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Abstract 
An efficient active-set approach is presented for both nonnegative and general linear program-
ming by adding varying numbers of constraints at each iteration. Computational experiments 
demonstrate that the proposed approach is significantly faster than previous active-set and stan-
dard linear programming algorithms. 
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1. Introduction 
Consider the linear programming problem 

(P) Max Tz = c x                                                (1) 
s.t. 

≤Ax b                                             (2) 
,≥ 0x                                              (3) 

where x and c are the n-dimensional column vectors of variables and objective coefficients, respectively, and z 
represents the objective function. The matrix A is an m × n matrix ija    with row vectors 1, , ma a ; b is an 
m-dimensional column vector; and 0 is an n-dimensional column vector of zeros. The non-polynomial simplex 
methods and polynomial interior-point barrier-function algorithms illustrate the two different approaches to 
solve problem P. There is no single best algorithm [1]. For any existing approach, there is a problem instance for 
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which the developed method performs poorly [2] [3]. However, interior point methods do not provide efficient 
post-optimality analysis, so the simplex algorithm is the most frequently used approach [2], even for sparse large 
scale linear programming problems where barrier methods perform extremely well. In fact, the simplex method 
has been called “the algorithm that runs the world” [4]; yet it often cannot efficiently solve the large scale LPs 
required in many applications. 

In this paper we consider both the general linear program (LP) and the special case with ≥ 0ia  and ≠ 0ia , 
1, ,i m∀ =  ; > 0b ; and > 0c , which is called a nonnegative linear program (NNLP). NNLPs have some 

useful properties that simplify their solution, and they model various practical applications such as determining 
an optimal driving route using global positioning data [5] and updating airline schedules [6], for example. We 
propose active-set methods for LPs and NNLPs. Our approach divides the constraints of problem P into opera-
tive and inoperative constraints at each iteration. Operative constraints are those active in a current relaxed sub-
problem Pr, 1, 2, ,r =   of P, while the inoperative ones are constraints of the problem P not active in Pr. In 
our active-set method we iteratively solve Pr, 1, 2, ,r =   of P after adding one or more violated inoperative 
constraints from (2) to 1rP −  until the solution r

∗x  to Pr is a solution to P. 
Active-set methods have been studied by Stone [7], Thompson et al. [8], Myers and Shih [9], and Curet [10], 

for example. More explicitly, Adler et al. [11] suggested a random constraint selection rule, in which a violated 
constraint was randomly added to the operative set. Bixby et al. [1] developed a sifting method for problems 
having wide and narrow structure. In effect, the sifting method is an active-set method for the dual. Zeleny [12] 
used a constraint selection rule called VIOL here, which added the constraint most violated at each iteration. 
Mitchell [13] used a multi-cut version of the VIOL for an interior point cutting plane algorithm. Corley et al. [14]  

developed a cosine simplex algorithm where a single violated constraint maximizing ( )cos , = i
i

i

a c
a c

a c
 was  

added to the operative set. Junior and Lins [15] used a similar cosine criterion to determine an improved initial 
basis for the simplex algorithm. 

References [6] [16] and [17] are the most directly related to the current work. The constraint optimal selection 
technique (COST) RAD was introduced in [6] and [16] as a constraint selection metric for NNLPs, and then ge-
neralized in [17] to GRAD for LPs. In RAD and GRAD, an initial problem P0 is formulated from P such that all 
variables are bounded by at least one constraint, which may be an artificial bounding constraint T M≤c x  for 
sufficiently large M. Multiple violated constraints are then added to problems Pr, 0,1, ,r =   according to the 
constraint selection metric RAD or GRAD. The contribution here is to improve significantly the speed of RAD 
and GRAD by varying the number of added constraints at each Pr according to an empirically derived function 
estimating the effectiveness of that iteration. 

