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Abstract 
In this article, we present a new family of estimators for the regression parameter β in the Additive 
Hazards Model which represents a gain in robustness not only against outliers but also against 
unspecific contamination schemes. They are consistent and asymptotically normal and further-
more, and they have a nonzero breakdown point. In Survival Analysis, the Additive Hazards Model 
proposes a hazard function of the form ( ) ( ) ′t t z0λ λ β= + , where ( )t0λ  is a common nonpara- 
metric baseline hazard function and z is a vector of independent variables. For this model, the 
seminal work of Lin and Ying (1994) develops an estimator for the regression parameter β which 
is asymptotically normal and highly efficient. However, a potential drawback of that classical 
estimator is that it is very sensitive to outliers. In an attempt to gain robustness, Álvarez and 
Ferrarrio (2013) introduced a family of estimators for β which were still highly efficient and 
asymptotically normal, but they also had bounded influence functions. Those estimators, which 
are developed using classical Counting Processes methodology, still retain the drawback of having 
a zero breakdown point.  
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1. Introduction 
In Survival Analysis, a main goal is how to model a random variable *T  which is nonnegative and typically 
continuous and represents the waiting time until some events. A common method for collection of survival-type 
data consists in deciding on an observation window [ ]0,τ  over which n individuals are followed. Naturally, 
some events may take longer to occur than the window length τ ; also, some individuals can be lost from the 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2015.56064
http://dx.doi.org/10.4236/ojs.2015.56064
http://www.scirp.org
mailto:enriqueealvarez@fibertel.com.ar
mailto:jferrario@mate.unlp.edu.ar
http://creativecommons.org/licenses/by/4.0/


E. E. Álvarez, J. Ferrario 
 

 
632 

sample due to different reasons (such as changing hospitals in clinical studies). In those cases, instead of an 
event time a censoring time is observed. In that manner, at the end of the observation window, the researcher 
ends up with a sample of triplets ( ), ,i i iT Z ∆  where ( )*min ,i i iT T C=  represents either the true duration or the 
censoring time, ( )*1i i iT T∆ = =  is the indicator that the observed time is uncensored, and iZ  is a vector of 
individual covariates. Statistical models for that type of data are the main goal of the branch of statistics called 
Survival Analysis, and the relevant literature is by now enormous. Some clasical textbook-long treatises were 
Kalbfleish and Prentice (1980) [1], Fleming and Harrington (1991) [2], Andersen et al. (1993) [3], Aalen et al. 
(2008) and [4], among others. 

A particular type of survival models with great appeal among practitioners focuses on the so-called hazard 
function ( )tλ , which intuitively measures the instantaneous risk of the occurrence of the event at any given 
moment in time. While the most widespread model for the hazard function was the semiparametric 
Multiplicative Hazards Model due to Cox (1972) [5], a popular alternative for datasets without proportionality 
of hazards was the Additive Hazards Model (AHM) presented by Aalen (1980) [6]. With time-fixed covariates, 
the latter proposes that ( ) ( )0,t z t zλ λ β ′= + , where β  is a vector of p nonnegative parameters. An estimation 
method for β  and the nonparametric baseline function 0λ  for this model were first described in a seminal 
article by Lin and Ying (1994). They proposed an estimating equation for the Euclidean parameter β  which 
was independent of ( )0 tλ  and which had the additional benefit of yielding an estimate in closed form, in 
addition to being consistent and asymptotically normal. It’s drawback, however, lies in the sensitivity to outliers. 

Within the Cox model, the potential harmful effects of outliers were commented by Kalbfleisch and Prentice 
(1980, ch. 5) [1] and Bednarski (1989) [7]. Robust alternatives were first introduced by Sasieni (1993a, 1993b) 
[8] [9] by essentially modifying the Cox’s partial likelihood score function introducing weight functions. Along 
the same line, important work had been developed by Bednarski (1993) [10], who proposed estimators that were 
consistent and efficient not only at the model but also on small contaminated neighbourhoods. His estimators 
had the advantage of being Fréchét differentiable for a wide class of weight functions. 

As for the Additive Hazards Model, the proposal of robust alternatives has received much less atention in the 
literature. In Álvarez and Ferrario (2013) [11], we introduced a family of estimators for the Euclidean parameter 
β  in the AHM by introducing weights in Lin and Yings’ estimating equation. The weight functions are 
carefully chosen so that the estimators remain Fisher-consistent and asymptotically normal, but they ad- 
ditionally represent a gain in robustness at the price of a modest loss in efficiency. The proposed family of 
estimators exhibits a gain in robustness against the classical LY (Lin and Yings) estimator because they have a 
bounded influence function. That type of robustness is qualitative in nature, and it means intuitively that an 
estimation method is able to tolerate a very small proportion of extreme values. To see this, recall that the 
Influence Function is heuristically the population version of the so called Sensitivity Curve.  

