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Abstract 
We seek to determine which yield curve construction method produces the best zero coupon yield 
curve (ZCYC) for Nairobi Securities Exchange (NSE). The ZCYC should be differentiable at all points 
and at the same time, should produce a continuous and positive forward curve at all knot points. A 
decreasing discount curve is also expected from the resulting ZCYC, as an indication of monotonic-
ity. For the interpolation method, we will use an improvement of monotone preserving interpola-
tion method on ( )r t t , while the Nelson and Siegel [1] model is the parametric model of choice. 
This is because compared to other interpolation methods, the improvement of monotone pre-
serving interpolation method on ( )r t t  produces curves with the desirable trait of differentiabil-
ity, while the Nelson-Siegel [1] model is shown to produce the best-fit results for Kenyan bond data. We 
compare the models’ performance in terms of accuracy in pricing back the fixed-income securities. For 
this study, we use bond data from Central Bank of Kenya (CBK). The better of the two methods will be 
used for the Kenyan securities market and, consequently, the East African Securities markets. 
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1. Introduction 
The objective of this paper is to establish the best yield curve model to be used in pricing of financial products at 
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the Nairobi Securities Exchange. We compare two models so far established to be the best in their respective 
categories, as shown by Muthoni Onyango and Ongati [2] and Muthoni Onyango and Ongati [3]. Among the 
Parametric Models used in construction of yield curves, Nelson and Siegel [1] model was found to be superior 
by Muthoni, Onyango and Ongati [3], while the improvement of monotone preserving interpolation on ( )r t t  
was found to be superior of the splines method studied by Muthoni, Onyango and Ongati [2]. This paper com-
pares these two methods in terms of:  

1) The accuracy of the yield curve using the set test statistics; 
2) The smoothness of the curve; 
3) The continuity and differentiability of the spot and forward curves; 
4) Pricing back the fixed income securities; 
5) The monotonicity of the yield curve, measured by the behavior of the discount curve. 

2. Literature Survey 
Many estimation methods for yield curves have appeared in literature over the years. Generally speaking, there 
are two distinct approaches to estimate the term structure of interest rates: the equilibrium model and the statis-
tical techniques. 

The first approach is formalized by defining state variables characterizing the state of the economy (relevant 
to the determination of the term structure) which are driven random processes and are related in some way to the 
prices of the bonds. It then uses no-arbitrage arguments to infer the dynamics of the term structure. Examples of 
this approach include: Vasicek [4], Dothan [5], Brennan and Schwartz [6] Cox, Ingersoll and Ross [7], and Duf-
fie and Kan [8]. 

Unfortunately, in terms of the expedient assumptions about the nature of the random process driving the in-
terest rates, the yield derived by those models have a specific functional form dependent only on a few parame-
ters, and usually the observed yield curves exhibit more varied shapes than those justified by the equilibrium 
models. 

In contrast to the equilibrium models, statistical techniques focusing on obtaining a continuing yield curve 
from cross-sectional coupon bond data based on curve fitting techniques are able to describe a richer variety of 
yield patterns in reality. The resulting term structure estimated from the statistical techniques can be directly put 
into the interest rate models such as the Hull [9], and Heath [10] models, for pricing interest rate contingent 
claims. Since a coupon bond can be considered as a portfolio of discount bonds with maturities dates consistent 
with the coupon dates, the discount bond prices can thus be extracted from the actual coupon bond prices by sta-
tistical techniques.1 These techniques can be broadly divided into two categories: the splines (interpolation me-
thods) and the parsimonious function forms (see Alper [11]).  

2.1. Splines/Interpolation Models 
Interpolation is a method of constructing new data points within the range of a discrete set of known data points 
(called knot points). The simplest method for interpolating between two points is by connecting them through a 
straight line. Some variations of linear interpolation are capable of ensuring a strictly decreasing curve of dis-
count factors. However, all the variations of linear interpolation imply discontinuities in the forward rate curve. 

In order to produce continuous forward rates curves, researchers introduced cubic methods of interpolation. 
An example of cubic interpolation algorithm is the cubic Hermite spline. Under cubic Hermite splines, the de-
rivative of the data of each knot point is assumed to be known, and the interpolation function is required to be 
differentiable. Often, these derivatives will not be known, and will have to be estimated. One method for esti-
mating these derivatives, described by de Boor [12] [13] as the Bessel method involves estimating the derivative 
though the use of a three point difference formula. 

Unfortunately, all the traditional cubic methods are incapable of ensuring strictly positive forward rates, 
which are synonymous with non-decreasing discount factors, as shown by Hagan and West [14]. Furthermore, 
some cubic methods have an inherent lack of locality in the sense that a local perturbation of curve input data 
will cause ringing and cause changes in the data far away from the perturbed data point as shown by Anderson 
[15]. 