The paper is organized as follows. The constraint selection metric and dynamic active-set conjunction with 
RAD and GRAD is given in Section 2. In Section 3, we describe the problem instances and CPLEX preprocess-
ing settings. Section 4 contains computational experiments for both NNLPs and LPs. Then the performance of 
the new methods is compared to the previous ones as well as the CPLEX simplex, dual simplex, and barrier 
method. In Section 5, we present conclusions. 

2. A Dynamic Active-Set Approach 
The purpose of our dynamic active-set method is to add violated constraints to problem Pr more effectively than 
in [6] and [17]. In COST RAD of [6] for NNLPs we use the constraint selection metric 

( )  
RAD , ,

T
i

i i
i

b
b

=
a c

a c                                     (4) 

to order constraints from highest to lowest value of RAD as a geometric heuristic for determining the constraints 
most likely to be binding at optimality. Moreover, at each iteration in [6] we add violated constraints in order of 
decreasing RAD until the added constraints contain non-zero coefficients for all variables. In similar fashion for 
COST GRAD of [17], we use the constraint selection metric 

( )
1, 0 1, 0

GRAD , , ,
j j

n n
ij j ij

i i
j c j ci i

a c a
b

b b+ +
= > = <

−
= −∑ ∑a c                            (5) 



A. Noroziroshan et al. 
 

 
528 

where  

[ ] [ ]
1, , 1, ,

min if min 0
 

Otherwise

i k kk m k m
i

i

b b b
b

b

ε
+ = =

−



+ <
=                              (6) 

for a small positive constant ε and ( )( )argmax GRAD , , : , OPERATIVE .T
i i i r ii b b i∗ ∗∈ > ∉a c a x  However, in 

COST GRAD, violated constraints are added until every column of A has at least one positive and one negative 
value.  

In this paper we propose a dynamic method that adds a varying number of constraints to Pr that depends on 
the progress made at 1rP − . No equality constraints are considered here, but any equality constraints can be in-
cluded in P0. An active-set function is defined to compensate for the lack of progress in 1rP −  by adding more 
violated constraints at Pr. The algorithm stops when the solution r

∗x  to Pr is the optimal solution to P. Of 
course, one could simply add all violated constraints at any one iteration. However, the proposed dynamic me-
thod attempts to balance the number of iterations required to eliminate all constraints violation, while still main-
taining an efficient active-set method.  

2.1. Dynamic Active-Set Approach for NNLP 
The dynamic active-set approach developed for solving NNLPs is as follows. Constraints are initially ordered by 
the RAD constraint selection metric (4). To construct P0, we choose constraints from (2) in descending order of 
RAD until each variables xj has an 0ija >  in the coefficient matrix of P0. We say the variables are covered by 
the constraints of the initial problem P0. P0 is then solved by the primal simplex to achieve an initial solution 

0
∗x . Now let 0γ  be the number of constraints in the original problem P and, in general, let rγ  be the number 

of constraints of problem P violated by r
∗x . At each iteration r, the total number of violated constraints rγ  is 

computed, and the improvement percentage is calculated by  

1

1

max 0, 100, 1,2, ,r r
r

r

rγ γω
γ
−

−

  − = × ∀ =  
   

                          (7) 

where 0rω >  represents the percent of improvement made in reducing the total number of violated constraints 
at iteration r. Next, with [.] denoting the greatest integer function, let  

( )( )1 1 log 101 , 0 100, 1,2, ,r r r r rϕ ϕ ω ω+  = + − ≤ ≤ ∀ = ∗                      (8) 

where 1 100ϕ = . The value rϕ  is an upper bound on the possible number of non-operative violated constraints 
that can be added at active-set iteration 1,2, .r =   The actual number added is { }1min ,r rϕ γ+ . The active-set 
iterations terminate when 0rγ =  and therefore 100rω = . Equation (8) was developed from the results of com- 
putational experiments.  