( ) ( )*
0 0 0

0 0 0

ˆ ˆ, ,
SC , , : ,

1
n n

n

t z
t z

n
β δ β

δ
−

=                               (1) 

where ˆ
nβ  is the estimator from the pure (noncontaminated) sample and ( )*

0 0 0
ˆ , ,n t zβ δ  is the estimator in a 

contaminated sample where one random observation has been replaced by the triplet ( )0 0 0, ,t z δ . i.e. the 
population contamination model for the triplet ( ), , ~ cT Z H∆  is of the form  

( ) ( )0 0 0, ,: 1 ,c
t zH H Q δε ε= − +                                   (2) 

where H is the noncontaminated distribution that belongs to the additive hazards family and Q represents a point 
mass at its argument. For the practitioner, estimators with bounded influence functions are of interest when (s) 
he seeks a guard against a very small proportion of outliers. 

Appart from the fact that the contamination scheme above is very specific, a further drawback of the 
estimators presented in Álvarez and Ferrario (2013) [11] is that they have a zero breakdown point. Heuristically 
this means that just a small proportion of contamination, strategically located, is sufficient to drive the estima- 
tors nonsensical. Different notions and measures of robustness and their implications are developed in many 
classical books, such as Maronna, Martin and Yohai (2006) [12], Huber and Ronchetti (2009) [13] and Hampel 
et al. (1986) [14]. 

In this article we propose a new family of robust estimators for the additive hazards model in a manner similar 
to Bednarski (1993) [10]. This is, we start from Lin and Yings’ estimating equation and modify it by introducing 
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appropriate weight functions that retain consistency and assymptotic normality while improving robustness, in 
the sense that the resulting estimating functionals are Fréchét differentiable about small neighborhoods of the 
true model. That type of differentiability entails three important consequences: 1) that the proposed family of 
estimators has bounded influence functions; 2) that they have a strictly positive (nonzero) breakdown point; and 
3) that consistency and asymptotic normality hold about small neighbourhoods of the true model for generic 
contamination schemes, i.e. our family of estimators resists not only the outlier-type contamination presented in 
(2) but also small deviations in the structure of the model itself. For instance, one could contaminate with model 
a which does not have additive hazards, or with a model in which T and ∆  are dependent, even conditional on 
Z. That makes the proposed family of estimators attractive from the practitioner point of view, as a backup 
against model misspecification. 

The advantage of the estimators we present in this paper over previous proposals arises whenever a dataset 
contains outliers. When a sample is contaminated by unusual observations, the classical estimator (Ling and 
Yings) rapidly becomes nonsensical (in that its value drifts away towards zero or infinity). The estimators in 
Álvarez and Ferrario [11] on the other hand, while they resist contamination by large times or large values of the 
covariates, they exhibit no advantage against more involved types of contamination. Here we develop a family 
of estimators that resist arbitrary contamination schemes. This paper is organized as follows, in section we 
introduce the estimating method and we construct explicitely the Additive Hazards Family of distribution 
functions for survival data. In subsection we prove that our estimators are Fréchét differentiable. That entails 
asymptotic normality not only at true distributions in the additive hazards family, but also under contiguous 
alternatives. In order to assess the performance of the proposed method in small samples, section contains a 
small simulation study which serves two purposes: 1) it illustrates the improvement of our proposed estimators 
from the robustness point of view against the classical counterparts; and 2) it exhibits a non-zero breakdown 
point which is apparently fairly high. A simulation approach to the breakdown point is important because it is 
not feasible to compute it analytically. That is in part beacause the calculations involve are formidable, as they 
involve identifying the worst possible contaminating distribution. But more importantly, it is because the 
breakdown point depends on the joint distribution of the triplet ( ), ,T Z ∆ , wich is only specified semi- 
parametrically in the Additive Hazards Model, i.e. even if available, the closed-form expression for the 
theoretical breakdown point would depend on unknown quantities. We have written computing code for the 
method proposed in this article in the form or R-scripts, which is available from the authors upon request. All 
the proofs are presented as succintly as possible in the Appendix; further calculations can be found in Julieta 
Ferrario’s PhD dissertation [15].  