 

 

1Once the discount function, ( )P t , is defined, the spot interest rate (the pure discount bond yield) can be computed by: ( ) ( )ln P t
R t

t
−

= . 
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All variations of linear interpolations were seen to produce discontinuities in the forward rate curve, whilst all 
variations of cubic interpolations were seen to be incapable of ensuring strictly decreasing discount factors. 
Non-decreasing discount factors imply arbitrage opportunities, whilst discontinuous forward rates unacceptable 
from an economic perspective (unless the discontinuities occur on or around meetings of monetary authorities). 

To counter this, a monotone convex interpolation method was developed, which it is claimed to be capable of 
ensuring a positive and (mostly) continuous forward rate curve Hagan and West [14]. This method proposed by 
Hagan and West [14], was specifically designed to interpolate yield curve data, and involves fitting a set of qua-
dratic polynomials to a discrete set of estimated instantaneous forward rates. The method is designed such that 
( )f t  preserves the shape of the set of discrete forward rates. The monotone convex method was also seen to be 

capable of ensuring a strictly decreasing curve of discount factors. Unfortunately, the model depends heavily on 
an appropriate interpolation algorithm. In addition, it was discovered by du Preez [16] that there were specific 
conditions under which the interpolation function of the monotone convex interpolation would produce discon-
tinuity of ( )f t .  

This led to the monotone preserving ( )r t t  method of interpolation, introduced by Preez [16]. Essentially, 
this method involves applying cubic Hermite interpolation to the ( )r t t  at the knot points i.e the values of 
( )f t  at the knot points, are estimated in manner which ensures positivity in ( )f t . Constructing an interpo-

lating algorithm capable of preserving the monotonicity of the discount factors, was thus sufficient for ensuring 
positive forward rates.  

Monotone preserving ( )r t t  method is capable of ensuring a positive and continuous forward rate curve, and 
was designed to preserve the geometry of ( )r t t . Monotonicity in the discount factors implies monotonicity in 
the ( )r t t  which is achieved by applying the work done in the field of shape preserving cubic interpolation, by 
authors such as de Boor [17], Carlson and Fritsch [18], Hyman [19] and Akima [20]. Apart from being an im-
provement of monotone convex method where it ensured positive forward rates, the monotone preserving 
( )r t t  method was also capable of ensuring continuity of ( )f t . 
In the study by du Preez [16], they found that the monotone preserving ( )r t t  method to perfrom slightly 

better in terms of stability, and continuity of ( )f t , compared to monotone convex method. This suggests that 
when bootstrapping, the monotone preserving ( )r t  method could be the ideal method of interpolation. Unfor-
tunately, monotone preserving method had the undesirable characteristic of not being differentiable at the 
knot-points.  

Muthoni, Onyango and Ongati [2] introduced a new method of interpolation, which will be an improvement 
of monotone preserving ( )r t t  interpolation method suggested by du Preez [16]. They was done by removing 
the non-differentiability at the knot points in the aforementioned method, which is created by use of Hyman 
monotonicity constraint, which enforces monotonicity.  

2.2. Parsimonious Models 
Parsimonious models specify parsimonious parameterizations of the discount function, spot rate or the implied 
forward rate. Moving from the cubic splines, Chambers [21] introduced the parsimonious function forms by 
considering an exponential polynomial to model the discount function. Nelson & Siegel [1] followed shortly 
thereafter by choosing an exponential function with four unknown parameters to model the forward rate of U.S 
Treasury bills. By considering the three components that make up this function, Nelson & Siegel [1] illustrated 
that it can be used to generate a variety of shapes for the forward rate curves and analytically solve for the spot 
rate. Moreover, the advantage of the classical Nelson-Siegel [1] model is that the three parameters may be inter-
preted as latent level, slope and curvatures factors. Diebold [22], Modena [23] and Tam & Yu [24] employed the 
Nelson-Siegel [1] interpolant to examine bond pricing with a dynamic latent factor approach and concluded that 
it was satisfactory. 

Svensson [25] increased the flexibility of the original Nelson and Siegel [1] model by adding two extra para-
meters (Svensson [25] model) which allowed for a second “hump” in the forward rate curve. Later, Bliss [26] 
introduced the Extended Nelson-Siegel [1] method, which introduced a new appropriating function with five 
parameters by extending the model developed by Nelson & Siegel [1]. Bliss suggested that a six-parameter 
model can produce better results for fitting the term structure with longer maturities. 

The Nelson-Siegel [1] model class has linear and non-linear parameters depending on the values assumed 
fixed. Due to this, these models have multiple local minima making model estimation difficult. Previous studies 
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have widely discussed the estimation of Nelson-Siegel [1] model class and they are: Bolder [27], Maria et al. 
[28], Gilli [29], Rezende [30], Rosadi [31], among others. 

