failed to notice the mistake relevant to the basic theory of physics, since we cannot directly compare 
I
FJ  with I

QJ  expressed in the different coordinate system, as can be seen from the derivation of Equation 
(2-17). 

It seems that ID  and IID  are independent of each other in the above analytical process. In other words, he 
thought that the K effect is caused by the difference between ID  and IID . They are symbolically rewritten as 

I
intD  and II

intD  in Equation (B-8) and are named “intrinsic diffusion coefficients” then. 
In addition, even if we accept Equation (A-6) in Appendix A, it is not suitable to use it for the movement of K 

interface in the present case, since the drift velocity Fv  depends on a time and a space coordinate, while the 
experimental result of Equation (3-14) shows that the K effect depends on only a time. It is obvious that the 
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problem of K effect is a one to be discussed using not the diffusion flux Equation (A-6) but the diffusion Equa-
tion (2-6) taking account of a driving force. Further, the present interdiffusion problem should be expressed by 
Equation (2-6). If it is so, the corresponding diffusion flux must be not Equation (A-6) but Equation (B-6) ob-
tained from Equation (2-6). 

Hereinbefore, it was revealed that the D equation is obviously inconsistent with the theory in mathematical 
physics. Equation (B-8) is thus entirely meaningless and at the same time the concept of intrinsic diffusion is an 
illusion in the diffusion history. That the D equation has been highly applied to various interdiffusion problems 
by a lot of researchers for a long time since 1948 is one of the extremely few cases of misunderstanding prob-
lems in the science history. 

 
 
 
 
 


	Mathematical Physics in Diffusion Problems
	Abstract
	Keywords
	1. Introduction
	2. Fundamental Theory of Diffusion Equation
	2.1. Diffusion Equation
	2.2. Coordinate System of Diffusion Equation

	3. Interdiffusion Problems
	3.1. Correlation of Diffusion Fluxes with Coordinate Systems 
	3.2. Kirkendall Effect in Interdiffusion Problems
	3.3. Unified Theory of Diffusion Problems
	3.4. Self-Diffusion Theory
	3.5. Diffusion Equation of Micro Holes
	3.6. Application of Present Theory to Actual Diffusion Problems

	4. Analysis of Diffusion Equation in Parabolic Space
	4.1. Definition of Parabolic Space
	4.2. Diffusion Equation in Parabolic Space
	4.3. Analytical Solutions of Linear Diffusion Equation
	4.4. Analytical Solutions of Nonlinear Diffusion Equation

	5. Universal Expression of Diffusivity
	5.1. Derivation of Schrödinger Equation
	5.2. New Universal Diffusivity
	5.3. Influence of a Driving Force on Diffusivity
	5.4. Operators in Quantum Mechanics

	6. Results
	7. Discussion
	References
	Appendix A
	Appendix B