Pseudocode for the dynamic active-set NNLPs is as follows. 
Step 1—Identify constraints to initially bound the problem.  
1:  0∗ ←a  
2: while ∗ 0a  do  
3:   Let ( )*

  BOUNDING argmax RAD , ,i i ii b∉∈ a c  
4:   if   0jj a∗∃ =  and 0i ja ∗ >  then 
5:     { }BOUNDING BOUNDING i∗← ∪  
6:   end if  
7:  *    i

∗ ∗← +a a a  
8: Optimized false←  
9: end while  
Step 2—Using the primal simplex method, obtain an optimal solution 0

∗x  for the initial bounded problem P0 

maximize Tz = c x  

subject to BOUNDINGT
i ib i≤ ∀ ∈a x  

≥ 0x  
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Step 3—Perform the following iterations until an optimal solution to problem P is found. 
1: 1 #100ϕ ←  
2: 0r ←  
3: 0 # rowsγ ←  
4: ( )while Optimized false do=  
5:   1r r→ +  
6:   { }, calcula0, te ,T

i r i rif b i rows then γ∗ > ∀ = a x  

7:      Calculate 1

1

max 0, 100r r
r

r

γ γω
γ
−

−

  − = ∗  
   

 

8:   ( )( )10 100 1 log 101r r r rif thenω ϕ ϕ ω+  ≤ < = + − ∗   

9:    ( ){ }OPERATIVEargmax RAD , , : T
i i i i r iLet i b b∗ ∗
∉∈ >a c a x  

10:   for (i = 0 to { }1min ,r rϕ γ+ ) { }OPERATIVE OPERATIVE i end∗← ∪  
11:    Solve the following Pr by the dual simplex method to obtain r

∗x  
12:  else if (ωr = 100) then Optimized ← true// r

∗x  is an optimal solution to P. 
13:   end if  
14:  else Optimized ← true// r

∗x  is an optimal solution to P. 
15:  end if  
16: end while  

2.2. Dynamic Active-Set Approach for LP 
The dynamic active-set approach for solving LP similar to the one for NNLPs. We construct P0 by choosing a 
number of constraints 1ρ  from (2) in descending order of GRAD from (2) until no variable xj is left without at 
least either a positive or a negative coefficient. In addition, we include an artificial bounding constraint 

T M≤1 x . If 1 100ρ < , then set 1 100ρ = . Then P0 is solved to obtain an initial solution 0
∗x . As in Section 2.1, 

it is initially assumed that all constraints are violated ( )0 mγ = . Then the relative improvement percent rω  is 
calculated by (7) for Pr and 1rP + . Now let 

( )1 log 101 ,0 100, 1,2, ,r r r r rρ ρ ω ω+ = − ≤ ≤ ∀ =  ∗                        (9) 

where the value rρ  is an upper bound on the possible number of non-operative violated constraints that can be 
added at active-set iteration 1, 2, .r =   The actual number added is { }1min ,r rρ γ+ . As ω  decreases, 1rρ +  
increases in (9) to add more violated constraints to 1rP + . The algorithm stops at 100% reduction in the number 
of violated constraints. 

Pseudocode for the dynamic active-set for LPs is as follows. 
Step 1—Identify constraints to initially bound the problem.  
1: 0∗ ←a  
2: while 0∗ a  do 
3:   Let ( )  BOUNDINGargmax GRAD , ,i i ii b∗

∉∈ a c  
4:   if   0jj a∗∃ =  and 0i ja ∗ >  or * 0i ja <  then 
5:     { }BOUNDING BOUNDING i∗← ∪  
6:   end if 
7:  i

∗ ∗
∗← +a a a  

8: Optimized ← false 
9: end while 
Step 2—Using the primal simplex method, obtain an optimal solution 0

∗x  for the initial bounded problem P0 
given by 

maximize Tz = c x  

subject to T
i ib i BOUNDING≤ ∀ ∈a x  

T M≤1 x  
≥ 0x  
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Step 3—Perform the following iterations until an optimal solution to problem P is found. 
1: { }1 Max #BOUNDING,100ρ ←  
2: 1r ←  
3: 0 # rowsγ ←  
4: ( )while Optimized false do=  
5:   1r r← +  
6: { } 0, ,,T

i r iif b i rows then∗ > ∀ = a x  calculate rγ  

7:    Calculate 1

1

max 0, 100r r
r

r

γ γω
γ
−

−

  − = ∗  
   

 