Muthoni et al. [3] estimated the Kenyan government bonds (KGBs) term structure of interest rates based on 
the parsimonious functions specifications , i.e. the four parameters Nelson-Siegel [1] model, the five parameters 
Svensson [25] model and the six parameters Rezende [30] model, known as Nelson-Siegel-Svensson model. The 
reason they chose the Nelson-Siegel family is that these models have substantial flexibility required to match the 
changing shape of the yield curve, yet they only use a few parameters. As noted by Diebold [22], they can be 
used to predict the future level, slope, and curvature factors for bond portfolio investments purposes. After 
comparing the Nelson-Siegel classes of models, Muthoni, Onyango and Ongati [3] found Nelson Siegel [1] to be 
the superior model. 

3. Empirical Methodology 
3.1. Model Selection 
3.1.1. The Nelson-Siegel [1] Model 
The Nelson-Siegel [1] model sets the instantaneous forward rate at maturity m given by the solution to a second 
order differential equation with unequal roots as follows: 

( ) 0 1 2
1 1 2

exp expm m mf m β β β
τ τ τ

   − −
= + +   

   
                         (1) 

where 0m > . The model consists of four parameters: 0 1 2, ,β β β  and sτ  m is the time to maturity of a given 
bond. Equation (1) consists of three parts: A constant, an exponential decay functional and Laguerre function. 

0β  is independent of m and as much, 0β  is often interpreted as the level of long term interest rates. The expo-
nential decay function approaches zero as m tends to infinity and 1β  as m tends to zero. The effect of 1β  is 
thus only felt at the short end of the curve. The Laguerre function on the other hand approaches zero as m tends 
to infinity, and as m tends to zero. The effect of 2β  is thus only felt in the middle section of the curve, which 
implies that 2β  adds a hump to the yield curve.  

The spot rate functions under the model of Nelson and Siegel [1] is as follows: 

( )

( )

1 2
0 1 2 2

1 2 2

1 2
0 1 2

1 2 2

1 exp 1 exp exp

1 exp 1 exp 1

m m mr m
m m

m m mr m
m m

τ τ
β β β β

τ τ τ

τ τ
β β β

τ τ τ

        −   = + − + − − − −           
              

       −   = + − + − − +          
             

.            (2) 

From Equation (2) it follows that both the spot and forward rate function reduce to 0 1β β+  as 0m → . Fur-
thermore, we have ( ) ( ) 0lim limm mr m f m β→∞ →∞= = . Thus, in the absence of arbitrage, we must have that 

0 0β >  and 0 1 0β β+ > . 
Suppose we observe n zero coupon bonds, expiring at times 1 2, , , nm m m . Let 1 2, , , np p p  denote the 

prices of these bonds. Note that ip  will imply the spot rate of interest corresponding to time im  for
1,2, ,i n=  . Let 1 2, , , nr r r  denote these spot rates. If we assume that the values of sτ  are known, then the 

Nelson and Siegel [1] model reduces to a linear model, which can be solved using linear regression. 
Define: 

( ) ( )
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 
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We would like to obtain a vector B  satisfying XB Y= +  . By using ordinary least squares (OLS) estima-
tion, we can solve B  as follows: 

( ) 1B X X X Y−′ ′=                                     (4) 

Nelson and Siegel [1] suggested the following procedure for calibrating their model:  
1) Identify a set of possible values for sτ  
2) For each of these sτ  estimate B 
3) For each of these sτ  and their corresponding B’s, estimate  

( )
( )

2 1

1

ˆ
1

n
i ii

n
i ii

r r
R

r r
=

=

−
= −

−

∑
∑

                                 (5) 

4) The optimal λ  and β  are those associated with the highest value of 2R . 
The above method of calibration is known as the grid-search method. Alternatively, non-linear optimization 

techniques can be used to solve all four parameters simultaneously. However, such networks are very sensitive 
to starting values, implying a high probability of obtaining local optima. The estimated parameters obtained by 
using the grid search method behave erratically over time, and have large variances. The problems resulting 
from multi-colinearity depend on the time to maturity of the securities used to calibrate the model. Diebold [22], 
attempted to address the multi-colinearity problem by fixing the value of sτ  over time, which in some in-
stances might not produce accurate results. 

Due to the local-minima problem which makes model estimation difficult in the Nelson-Siegel [1] model and 
the inadequacy of the calibration methods used so far, we propose NLS estimation with L-BFGS-B method op-
timization approach. This optimization method is an extension of the limited memory BFGS method (LM-BFGS 
or L-BFGS) which uses simple boundaries model, according to Zhu et al. [32]. 

Using L-BGFS-B algorithm, we can estimate the above five parameters: { }0 1 2 1 2, , , ,ϕ β β β τ τ≡ , embedded in 
the Nelson–Siegel [1] model, and hence calculate the price of the bond using the following nonlinear con-
strained optimization estimation procedure based the Gauss-Newton numerical method: 

1

1 2
0 1 2

1 2 2

1 1 exp 1 exp 1

T im
i imm

CF
P

m m m
m m

ε
τ τβ β β

τ τ τ

=
= +

        −    + + − + − +           
            

∑           (6) 

where iP  is the price of bond i. 