2. Robust Differentiable Estimators  
Let ( ){ }: 0iN t t ≥  be the counting process which records the occurrence of the event for individual i, this is  

( ) ( )*1i iN t T t= ≤ , so that it jumps from zero to unity at the random time *
iT ; and let ( ){ }: 0iY t t ≥  be the  

so-called at risk process defined by ( ) ( )*: 1i i iY t T C t= ∧ > , which denotes that by time t neither the terminal 
event nor censoring has occurred for individual i, so that (s) he is still at risk. For the Additive Hazards Model, 
Lin and Ying (1994) [16] proposed the estimating equation  

( ) ( ) ( ) ( ) ( ){ }2

0
1

ˆ ˆU : d d 0,
n

n i n i i i n n
i

z z t N t Y t z z t tβ β
∞ ⊗

=

= − − − =      ∑∫                  (3) 

where for a column vector v, we denote the matrix 2 :v vv⊗ ′= , and we define the process  
( ) ( ) ( ): 1 1n i i iz t t t z t t= ≥ ≥∑ ∑ . This yields an estimator in closed form  

( ) ( ) ( ) ( )
1

2

0 0
1 1

ˆ d d .
n n

n i i n i n i
i i

Y t z z t t z z t N tβ
−

∞ ∞⊗

= =

   = − −            
∑ ∑∫ ∫                    (4) 

Using classical Counting Process theory, Lin and Ying prove that their ˆ
nβ  is consistent and asymptotically 

normal, and they provide a formula for the estimation of the asymptotic variance. 
In order to propose a Fréchét differentiable alternative to the classical (Lin and Ying’s) estimator we need to 

express the estimator as a functional of the joint empirical distribution function and we need to make explicit the 
structure of the Additive Hazard Family of distributions. We pursue this as follows. 
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2.1. Construction of the Additive Hazards Family 
Event times: Let *T  represent the event time, which could be unobserved when censored. Given the covariate 
values { }Z z= , T* has a hazard (conditional) function ( ) ( )* 0,t z t zλ λ β ′= + . Correspondingly, the Survival 
function is ( ) ( ) ( )* 0 expS t S t ztβ ′= − , and the density function is  

( ) ( ) ( ) ( ) ( )* 0 0exp expf t f t zt S t z ztβ β β′ ′ ′= − + − . 
Covariates: The covariates ~ ZZ F  are nonnegative and nondegenerate.  
Censoring: Conditional on Z, censoring and event times are independent, i.e. * * |, , | C Z ZT C Z T Z

F F F F= .  

Observed times: Due to censoring, the observed times are *:T T C= ∧ . Conditional on { }Z z=  their 
survival function is ( ) ( ) ( )*| cP T t Z z S t S t> = = . This entails  

( ) ( ) ( ) ( ) ( ) ( )| 0 0, expT Z c cf t z S t S t zt t t zβ λ λ β′ ′= − + +   . Therefore,  

the joint density of T and Z is  

( ) ( ) ( ) ( ) ( ) ( ) ( ), 0 0, : exp .T Z c c Zh t z S t S t zt t t z f zβ λ λ β′ ′= − + +                     (5) 

We now develop the joint bivariate distribution function ( ), , 1H t ∆ =  that corresponds only to the noncen- 
sored times. 

Censoring indicator: Let ( )*1 T C∆ = ≤  be the indicator of a noncensored observation. Consider  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

* *
*

* *

; 1 | | ; 0 |

| |

d .

c

c c ct

P T t Z z P T t Z z P T t Z z

S t S t E P t C T Z z T

S t S t S t S u f u u
∞

> ∆ = = = > = − > ∆ = =

 = − < < = 

= − −  ∫

 

Thus taking the derivative with respect to t we obtain  

( ) ( ) ( ) ( ) ( ) ( ), , 0 0, , 1 : exp .T Z c Zh t z S t S t t z zt f zλ β β∆ ′ ′∆ = = + −                    (6) 

We define that a cummulative joint distribution function ( ), ,H t z δ  for the triplet ( ), ,t Z ∆  is a member of 
the Additive Hazards Family if 1) it has a joint bivariate distribution function for ( ),t z  as given by ( ),H t z  
in Equation (5) and 2) if it has a restricted distribution function ( ), , 1H t z ∆ =  as given in Equation (6). It is 
noteworthy that the additive family   is semiparametric, as it is indexed by pβ +∈ , but also the arbitrary 
survival functions ( )0S ⋅ , ( )cS ⋅  and ( )zS ⋅ . 

Now we express the clasical estimator ˆ
nβ  as a (nonlinear) functional of the joint empirical distribution 

function of ( ), ,T Z ∆ .  