8:    ( )10 100 log 101r r r rif thenω ρ ρ ω+≤ < = −∗    

9:   ( ){ }OPERATIVE argmax GRAD , , : T
i i i i r iLet i b b∗ ∗
∉∈ >a c a x  

10:    for (i = 0 to { }1min ,r rρ γ+ ) { } OPERATIVE OPERATIVE i end∗← ∪  
11:    Solve the following Pr by the dual simplex method to obtain r

∗x  
12:  end if  
13:  else Optimized ← true// r

∗x  is an optimal solution to P. 
14:  end if 
15: end while 

3. Problem Instances and CPLEX Preprocessing 
Four sets of NNLPs used in [6] are considered to evaluate the performance of the developed algorithm. Each 
problem set contains five problem instances for 21 different density levels and for varying ratios of (m con-
straints)/(n variables) from 200 to 1. Each set contains 105 randomly generated NNLPs with various densities p 
ranging from 0.005 to 1. Randomly generated real numbers between 1 and 5, 1 and 10, 1 and 10 were assigned 
to the elements of A, b and c respectively. To avoid having a constraint in the form of an upper bound on a vari-
able, each constraint is required to have at least two non-zero ija . For general LP, a problem set containing 105 
randomly generated by Saito et al. [17] is compared with the dynamic approach of this paper. These LP prob-
lems contain 1000 variables (n) and 200,000 constraints (m), with various densities ranging from 0.005 to 1 and 
the randomly generated ija  ranging between −1 and −5 or between 1 and 5.  

Two parameters that CPLEX uses for solving linear programming are PREIND (preprocessing pre-solve in-
dicator) and PREDUAL (preprocessing dual). As described in [17] and [6], when parameter setting PREIND = 1 
(ON), the preprocessing pre-solver is enabled and both the number of variables and the number of constraints is 
reduced before any type of algorithm is used. By setting PREIND = 0 (OFF) the pre-solver routine in CPLEX is 
disabled. PREDUAL is the second preprocessing parameter in CPLEX. By setting parameter PREDUAL = 0 
(ON) or −1 (OFF), CPLEX automatically selects whether to solve the dual of the original LP or not. Both are 
used with the default settings for the CPLEX primal simplex method, the CPLEX dual simplex method, and the 
CPLEX barrier method. Neither CPLEX pre-solver nor PREDUAL parameters were used in any part of the de-
veloped dynamic active-set methods for NNLPs and LPs. 

4. Computational Experiments 
The computations were performed on an Intel Core (TM) 2 Duo X9650 3.00 GHz with a Linux 64-bit operating 
system and 8 GB of RAM. The developed methods use IBM CPLEX 12.5 callable library to solve linear pro-
gramming problems. The dynamic RAD and dynamic GRAD are compared with the previously developed 
COST RAD and COST GRAD, respectively, as well as VIOL, the CPLEX primal simplex method, the CPLEX 
dual simplex method, and the CPLEX barrier method.  

4.1. Computational Results for NNLP 
Table 1 illustrates the performance comparison between dynamic RAD method and the previously defined con-
straint selection technique COST RAD on Set 1 to Set 4 for various dimensions of the matrix A used in [6]. Both 
methods are compared with the CPLEX barrier method (interior point), the CPLEX primal simplex method, and 
the CPLEX dual simplex method. The worst performance occurs at m/n ratio of 200, where on average, dynamic  
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Table 1. Results from dynamic RAD and COST RAD for set 1-set 4, (random, NNLP aij = 1 − 5, bi = 1 − 10, cj = 1 − 10). 