3.1.2. Improvement of Monotone Convex Interpolation on ( )r t t  
We start with a mesh of data points { }1 2 , ,, nt t t  (we will think of the x-values as time points on the x axis) 
and the corresponding y values are define as { }1 2 , ,, nf f f  for a generic but unknown function ( )f t . Cubic 
splines are generally defined by piece-wise cubic polynomial that passes through consecutive points: 

( ) ( ) ( ) ( )2 3
i i i i i i if t a b t t c t t d t t= + − + − + + − .                       (7) 

With [ ]1,i it t t +∈  and 1, ,i n=   . We will use the following definitions: 

1i i ih t t+= −                                      (8) 

1i i
i

i

f f
m

h
+ −

= .                                    (9) 

With ( )1, , 1i n= −  The coefficients , ,i i ia b c  and id  depends on the details of the method, and are re-
lated to the values of ( )f t  and its derivatives at the node points. In general  

( ) ( ),i i i i ia f t f b f t′= ≡ =  and so on                      (10) 

where in the above equation, the prime denotes the derivative of the interpolating function ( )f t  w.r.t. its ar-
gument t. Moreover given ia  and ib , we can express ic  and id  as follows:  
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13 2i i i
i

i

m b b
c

h
+− −

=                                   (11) 

1
2

2i i i
i

i

b b m
d

h
+ − −

= .                                  (12) 

We can use Equation (4) to compute the following derivative: 

( ) ( ) ( ) ( )2 3i i i i
i i i

j j j j j

f t a b c a
t t t t t t

f f f f f
∂ ∂ ∂ ∂ ∂

= = − + − + −
∂ ∂ ∂ ∂ ∂

.                     (13) 

We have: 

ji
i

j

a
f

δ
∂

=
∂

                                                (14) 

1
1 1j ji

i i
j i i

m
f h h

δ δ+

∂
= −

∂
                                       (15) 

11 3 2i i i i

j i j j j

c m b m
f h f f f

+
 ∂ ∂ ∂ ∂

= − −  ∂ ∂ ∂ ∂ 
                             (16) 

1
2

1 2i b i i

j j j ji

d b b m
f f f fh

+
 ∂ ∂ ∂ ∂

= − −  ∂ ∂ ∂ ∂ 
.                              (17) 

Which depends on the matrix element i

j

b
f
∂
∂

. Here j
iδ  is the Kronecker delta, which is equal to one if i j=  

and zero otherwise. Once the derivatives at the points, or equivalently the ib  coefficients, are specified, every-

thing else is fixed. In particular we are interested in computing 
( )

j

f t
f

∂
∂

, then all the work will be in the calcula-

tion of the derivatives ib  w.r.t. jf .   
This calculation is tricky if we use monotone preserving splines (or any other method which enforces mono-

tonicity where the ib s are non-differentiable functions of the jf s (which involve the min and max functions). 
And this is where the novelty of this paper comes in. 

Let us start by recalling the formulas for the ib ’s in the monotone preserving cubic spline method as defined 
in the Hagan-West [14]. First of all, at the boundaries, we have: 

0, 0i nb b= =                                     (18) 

For the internal data, if the curve is not a monotone at it , i.e. 1 0i im m− ⋅ ≤ , then the boundaries become: 

( )10 if 0i i ib m m− ⋅= ≤                                 (19) 

So that it will have a turning point there. Instead if the trend is a monotone at it , i.e. 1 0i im m− ⋅ > , then one 
defines:  

( ) ( )
1

1 1

3
max m n, ,2 i

i i
i

i i i i

m m
m m m m

β −

− −+
⋅

= .                         (20) 

And: 

( ) ( )( )
( ) ( )( )

1 1

1 1

min max 0, ,3min if 0

min max 0, ,3m

,

,in if 0
i i i i i

i
i i i i i

m m m m
b

m m m m

β

β
− −

− −

⋅

⋅

>= 
<

.                 (21) 

The former choice is made when the curve is increasing (positive slopes), the latter when decreasing (negative 
slopes). Equation (21) represents the monotonicity constraint introduced by Hyman and based on the Fritsch- 
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Butland algorithm. 
We can now move to the monotonicity constrain. What we need first is:  

( )
1

1

0 if 0 0
max 0, 0

,

f 0,i

i i i

ii
i i ij

j

m m

m mf f

β
ββ

β

−

−

< ⇔ <
∂ ∂=  > ⇔ >∂  ∂

                       (22) 

( )
1

1

0 if 0 0
min 0, 0

,

f 0,i

i i i

ii
i i ij

j

m m

m mf f

β
ββ

β

−

−

> ⇔ >
∂ ∂=  < ⇔ <∂  ∂

.                       (23) 

The final step consists of putting all the information together to compute i

j

b
f
∂
∂

. Suppose first that the trend is 

increasing, i.e. 1 ,, 0i i im m β− > . Using Equation (23) we find: 