( )( ) ( ) ( ) ( )
12

0
ˆ d d , d , , 1 ,

t
n n n n nz z u u t z z z t t zβ

−
⊗   = − − ∆ =         ∫∫ ∫ ∫∫               (7) 

where we introduce the process ( ) ( ) ( )( ) ( ) ( )( )1 d , 1 d ,n n nz u u t z t z u t t z= ≤ ≤∫∫ ∫∫   and the n ’s are the  

empirical distributions. 
In Alvarez and Ferrario (2013) [11] we illustrated that the classical estimator is very sensitive to outliers and 

we have shown that its influence function is unbounded. In this article we propose an alternative family of 
estimators which is robust not only against outliers but also against unspecific contamination, in that the 
defining functional is not only continous but also Fréchét differentiable. This entails a nonzero breakdown point 
and bounded influence curve. As a reference, the implication and uses of Fréchét differentiable statistical 
functionals in Asymptotic Statistics and Robust Statistics are thoroughly presented in Bednarski (1991) [17].  

2.2. Fréchét Differentiability  
In order to define contamination ε-neighborhoods, let H ∈  be a distribution in the additive hazards family 
with true parameter 0

pβ +∈  and let G be some contaminating distribution for the triplet ( ), ,T Z ∆ . We say  
that G is in a neighborhood ( ),H ε  of H if 

( )
( ) ( )

, ,
: , , , ,sup

t z
G H G t z H t z

δ
δ δ ε

∞
− = − ≤ . Note that if G is a  

point mass at some triplet ( )0 0 0, ,t z δ  this contamination scheme corresponds to what are most usually called 
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outliers. Our formulation is more general in that an arbitrary measure G may introduce model misspecification 
also from a disruption of the additive hazards property, of the contitional independence of the event and the 
censoring times given the covariates, or any other feature of the additive hazards family. 

We propose here an estimating equation by introducing weight functions in the classical formulation, i.e.  

( ) ( ) ( ) ( )

( ) ( )( ) ( )
0

, , : , d , , 1

, d d , 0,

n

n

n n

t
n

L W W t z z z t t z

W t z z z u u z t z

β

β

  = − ∆ =  
   ′− − =   

∫∫

∫∫ ∫





 


                 (8) 

where : pW + + +×     is a bivariate weight function in a set  , the properties of which will be enume- 
rated below. Also,  

( )
( ) ( ) ( )
( ) ( ) ( )

, d ,
.

, d ,n

n

n

I u t W t x x u x
z t

I u t W t x u x

≥
=

≥
∫∫
∫∫






                            (9) 

Naturally, in the the special case where ( ), 1W u z =  we obtain the classical (Lin and Yings’) estimator. 
Instead, if ( ) ( ) ( )1 2,W u z w u w z=  and both factors are either deterministic or predictable stochastic processes, 
this gives the estimators proposed in Álvarez and Ferrario (2013) [11]. In that article, the choice of weight 
function led to estimators in closed form, but more importantly, it made possible for all the properties and proofs 
to be developed using Counting Process Martingale Theory. We depart from that treatment in this article, as we 
specify the weight functions differently, i.e. we do not seek here predictability as stochastic processes, but 
Fréchét differentiable functionals. 

Let us denote by ( )Gβ  the solution of ( )( ), , 0L G G Wβ = . In order to find a linear approximation for 
( ) 0Gβ β−  we need to choose some type of differentiability. We opt here for differentiability in the sense of 

Fréchét (or strong differentiability). This type of differentiability is stronger than continuity in that it implies the 
existence of a linear functional approximation, i.e. for any H ∈   

( )
( ) ( )0 20 ,

1lim FD 0,sup
G H

W

G G H
ε ε

β β
ε→ ∈

∈

− − − =  



                        (10) 

where FD is a linear functional called “Fréchét derivative”. Notice that we opt here for a uniform type of 
differentiability over  . This is important in order to allow for instance adaptive choice of the weight function, 
such those based on preeliminary estimators of β . In contrast with this generality, data-dependent choices were 
explicitely excluded in our first proposal of estimators in [11], for that mechanism would automatically destroy 
the precitability of the stochastic weight processes. 

In order to avoid excessive notation we will in the sequel develop the proofs without censoring. Let 0 Bβ ∈ , 
where B denotes a open bounded subset of p+  and take a member in the additive hazards family H ∈  corre-  
sponding to the true value of the parameter 0β . Take further a set of functions { }* *: : pW + + += ×     ,  

and a real function 0 :W + +
   which is continuous and has a bounded support [ ]: ,K a b= , for some 

0 a b< < < ∞ . With the above, we define the family of weight fuctions   with which we work in this article  
by { }* * *

0: :W W W= ∈  . 

In order that our family of estimators become Fréchét differentiable we will need the following assumptions.  
Assumptions 
A1) For all * *W ∈ , u K∈ , the integral ( ) ( ) ( )* , d ,W u z I t u H t z ε≥ >∫∫ , for some 0ε > . 