  Dynamic RAD+  COST RAD+ 

 n 1000 3163 10,000 14,143  1000 3163 10,000 14,143 

 m 200,000 63,246 20,000 14,143  200,000 63,246 20,000 14,143 

 m/n 200 20 2 1 200 20 2 1 

Density No CPU time, sec++ 

0.005 1 2.02 30.88 108.52 126.93 2.10 30.82 108.70 127.55 

0.006 2 2.47 32.19 106.48 113.68 2.42 31.48 104.87 114.03 

0.007 3 2.63 30.39 96.61 104.34 2.65 29.41 92.45 104.18 

0.008 4 2.46 31.03 90.14 89.24 2.54 30.63 88.20 90.73 

0.009 5 2.67 28.89 82.66 86.57 2.78 30.10 83.53 85.21 

0.01 6 2.73 28.22 75.46 83.66 2.79 27.81 77.90 80.43 

0.02 7 2.88 23.17 45.55 49.82 3.09 24.69 47.63 49.95 

0.03 8 2.83 17.97 33.85 37.35 3.22 20.49 36.68 38.33 

0.04 9 2.92 15.24 29.23 28.98 3.33 19.06 32.74 32.53 

0.05 10 2.97 14.10 24.83 26.37 3.34 16.97 28.23 28.59 

0.06 11 2.86 11.93 23.38 24.45 3.20 14.94 27.58 27.27 

0.07 12 2.94 11.21 20.38 21.08 3.41 14.88 23.59 23.79 

0.08 13 2.87 10.25 19.47 21.43 3.32 13.57 23.44 24.19 

0.09 14 3.05 9.33 19.43 20.49 3.38 12.67 23.09 23.80 

0.1 15 3.20 9.33 18.03 18.78 3.39 12.92 22.93 20.85 

0.2 16 4.39 8.07 14.86 16.50 4.30 11.09 18.87 20.31 

0.3 17 5.26 8.19 13.77 15.27 4.97 10.58 18.11 19.46 

0.4 18 6.40 9.19 14.32 15.60 5.76 12.31 18.55 18.88 

0.5 19 7.80 9.84 14.33 15.97 6.98 11.92 18.00 19.89 

0.75 20 10.86 11.91 14.55 16.26 8.26 12.01 17.19 18.06 

1 21 12.93 12.01 12.61 14.58 8.39 12.20 17.71 18.50 

Average  4.24 17.30 41.83 45.11 3.98 19.07 44.28 46.98 
+Used CPLEX preprocessing parameters of presolve = off and predual = off. ++Average of 5 instances of LPs at each density. 
 
RAD is 8% faster than COST RAD for densities less than 0.2 and 18% slower for densities above 0.2. When the 
density increases, dynamic RAD shows an increase in computation time more than that of COST RAD. On the 
other hand, for an m/n ratio of 20 the CPU times decrease with an increase in density. For higher densities above 
0.01, dynamic RAD is more efficient and takes less computation times than COST RAD. On average, dynamic 
RAD is 10% more efficient than COST RAD. For an m/n ratio of 2 at densities higher than 0.009, the data show 
that COST RAD starts taking significantly more time than dynamic RAD. Dynamic RAD was 5.5% faster than 
COST RAD over all densities and 21% faster on average for densities above 0.5. For an m/n ratio of 1 with den-
sities greater than 0.01, dynamic RAD is about 8% more efficient than COST RAD. On average, dynamic RAD 
is superior performance to COST RAD for problem sets 2, 3, and 4. 

Table 2 from [6] is presented to provide an immediate comparison of the developed dynamic RAD method 
with the standard CPLEX solvers. A reporting limit of 3000 seconds was used. On average, the CPU times for 
dynamic RAD were faster than any of the CPLEX solvers across all densities and ratios. However, CPLEX bar-
rier methods show smaller CPU times when ratio m/n = 20 and the density is less than or equal to 0.01. 
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Table 2. Results from the CPLEX primal, the dual simplex, and the barrier method for set 1-set 4, (random, NNLP aij = 1 − 
5, bi = 1 − 10, cj = 1 − 10) [6]. 