( ) ( )( )1min max 0, ,3 m ,ini
i i i

j j

b
m m

f f
β −

∂ ∂  = ∗ ∂ ∂
                       (24) 

( ) ( ) ( )

( ) ( ) ( )

1

1 1

max 0, if max 0, 3 min

3* min if max 0, 3 m n, ,i

,i i i i
j

i i i i i
j

m m
f

m m m m
f

β β

β

−

− −

∂ < ∗∂=  ∂ > ∗
 ∂

.                  (25) 

Let us now suppose that the trend is decreasing instead, i.e. 1 ,, 0i i im m β− < . By Equation (23) we have: 

( ) ( )( )1max min 0, ,3 m ,axi
i i i

j j

b
m m

f f
β −

∂ ∂  = ∗ ∂ ∂
                      (26) 

( ) ( ) ( )

( ) ( ) ( )

1

1 1

min 0, if min 0, 3 max

3 max if min 0, 3

,

max, ,

i i i i
j

i i i i i
j

m m
f

m m m m
f

β β

β

−

− −

∂ > ∗∂=  ∂ < ∗
 ∂

.                  (27) 

It can be shown that for any i and j 

( )

1
1

1

1

if

max
if

,

i
i i

j
i i

ij
i i

j

m
m m

f
m m

mf m m
f

−
−

−

−

∂ > ∂∂ = ∂∂  <
 ∂

                         (28) 

( )

1
1

1

1

if

min
if

,

i
i i

j
i i

ij
i i

j

m
m m

f
m m

mf m m
f

−
−

−

−

∂ < ∂∂ = ∂∂  >
 ∂

.                          (29) 

This formula solves our problem of non-differentiability found in the monotone preserving convex on ( )r t t . 

3.2. Liquidity-Weighted Function 
In yield curve construction, errors are caused by two reasons: (a) curve fitting mistakes and (b) presence of li-
quidity premium. The errors due to curve fitting arise from the calculations and can be avoided. But the error 
due to the presence of liquidity premium is reflective of market conditions and one cannot ignore them. Since 
the reliability of the term structure estimation heavily depends on the precision of the market prices according to 
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Subramanian [33], liquid and illiquid securities are a heterogeneous class and including them both in the term 
structure estimation process poses problems. Illiquid bonds are traded at a premium to compensate for their un-
desirable attribute in terms of a low price. Assigning equal weights to both types of errors will give undue 
weight to the kind of error that creeps in due to curve fitting.  

Subramanian [33] suggests a liquidity weighted objective function, which hypothesizes that a weighted error 
function (with weights based on liquidity) would lead to better estimation that equal weights to the squared er-
rors of all securities. We therefore model the liquidity using a function with two factors: the volume of trade in a 
security and the number of trades in that security.  

The weight of the thi  security iW  is given by:  

max max

max max

1 e 1 e

1 e 1 e

i i

i i

v n
v n

v n
v n
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ii
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− −      
   

   
− −      
   

    
    − + −
                = = − + −

   
   ∑

                 (30) 
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              (31) 

where iv  and in  are the volume of trade and the number of trades in the thi  security respectively, while 
maxv  and maxn  are the maximum number of trades among all the securities traded for the day respectively. 
As given in the Equation (30) and Equation (31) above, it ensures that the weights of the relative liquid secur-

ities would not be significantly different from each other. For the illiquid securities, however the weights would 
fall quickly as liquidity decreased. 

The final error-minimizing function, which should equal to zero, is given by: 

( )2 2
1 1Min Min 0n n

i i i i ii iw P B w ε
= =

− = =∑ ∑ .                       (32) 

3.3. Test Statistics 
In academic literature, there are two distinct approaches used to indicate the term structure fitting performance. 
One is the flexibility of the curve (accuracy), and the other focuses on smoothness of the yield curve. Although 
there are numerical methods proposed to estimate the term structure, any method developed has to grapple with 
deciding the extent of the above trade-off. Hence it becomes a crucial issue to investigate how to reach a com-
promise between the flexibility and smoothness. 

Three simple summary statistics which can be calculated for the flexibility of the estimated yield curve are the 
coefficient of determination, root mean squared percentage error, and root mean squared error . These are calcu-
lated as shown in the next four subsections. 

3.3.1. The Coefficient of Determination (R2)  

( ) ( )

( ) ( )
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ˆ 1

n
i ii

n
i ii
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= −
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∑
∑

                             (33) 

where P  is the mean average price of all observed bonds, ˆ
iB  is the model price of a bond i, n the number of 

bonds traded and k is the number of parameters needed to be estimated.  
Roughly speaking, with the same analysis in regression, we associate a high value of 2R  with a good fit of 

the term structure and associate a low 2R  with a poor fit. 