A2) All the functions in *  vanish outside some bounded set, are absolutely continuous and have joinlty 
bounded variation. The set *  is compact with respect to the supremum norm. 

Assumptions A1) and A2) ensure differentiability. The compactness assumption in A2) is needed to allow 
posibly adaptive choices of W based on some preeliminary estimate of β  (i.e. in a data-dependent manner). 
The assumption of joinly bounded variation is needed in order to obtain uniform Fréchét differentiability over  . 

We seek now a linear approximation of ( ) 0Gβ β−  in terms of G H− . Firstly, consider  

( ) ( )
( ) ( ) ( ) ( )

0

0

, , , ,

, , , , , , , , .

L G W L H W

L G W L H W L H W L H W

β β

β β β β

−

 = − + −    
                  (11) 
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For the first difference in functionals above, the following Lemma gives a linear approximation:  
Lemma 1. Under assumptions A1) and A2),  

( ) ( ) ( ) ( )2
, 2

, , , , ,sup W
B

W

L G W L H W Lin G H o G Hβ
β

β β
∞

∈
∈

− − − = −


 

where  

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ){ }

,

00

0

, d ,

, d d ,

, d ,

, d d , .

W H

t
H

H G

t
H G

Lin G H W t z z z t G H t z

W t z z z u u z G H t z

W t z z t z t H t z

W t z z u z u u z H t z

β

β

β

− = − −  

′− − −  

+ −  

′− −  

∫∫

∫∫ ∫

∫∫

∫∫ ∫

             (12) 

Moreover, ( )
0, 0WLin Hβ = .  

As for the second difference in (11) we have: 
Lemma 2. For any W ∈  and Bβ ∈ , 

( ) ( ) ( )( )0 0, , , , , ,L H W L H W H Wβ β β β− = −                       (13) 

where ( ),H W  is the matrix of partial derivatives  

( ) ( ) ( ) ( )( ) ( )
0

, ,
, : , d d , .

t
H

L H W
H W W t z z z u u z H t z

β
β

∂  ′= = − −    ∂ ∫∫ ∫              (14) 

Further, the following result gives a bound of ( ),WLin G Hβ −  in terms of ( )G H− :  
Lemma 3. Under assumptions A1) and A2) there are constants 0c >  and 0ε >  such that for all W ∈  

and Bβ ∈ , if ( ),G H ε∈  then  

( ), 2
.WLin G H c G Hβ ∞

− ≤ −                              (15) 

At this point, for further results we need to add another assumption that guarantees the existence of the 
inverse of ( ),H W  throughout, namely.   

A3) There is a pair of constants 1a , 0 0a > , so that for all W ∈ , the determinant is bounded, i.e.  
( ){ }0 1det ,a H W a≤ ≤ .  

Thus, the consistency of the estimator in a neighborhood of   is given by the following theorem:  
Theorem 1. Let the family of functions   satisfy Assumptions A1) though A3). Then there exist 0ε >  and  

0M >  so that if ( ),G H ε∈ , the equation ( ), , 0L G Wβ =  has a solution in the ball 0 2
M G Hβ β

∞
− < −   

for all W ∈ .  
Moreover, Fréchét differentiability is asserted as follows:  
Theorem 2. Let ( ),G Wβ  denote a solution of the Equation ( ), , 0L G Wβ = . If the class of functions   

satisfy Assumptions A1) through A3) then:  

( )

( ) ( ) ( )
0

1
0 , 20

,

1lim , , 0.sup Wc W
G H c

G W H W Lin G H
c ββ β −

→ ∈
∈

− + − =  




  

This implies that the Fréchét derivative of ( ),H Wβ  at 0β  towards ( )G H−  is  
( ) ( ) ( )

0

1
,: , .WFD G H H W Lin G Hβ

−− = −  
In the following theorem we investigate convergence in distribution under contiguous alternatives to some 

distribution in the additive hazards family H ∈  with true parameter 0β : 
Theorem 3. Let n  be the empirical distribution of a sample of size n from a distribution ( )0,G H c n∈   

for some constant 0 0c > . Assume the class of functions   satisfies A1) through A3). Then for all 0ε >   
and 0δ >  there exists 0n  so that for all 0n n≥ , ( )0,G H c n∈ , and W ∈ , we have  
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( ) 0 2
, d ,supn

n n
W

G n Wβ β ε δ
∈

 − − > < 
 ∫∫


   

where ( ) ( ) ( )
0

1
0 ,, , : , W xx W H W Lin Hββ δ−= − −   and xδ  is a point mass at ( ): , ,x t z= ∆ .  