  Primal−−  Dual−−  Barrier−− 

 n 1000 3163 10,000 14,143  1000 3163 10,000 14,143  1000 3163 10,000 14,143 

 m 200,000 63,246 20,000 14,143  200,000 63,246 20,000 14,143  200,000 63,246 20,000 14,143 

 m/n 200 20 2 1  200 20 2 1  200 20 2 1 

Density No  CPU time, sec++  

0.005 1 7.01 71.02 228.51 309.83 54.84 762.62 1597.24 1169.04 2.36 14.52 240.17 650.83 

0.006 2 10.36 77.28 245.60 291.07 60.29 803.97 1607.16 2413.42 2.39 16.30 224.08 666.54 

0.007 3 12.98 75.84 219.72 265.09 91.39 876.85 1483.20 1702.47 3.04 18.34 233.55 671.56 

0.008 4 15.72 82.01 206.45 239.30 100.06 912.75 1445.54 1236.76 3.90 20.70 232.38 668.82 

0.009 5 19.25 80.35 196.72 216.23 114.95 898.99 1375.73 427.95 4.76 22.66 232.23 649.26 

0.01 6 21.92 78.50 182.47 216.60 123.49 912.63 1252.05 436.31 5.53 24.29 228.76 650.30 

0.02 7 39.90 78.80 118.28 127.59 203.08 963.66 807.29 362.34 17.13 32.08 242.54 711.26 

0.03 8 45.42 79.75 98.02 108.60 217.18 1207.76 545.91 723.98 28.79 45.03 266.90 727.61 

0.04 9 50.30 78.78 89.75 88.32 248.75 1489.40 450.08 539.92 41.50 62.28 292.15 806.80 

0.05 10 55.16 78.92 81.09 82.14 256.49 1746.46 418.69 519.50 53.72 81.32 327.01 837.67 

0.06 11 60.34 77.49 77.28 78.27 251.39 2124.31 378.71 409.47 67.58 100.48 359.53 897.58 

0.07 12 62.07 78.93 70.44 70.37 251.74 2446.69 310.89 544.15 84.70 125.49 401.72 948.01 

0.08 13 62.92 76.96 70.21 69.81 264.48 2799.62 307.25 388.94 99.51 149.37 454.01 1038.86 

0.09 14 66.57 79.07 71.46 72.37 258.14 2523.03 718.04 427.95 119.26 186.06 495.28 1153.31 

0.1 15 71.00 74.57 67.43 62.64 287.36 2251.10 267.14 436.31 138.67 207.54 539.64 1194.56 

0.2 16 87.49 83.12 64.38 62.99 294.39 1450.82 201.73 362.34 379.68 691.77 1298.76 2529.97 

0.3 17 94.57 77.91 67.14 66.61 341.44 1280.71 175.16 267.16 657.45 1333.29 2418.75 b 

0.4 18 99.33 78.46 73.58 71.48 384.10 1236.30 146.09 233.39 985.86 2076.09 b b 

0.5 19 111.30 84.30 86.50 75.62 427.16 1173.49 133.49 208.65 1350.82 b b b 

0.75 20 128.26 99.35 115.00 102.51 410.98 1056.18 132.25 181.95 b b b b 

1 21 207.55 94.09 393.54 145.96 375.89 411.19 148.90 165.45 b b b b 

Average  63.30 80.26 134.46 134.45 238.93 1396.60 662.03 626.55 n/a n/a n/a n/a 
−−Used CPLEX preprocessing parameters of presolve = ON and predual = Auto; ++Average of 5 instances of LPs at each density; bRuns with CPU 
times > 3000 s are not reported. 

4.2. Computational Results for LP 
Table 3 shows computational results for the CPLEX primal simplex method, the dual simplex method, and the 
interior point barrier method for the general LP problem set used in [17]. CPU times for COST GRAD and 
VIOL using both the multi-cut technique and dynamic approaches are presented for comparison. Dynamic 
GRAD is stable over the range of densities. In addition, its performance is superior to multi-cut GRAD for every 
problem instance. Average CPU times for GRAD using multi-cut method and dynamic approach are 43.87 and 
24.57 seconds, respectively, a 42% improvement in computation time. Average computation times for GRAD 
and VIOL using dynamic approach are 24.57 seconds vs. 33.82 seconds, respectively. 