3.3.2. Root Mean Squared Error (RMSE) 
Denoted as the RMSE, a low value for this measure is assumed to indicate that the model is flexible, on average, 
and is able to fit the yield curve. 
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( )2

1

1 ˆRMSE n
i ii

P B
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3.3.3. Root Mean Squared Percentage Error (RMSPE) 
Denoted as the RMSPE, a low value for this measure is also assumed to indicate that the model is flexible, on 
average, and is able to fit the yield curve. 

2

1

ˆ1RMSPE 100%n i i
i
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P B
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3.3.4. Testing for Smoothness  
To test the smoothness of the estimated yield curve, we use a modified statistic suggested by Adams and De-
venter [34] to reach the maximum smoothness for forward rate curve, and denote the smoothness (Z) for the es-
timated yield curve as: 

( ) ( )
2

1.5

1 1 11 0
2 2 2

n

t
Z f t f t f t f t
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∑ .                (36) 

Ideally, the value should equal to zero. The model with the least Z value is deemed to be the best. 

4. Empirical Results  
4.1. Data 
In Kenya, nearly all bond transactions take place on the OTC market. The data used in this study was supplied 
by the Central Bank of Kenya. The sample period contains 417 weekly data from January 2005 to December 
2012. Weekly prices (every Friday) for 108 Kenyan Government Bonds (KGBs) with original maturity dates 
ranged from 2 to 30 years are obtained. 

4.2. Parameter Estimation  
4.2.1. Nelson-Siegel [1] Model 
Table 1 lists the summary statistics of estimated parameters for the Nelson-Siegel [1] model. It is seen that all 
estimated values for 1̂β  and 2β̂  are negative, which indicates that the yield curves generated by this model 
are all positively and upward sloping without a visible hump. 

4.2.2. The Spline Model 
Table 2 lists the summary statistics of estimated parameters for the improved monotone preserving interpolation 
method on ( )r t t  Model.  

4.3. Comparison of the Models 
4.3.1. In terms of Accuracy 
A direct comparison of the two models in Table 3 appears to favor the Nelson-Siegel [1].  

4.3.2. In Terms of Smoothness 
In the academic literature, it has been observed that when comparing alternative methods of term structure fit-
ting models, there is usually a trade-off between flexibility and smoothness. In Table 4, the spline seems to have 
the best fit in flexibility for fitting the term structure of KGB market. However, as shown in Table 4, the Nel-
son-Siegel [1] Model is superior to the spline, which shows that the Nelson-Siegel [1] results to a relatively 
smoother yield curve, compared to the other model.  

4.3.3. In Terms of the Spot Curves 
In Figure 1, we see the spot curve generated by the Nelson and Siegel [1] model, which shows character- 
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Table 1. Results for estimated parameters for Nelson-Siegel [1] model. 

Year 
Parameters 

0β̂  1̂β  2β̂  1̂τ  

2005 0.0587 −0.0115 −0.0040 4.6089 

2006 0.0463 −0.0090 −0.0127 3.2148 

2007 0.0454 −0.0133 −0.0388 1.8327 

2008 0.0356 −0.0183 −0.0425 2.1674 

2009 0.0358 −0.0164 −0.0493 1.0232 

2010 0.0225 −0.0085 −0.0819 0.6237 

2011 0.0225 −0.0085 −0.0819 0.6237 

2012 0.0241 −0.091 −0.0213 1.0595 

 
Table 2. Results for estimated parameters for improved monotone preserving interpolation method on ( )r t t . 

Year 
parameters 

ia  ib  ic  id  
2005 0.0588 −0.0125 0.0316 −0.0365 

2006 0.0477 −0.0152 −0.0034 0.0010 

2007 0.0400 −0.0284 0.0701 −0.0410 

2008 0.0355 −0.0293 0.0070 −0.0189 

2009 0.0359 −0.0308 −0.0068 0.0115 

2010 0.0232 −0.0022 −0.0074 −0.0110 

2011 0.0232 −0.0022 −0.0074 −0.0110 

2012 0.0279 −0.0061 −0.0074 −0.0055 

 
Table 3. Summary statistics for fitting performance in terms of accuracy. 

 
RMSPE RMSE 2R  

Nelson-Siegel Spline Method Nelson-Siegel Spline Method Nelson-Siegel Spline Method 

mean 0.0144 0.0122 1.6318 1.4043 0.9654 0.9738 

Std.dev 0.0066 0.0051 0.7752 0.6033 0.0357 0.0299 

Max 0.0413 0.0281 4.6311 3.3047 0.9973 0.9979 

Min 0.0050 0.0041 0.5311 0.4363 0.8015 0.8219 

 
Table 4. Summary Statistics for fitting performance in terms of smoothness. 

Model 
With liquidity constraint 

2R  Smoothness: ( )( )610Z −×  

Nelson-Siegel [1] 0.9654 4.9822 

Spline (interpolation) 0.9738 10.7467 

 
ristics of normal curve. 