The result above implies that asymptotic normality holds not only under the true model but also under 
contiguous alternatives.  

3. Simulations   
In this section, we evaluate the performance of our proposed family of estimators via simulations. Specifically, 
we carry out three simulation experiments choosing for simplicity a single covariate ( )1p =  and a true 
additive hazard function ( )* , 1 0.5t z zλ = + , with 2

1~Z χ  and, in order to avoid censoring 1000C = . In all 
cases, in the estimating Equation (8), we opt for ( ) ( ), 1 min 1,i i iW t z z M= − , where M is the lower %m  
percentile of the z’s. 

In the first simulation we study the behavior or our estimator, denoted “RD” (Robust Differentiable) for 
increasing sample sizes. We take 50n = , 200, 500, 1000 and 10,000. In the function ( ),i iW t z , we select 

90m = , 95 and 99. Table 1 compares our estimators with the classical ones, denoted “LY” (Lin and Yings’). 
We perform 100 replicates and average out the results. We observe in all cases a very good performance of the 
of the robust estimators at very small price in increased standard error, which decreases as m or n increase. 

In the second simulation, we do a comparison among the classical estimator (LY), the bounded-influence- 
function (BIF) estimators proposed in Álvarez and Ferrario (2013) [11], and the ones proposed in this paper 
(RD). This is done under outlier-type contamination, where an increasing percentage of the sample was replaced by 
a large covariate value equal to 10. We take 100 replicates for a sample size of 200n = . In Table 2, we show the  
results of this experiment. For the BIF estimators we take the weight function ( ) ( )2, min 1,i i iW t z as z=   where  
 
Table 1. Classical vs. robust differentible estimators in pure samples.                                                         

Estimator LY RD 

n   90m =  95m =  99m =  

50 coef. 0.59 0.51 0.52 0.54 
 (s.e.) (0.32) (0.50) (0.43) (0.34) 

200 coef. 0.51 0.52 0.52 0.51 
 (s.e.) (0.15) (0.20) (0.17) (0.13) 

500 coef. 0.51 0.51 0.51 0.51 
 (s.e.) (0.09) (0.13) (0.10) (0.09) 

1000 coef. 0.51 0.49 0.49 0.50 
 (s.e.) (0.07) (0.09) (0.08) (0.06) 

10,000 coef. 0.50 0.51 0.51 0.50 
 (s.e.) (0.02) (0.03) (0.02) (0.02) 

 
Table 2. Comparison of estimators with outliers.                                                                           

 Pure Sample With Outliers 

% Estimators LY LY BIF RD 

0 coef. 0.55 0.55 0.54 0.53 
 (s.e.) (0.19) (0.19) (0.16) (0.22) 

0.5 coef. 0.54 0.40 0.46 0.52 
 (s.e.) (0.18) (0.23) (0.16) (0.23) 

5 coef. 0.53 0.11 0.22 0.54 
 (s.e.) (0.14) (0.56) (0.41) (0.18) 

15 coef. 0.50 0.040 0.08 0.52 
 (s.e.) (0.15) (0.66) (0.59) (0.16) 

25 coef. 0.50 0.02 0.05 0.51 

 (s.e.) (0.14) (0.67) (0.64) (0.16) 
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2.3026a =  and { } ( )1median , , log 2ns z z=  . With that weight function, 90% of the observations were 
unmodified if Z had an exponential distribution (e.g. Álvarez and Ferrario 2013 [11]). For the RD estimators we 
opt for 90m = . We observe that while both the Classical and the BIF estimators appear to break down rather 
fast, the robust estimator behaves very well. It is worth to emphasize that the type of contamination here is not 
the worst possible one, so that there is no reason to expect the good performance of the RD estimators to extend 
to other contamination schemes. 

Lastly, we carry out a third simulation experiment in order to detect what the breakdown points of the RD 
estimators may be under a different type of model departure. As a model for the contaminating distribution, we 
chose point masses on the line 4 0.25T Z= + . This artificially introduces outliers in the sample as shown in 
Figure 1, where the red observations in the first plot are replaced by the blue-colored points shown in the 
second plot. This graphical illustration shows that the contaminating distribution is very different from the 
proposed Additive Hazards Model and it may thus have the hability to severely affect the estimates. If, instead, 
we have contaminated by large values of z (high leverage) or large values of t (outliers), keeping the other 
variable unchanged, the potential harmfull effects are greatly diminished. This is because we can see in the first 
(uncontaminated) plot many of such points. The simulation results of 200 replicates are shown in Table 3, for  
 

 
Figure 1. Pure vs. contaminated sample. (a) Pure sample (b) Contaminated sample.                                                
 