It should be noted that GRAD captures more information than VIOL in higher densities to discriminate be-
tween constraints. Interestingly, when the dynamic active-set is used for both GRAD and VIOL, their CPU  
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Table 3. Comparison of computation times of CPLEX solvers, GRAD, and VIOL using both dynamic active-set and multi- 
cut method on general LP problem set (random LP with 1000 variables and 200,000 constraints [17]). 

  Constraint selection metric+  CPLEX−− 

No Density GRAD VIOL  GRAD VIOL  Primal Dual Barrier 

  Multi-cut method  Dynamic active-set     

  CPU time, sec++ 

1 0.005 9.85 12.31 7.96 9.26 40.99 23.05 2.39 

2 0.006 11.48 14.50 9.44 11.11 84.56 35.52 2.62 

3 0.007 13.36 14.21 10.60 12.58 128.65 48.62 3.79 

4 0.008 14.24 14.67 12.09 13.00 183.70 61.56 4.93 

5 0.009 15.41 15.32 12.25 14.57 212.79 75.34 6.06 

6 0.01 16.55 17.09 14.10 15.33 256.70 92.11 7.33 

7 0.02 24.74 22.24 20.93 21.79 396.55 205.25 15.86 

8 0.03 27.84 24.30 22.91 26.21 460.01 295.18 26.63 

9 0.04 30.55 24.47 23.87 29.52 602.73 350.86 35.26 

10 0.05 37.59 28.72 28.52 33.57 617.29 396.10 46.76 

11 0.06 34.29 26.58 26.86 33.80 656.22 438.92 59.55 

12 0.07 37.46 28.05 26.91 34.34 729.43 465.61 71.65 

13 0.08 36.28 26.29 25.54 33.46 739.21 510.10 82.98 

14 0.09 37.97 27.74 24.60 33.21 823.11 521.89 94.01 

15 0.10 39.50 28.30 25.99 35.61 956.17 554.29 108.03 

16 0.20 56.26 36.64 27.97 41.28 1456.41 759.66 280.09 

17 0.30 60.93 42.40 28.41 40.68 1664.83 900.12 527.05 

18 0.40 74.58 56.97 33.39 52.19 2033.10 1057.27 760.07 

19 0.50 85.02 71.35 36.85 54.68 1925.32 1334.80 1076.40 

20 0.75 113.02 116.78 39.44 59.53 2232.88 1571.28 2132.53 

21 1.00 144.35 173.02 57.22 104.58 2301.76 1717.25 3267.10 

Average  43.87 39.14 24.57 33.82 881.07 543.56 410.05 

+Used CPLEX preprocessing parameters of presolve = off and predual = off. 1Tx ≤ M = 1010 was used as the bounding constraint; ++Average of 5 in-
stances of LPs at each density; −−Used CPLEX preprocessing parameters of presolve = ON and predual = Auto. 
 
times are significantly faster than the same metrics with the multi-cut method. GRAD using the multi-cut tech-
nique takes the longest computation time in comparison to others at higher densities. Unlike the proposed dy-
namic approach, the LP algorithm COST GRAD requires checking the signs of the nonzero ija  and therefore 
more computation time for higher densities. The efficiency of VIOL decreases significantly with increasing 
density. On average, dynamic GRAD is approximately 35 times faster than the CPLEX primal simplex, 21 times 
faster than the CPLEX dual simplex, and 17 times faster the CPLEX barrier linear programming solvers without 
preprocessing. The superior overall performance of GRAD using dynamic approach is apparent across all densi-
ties in general LP set. 