In Figure 2, we see that the splines produce a curve which initially is increasing and then suddenly becomes 
flat after time 10, at a constant yield rate of 1.40%. This does not depict normal behavior of yield curves. 

4.3.4. In Terms of Pricing Back the Securities 
In Figure 3, we see the Nelson and Siegel model [1] prices back the securities but not with as much accuracy as 
the spline curve does, as shown in Figure 4. 
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Figure 1. Nelson and siegel [1] curve. 

 

 
Figure 2. Splines curve. 

 

 
Figure 3. Nelson and Siegel [1]. 
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Figure 4. Splines. 

 

 
Figure 5. The Nelson-Siegel model [1]. 

4.3.5. In terms of the Discount Curve 
In Figure 5, we see that the Nelson and Siegel [1] model is able to produce a decreasing discount curve, which 
is a very important characteristic of a yield curve because it shows not only monotonicity, but is also sensible 
from an economic perspective. When we compare with Figure 6, we see that the discount curve is decreasing in 
the short to middle terms, with a little hitch at times 10 - 12, 16 - 28 and 29 - 31, after which it starts increasing. 
This curve lacks monotonicity and therefore does not make much economic sense. 

5. Conclusion and Discussion of Results 
The objective of this paper was to compare the performance of the improved monotone preserving interpolation 
method on ( )r t t  against the Nelson & Siegel [1] in terms of several performance yard sticks. These yard 
sticks were: 1) accuracy, 2) smoothness, 3) the non-negativity and continuity of forward and spot curves, 4) 
pricing back of securities and 5) the monotonicity of the discount curve. 
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Figure 6. Splines discount curve. 

 
In terms of accuracy, we see that the spline method does better than the parametric method in that it gives an 

accuracy of 97.37% compared to an accuracy of 96.54% by the Nelson-Siegel [1] model. We come to the same 
conclusion when we compare the two models using the test statistics of accuracy in that the spline does better 
than the parametric model. 

However, when it comes to the test of smoothness, we see that Nelson-Siegel [1] model performs much better 
with a lower Z value of 4.9822 compared to the spline’s value of 10.7467. Smoothness of the curve is extremely 
important in that it points towards differentiability and continuity of the curve. 

When we compare the spot and the forward curves, we see that Nelson-Siegel gives us better curves (normal 
curves) which reflect reality, compared to the resulting splines’ curve which increases with time initially, then 
abruptly becomes static at a given yield rate. This behavior is not realistic. We come to the same conclusion 
(that the parametric is better than the spline) when we compare the two in terms of pricing back the fixed in-
come securities in that we see an almost perfect pricing back of the securities when we use the parametric mod-
el. 

When we compare the two in terms of monotonicity, a very important concept in both Mathematical Finance 
and Economics, we see again that Nelson-Siegel [1] performs better than the spline. It results to a strictly de-
creasing discount curve, compared to the decreasing spline curve which starts increasing in the long term (after 
25 years). 

After considering all the factors at hand, we come to a conclusion that the parametric model (Nelson-Siegel 
[1]) is the proper model to be used in NSE, and consequently, in the East African securities Markets. 
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Appendix 1: The L-BFGS-B Algorithm 
A.1. Introduction 
The problem addressed is to find a local minimizer of the non-smooth minimization problem. 

( )min

. .
1, , .

nx

i i i

f x

s t l x u
i n

∈

≤ ≤

= 



                                        (A1) 

where : nf →   is continuous but not differentiable anywhere and n is large. il  and iu  are respectively an upper 
limit and; lower limit parameters. ( )f x  is NLS (Non Linear Schrödinger)  function of residual functions of Nel-
son-Siegel [1] model class and x is a parameter of the Nelson-Siegel [1] model class.  

The L-BFGS-B algorithm by Zhu et al. [32] is a standard method for solving large instances of ( )min
nx

f x
∈

 when f is a  

smooth function, typically twice differentiable. The name BFGS stands for Broyden, Fletcher, and Goldfarb and Shanno, the 
originators of the BFGS quasi-Newton algorithm for unconstrained optimization discovered and published independently by 
them in 1970 [Broyden [35], Fletcher [36], Goldfarb [37] and Shanno [38]. This method requires storing and updating a ma-
trix which approximates the inverse of the Hessian ( )2 f x∇  and hence requires ( )2n  operations per iteration.  

According to Nocedal [39], the L-BFGS variant where the L stands for “Limited-Memory” and also for “Large” problems, 
is based on BFGS but requires only ( )n  operations per iteration, and less memory. Instead of storing the n n×  Hessian 
approximations, L-BFGS stores only m vectors of dimesion n, where m is a number much smaller than n. Finally, the last 
letter B in L-BFGS stands for bounds, meaning the lower and upper bounds il  and iu . The L-BFGS-B algorithm is im-
plemented in a FORTRAN software package, according to by Zhu et al. [32]. We discuss how to modify the algorithm for 
non-smooth functions. 