Table 3. Comparison of estimators under model contamination.                                                              

 Pure Sample Contaminated Sample 

%  70m =  90m =  70m =  90m =  

0.2 coef. 0.55 0.52 0.55 0.52 
 (s.e.) (0.28) (0.14) (0.28) (0.14) 

3 coef. 0.50 0.51 0.50 0.51 
 (s.e.) (0.27) (0.14) (0.25) (0.13) 

10 coef. 0.50 0.52 0.51 0.21 
 (s.e.) (0.29) (0.14) (0.23) (0.42) 

20 coef. 0.50 0.50 0.50 -0.13 
 (s.e.) (0.27) (0.13) (0.15) (0.89) 

25 coef. 0.48 0.51 0.51 -0.16 
 (s.e.) (0.27) (0.14) (0.15) (0.93) 

30 coef. 0.51 0.53 0.22 -0.17 
 (s.e.) (0.27) (0.14) (0.40) (0.94) 
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sample a size 500n = . We observe that the breakdown point seems to be about 30% for 70m =  and at about 
10% for 10m = . This is intuitive as the constant m regulates the trimming, given our choice of the weight 
function. 

Intuitively, the finite sample breakdown point of an estimator is the largest proportion of contaminated 
observations, and a method can resist before the estimates become nonsensical, which usually means that the 
estimate drifts away towards zero of infinity, or in general towards the boundaries of a parameter space. Equ- 
ivalently, its functional version is called the asymptotic breakdown point and it measures the largest proportion 
of contamination. A statistical functional could tolerate before becoming nonsensical in the same sense (e.g. 
Maronna, Martin and Yohai 2006 [12] for formal definitions). It is noteworthy that either in its finite sample or 
in its asymptotic version, calculating a breakdown point requires identifying the worst possible type of con- 
tamination. This would depend on the joint distribution of the triplet ( ), ,T Z ∆ , which is only partially specified 
in the Additive Hazards Model. Therefore, the breakdown point cannot be calculated explicitly. Nor is it feasible 
to provide reasonable bounds. For that reason, it is not possible to give a numeric value for the breakdown point 
and its assesment via simulations becomes illustrative. An extensive investigation of the breakdown point under 
different distributions ( ), ,H t z δ  and under different weight functions ( ),W t z  via simulation is a subject of 
further research. 
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Appendix 
Proof of Lemma 1. Rearranging, ( ) ( )1: , , , ,D L G W L H Wβ β= −  becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )
0

0

1 , d , , d ,

, d d ,

, d d , .

H G H

t
H G

t
H

D W t z z t z t G t z W t z z z t G H t z

W t z z u z u uz G t z

W t z z z u uz G H t z

β

β

= − + − −      

′− −  

′− − −  

∫∫ ∫∫
∫∫ ∫

∫∫ ∫

 

So that substracting ( ),WLin G Hβ − ,  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
,

0

1 , d ,

, d d , .

W H G

t
H G

D Lin G H W t z z t z t G H t z

W t z z u z u uz G H t z

β

β

− − = − −  

′− − −  

∫∫
∫∫ ∫

 

Let ( ) ( ) ( ) ( ): , d ,d u W u z I t u H t z= ≥∫∫ . Since *
0W W W= , by A1), ( ) ( )0 0d u W u ε≥ > . Define further  

( ) ( ) ( ) ( ) ( )1: , d ,a u d u W u z zI t u H t z−= ≥∫∫ , ( ) ( ) ( ) ( ) ( )( )1: , d ,b u d u W u z I t u G H t z−= ≥ −∫∫ , and  

( ) ( ) ( ) ( ) ( )( )1: , d ,c u d u W u z zI t u G H t z−= ≥ −∫∫ . Since ( ) 0b u ≥ , ( ) 1
1 1b u
−

+ ≤ . 

To simplify notation, let ( ):I I t u= ≥ , W: =W(u,z), ( )d : d ,H H t z= , ( )d : d ,G G t z=  and further ( ):d d u= , 

( ):a a u= , ( ):b b u= , ( ):c c u= . Note that ( )Hz u a=  and ( ) ( ) ( )1Gz u a c b= + + , so that  

( ) ( ) ( ) ( )1 1H Gz u z u ab b c b− = + − + . Thus,  

( ) ( ) ( )

( ) ( )

, 1 2 3 4

0

, , , ,

: d d d ,
1 1 1 1

W

t

L G W L H W Lin G H L L L L

ab c ab cW G H u z G H
b b b b

ββ β

β

− − − = − − +

    ′= − − − − −   + + + +   ∫∫ ∫∫∫
 

where after distributing the inner brackets 1L , through 4L  are each of the integral terms above. By assumption  
A2), we can choose large enough values 0 1, , , pM M M , so that [ ]0: 0,p

iiK M
=

=∏  is bounded and it includes  
the support of any function in * . Observe further that [ ]00, M  includes K. 