For comparison purposes, Table 4 shows GRAD and VIOL computation times when a fixed number of vi-
olated constraints is added at each iteration. Adding a fixed number of constraints is examined for both GRAD 
and VIOL. At densities below 0.03, dynamic GRAD takes less CPU time than the fixed-cut approach. GRAD  
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Table 4. Comparison of computation times of GRAD using dynamic active-set and fixed cut method on general LP prob-
lem set (random LP with 1000 variables and 200,000 constraints [17]). 

Constraint selection metric+ 

No Density GRAD VIOL  GRAD  VIOL 

 

Dynamic active-set  

Fixed number of constraints 

 100 500 1000  100 500 1000 

 CPU times, sec++ 

1 0.005 7.96 9.26 14.58 10.04 8.05 10.49 8.82 11.56 

2 0.006 9.44 11.11 18.75 13.14 9.48 12.61 10.57 14.45 

3 0.007 10.60 12.58 20.32 13.24 10.67 13.87 12.22 15.01 

4 0.008 12.09 13.00 23.57 12.63 12.05 14.97 12.82 16.22 

5 0.009 12.25 14.57 23.16 13.60 12.32 15.88 14.00 18.35 

6 0.01 14.10 15.33 26.04 14.83 13.59 17.72 15.35 19.26 

7 0.02 20.93 21.79 36.49 21.27 20.38 23.55 22.70 28.35 

8 0.03 22.91 26.21 38.40 22.33 22.30 25.40 26.07 34.22 

9 0.04 23.87 29.52 38.48 22.68 23.19 25.63 27.51 36.21 

10 0.05 28.52 33.57 46.34 27.77 28.69 29.67 32.25 41.66 

11 0.06 26.86 33.80 40.35 24.47 26.26 27.12 30.36 40.53 

12 0.07 26.91 34.34 41.91 26.05 27.92 28.88 32.69 42.09 

13 0.08 25.54 33.46 37.80 24.61 26.36 26.64 31.62 42.58 

14 0.09 24.60 33.21 37.71 25.01 28.18 27.38 32.19 43.69 

15 0.1 25.99 35.61 39.30 25.54 28.00 29.12 33.81 46.08 

16 0.2 27.97 41.28 41.66 29.36 33.48 33.54 40.20 57.02 

17 0.3 28.41 40.68 38.05 28.25 34.05 32.88 41.53 59.39 

18 0.4 33.39 52.19 41.45 33.58 41.14 39.98 50.68 74.25 

19 0.5 36.85 54.68 42.40 36.86 46.14 44.68 56.76 81.71 

20 0.75 39.44 59.53 45.88 40.36 50.28 52.67 69.07 101.71 

21 1 57.22 104.58 48.44 46.14 57.55 61.59 78.23 114.15 

Average  24.57 33.82 35.29 24.37 26.67 28.30 32.36 44.69 
+Used CPLEX preprocessing parameters of presolve = off and predual = off. 1Tx ≤ M = 1010 was used as the bounding constraint; ++Average of 5 in-
stances of LPs at each density. 
 
with 500 cuts per iteration shows a faster solution time than 100 or 1000 cuts. VIOL performs best for a 100- 
constraint cut. On the other hand, GRAD performs best for a 500-constraint cut. In fact, the 500-constraint cut 
for GRAD performs as well as the GRAD dynamic active-set approach. However, determining an optimum 
number of cuts for a given problem is not possible.  

5. Conclusion  
In this paper, dynamic active-set methods have been proposed for both NNLPs and LPs. In particular, these new 
approaches were compared to existing methods for problems with various sizes and densities. On average, dy-
namic RAD shows superior performance over COST RAD for the NNLP problem sets 2, 3, and 4. In the LP 
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problem set, dynamic GRAD significantly outperformed the COST GRAD as well as the CPLEX primal simp-
lex and the dual simplex. In this LP problem set, however, the barrier solver did outperform all methods for den-
sities up to 0.03. In addition, dynamic GRAD outperformed a dynamic version of VIOL, which was a standard 
method in column generation and decomposition methods. 
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