A.1.1. BFGS 
BFGS is standard tool for optimization of smooth functions. It is a line search method. The search direction is of type 

( )k kd B f x= − ∇  where kB  approximation to the inverse Hessian of f.2 This thk  step approximation is calculated via 
the BFGS formula.  
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                             (A2) 

where ( ) ( )1k k ky f x f x+= ∇ −∇  and 1k k ks x x+= − . BFGS exhibits super-linear convergence on generic problems but it 
requires ( )2n  operations per iteration, according to Wright et al. [40]. 

In the case of non-smooth functions, BFGS typically succeeds in finding a local minimizer, as indicated by Overton et al. 
[41]. However, this requires some attention to the line search conditions. This conditions are known as the Armijo and weak 
Wolfe line search conditions and they are a set of inequalities used for computation of an appropriate step length that reduces 
the objective function” sufficiently”  

A.1.2. L-BFGS 
L-BFGS stands for Limited-memory BFGS. This algorithm approximates BFGS using only a limited amount of computer 
memory to update an approximation to the inverse of the Hessian of f. Instead of storing a dense n n×  matrix, L-BFGS 
keeps a record of the last m is a small number that is chosen in advance. For this reason the first m iterations of BFGS and 
L-BFGS produce exactly the same search directions if the initial approximation of 0B  is set to the identity matrix.  

Due to this construction, the L-BFGS algorithm is less computationally intensive and requires only ( )mn  operations 
per iteration. So it is much better suited for problems where the number of dimensions n is large.  

A.1.3. L-BFGS-B 
Finally L-BFGS-B is an extension of L-BFGS. The B stands for the inclusion of Boundaries. L-BFGS-B requires two extra 
steps on top of L-BFGS. First, there is a step called gradient projection that reduces the dimensionality of the problem. De-
pending on the problem, the gradient projection could potentially save a lot of iterations by eliminating those variables that 

 

 

2When it is exactly the inverse Hessian this method is known as Newton method. Newton’s method has quadratic convergence but requires 
the explicit calculation of the Hessian at every step. 
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are on their bounds at the optimum reducing the initial dimensionality of the problem and the number of iterations and run-
ning time. After this, gradient projection comes to second step of subspace minimization. During the subspace minimization 
phase, an approximate quadratic model of (A1) is solved iteratively in a similar way that the original L-BFGS algorithm is 
solved. The only difference is that the step length is restricted as much as necessary in order to remain within the lu-box de-
fined by Equation (A1). 

A.1.4. Gradient Projection  
The L-BFGS-B algorithm was designed for the case when n is large and f is smooth. Its first step is the gradient projection 
similar to the one outlined in Conn, Gould, and Toint [42] and Toraldo, Jorge and Gerardo [43], which is used to determine 
an active set corresponding to those variables that are on either their lower or upper bounds. The active set is defined at point 
𝑥𝑥∗ is: 

( ) { }{ }* * *1, , \ i i i ix i n x l x u= ∈ = ∨ =                              (A3) 

Working with this active set is more efficient in large scale problems. A pure line search algorithm would have to choose 
to step length short enough to remain within the box defined by il  and iu . So if at the optimum, a large number   of 
variables are either on the lower or upper bound, as many as   of iterations might be needed. Gradient projection tries to 
reduce this number of iterations. In the best case, only one iteration is needed instead of  . 

Gradient projections works on the linear part of the approximation model: 

( ) ( ) ( ) ( ) ( ) ( )T
T

2
k k k

k k k k

x x H x x
m x f x f x x x

− −
= +∇ − +                      (A4) 

where kH  is a L-BFGS-B approximation to the Hessian 2 f∇  stored in the implicit way defined by L-BFGS. 
In this first stage of the algorithm a piece-wise linear path starts at the current point kx  in the direction ( )kf x−∇ . 

Whenever this direction encounters one of the constraints the path runs corners in order to remain feasible. The path is noth-
ing but feasible piece-wise projection of the negative gradient direction on the constraint box determined by the values l and 
u. At the end of this stage, the value of x that minimizes ( )km x  restricted to this piece-wise gradient path is known as the 
“Cauchy point” cx . 

From this description of the estimation and optimization, following steps can be summarized: 
• Find the residual function (r) of each model. 

• Find NLS estimation, i.e. ( ) [ ]21

1 ,
2

p
i iif x x

=
= ∑  of each model. 

• Find the p p×  matrix value for 1B I= , p is the number of parameters estimated in each model. 
• Find the initial value of parameter vector with rank 1p× , p is the number of parameters estimated in each model.  
• Find gradient from step 2 with every parameter in models. e.g. ( )i i

f x∇ . 
• Substitute the initial value of the parameter (step 3) to gradient of step 5 with result. e.g. ( )1f x∇ . 
• Find the value of 1p  

Then we find the value of ( )1f x  so it will obtain of 1d  and 1s . 
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