Take [ ]0,u M∈  and W ∈ . Then,  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1

*
0

*
0 0 0 0

, d , , d ,

, , d d ,p

K

pM M M

W u z zI t u H t z W u W u z zI t u H t z

W u W u z z I t u H t z t z
t z

≥ = ≥

  ∂ ∂
= ≥  ∂ ∂   
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∫ ∫ ∫





 

where 
1

p p

pz z z
∂ ∂

=
∂ ∂ 

 and 1d d d pz z z=  . The integral within the argument  

( ) ( ) ( ) ( )

( ) ( ) ( )

[ ] ( ) ( ) ( ) ( )

0 0

0

00

0 0

0 0,

, d , d

, ,

: ,

p pM M

u

p p

u M

I t u H t z t I M u H t z t
t z t z

I M u H M z H u z
z

f t I M u f M f u

   ∂ ∂ ∂ ∂
≥ = >   ∂ ∂ ∂ ∂   

 ∂ ∂
= > − ∂ ∂ 

 = ∆ = > − 

∫ ∫

 

where in order to simplify notation, we introduced the operator [ ] ( ) ( ) ( ) ( )
0 0 0, :u M f t I M u f M f u ∆ = > −  .  

Denote also the set [ ]1 0,p
ii M

=∏  by zK  and the integrals 1

0 0

pM M

∫ ∫  by 
zK∫ , so that  

( ) ( ) ( ) [ ] ( ) ( )0

0

* *
,0

, , d d , , d .
z z

p pM

u MK K
W u z z I t u H t z t z W u z z H t z z

t z z
∂ ∂ ∂

≥ = ∆
∂ ∂ ∂∫ ∫ ∫  
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Since we chose the iM  large enough, ( ) ( )* *, , ,0, 0iW M W= =    . By iterative integration by parts,  

[ ] ( ) ( ) ( ) [ ] ( ) ( )( )0 0

* *
, ,, , d 1 , , d .

z z

p p
p

u M u MK K
W u z z H t z z H t z W u z z z

z z
∂ ∂

∆ = − ∆
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In consequence,  
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Hence for all u K∈ ,  
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2 2
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K
H W u z z z
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∂
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≤
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∫
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which is bounded because of A1) and A2). i.e. for some constant, ( )
2 aa u c≤ . Similarly by integration by 

parts,  

( ) ( ) ( )( )
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Thus  
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u M K
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so that ( ) ( ) ( )1 * , d
z

p
K

b u G H z W u z zε −
∞

≤ − ∂ ∂∫ . By assumption A2) this integral is bounded. i.e. for all  

u K∈ , ( ) bb u c G H
∞

≤ −  for some finite constant bc . A similar application of integration by parts and the 
assumptions gives that for all u K∈ , ( )

2 cc u c G H
∞

≤ −  for some finite constant cc . Lastly, we apply the 
same methodology to the integrals  

( ) ( ) ( )( )*
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to claim that for some finite constants 1s  and 2s , 1 1S s G H
∞

≤ −  and 2 2S s G H
∞

≤ − . Also for  
[ ]1 0,p

z iiz K M
=

∈ =∏ , which closed and bounded, we have that zβ
∞

′ < ∞ . With the above bounds, we now  
focus on the terms 1L  through 4L   
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Similar calculations hold for the other iL ’s. Detailed calculations can be found in Juieta Ferrario’s Ph.D. 
dissertation [15]. Finally, joining all bounds together we can assert that  
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( ) ( ) ( ) ( )2
, 2

, , , , .sup W
B

W

L G W L H W Lin G H o G Hβ
β
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∈
∈

− − − = −
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For the last assertion of the Lemma, substitute H by ( )G H−  in the functions ( )b u  and ( )c u  to obtain 
that ( ) 1b u =  and ( ) ( )c u a u= . With that, ( ) ( ) 0H Gz u z u− = , which cancels out all but the first two terms in  

( )
0,WLin Hβ , which entails by Fisher-consistency that ( ) ( )

0, 0, , 0WLin H L H Wβ β= = . 

Proof of Lemma 2. For any fixed W ∈  and B∈ ,  
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which is independent of β . With the above we express  
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So substracting, ( ) ( ) ( )( )0 0, , , , ,L H W L H W H Wβ β β β− = − . 
Proof of Lemma 3. Express  

( ) [ ] ( ) [ ]( ) ( ), 0

0

1 2 3 4 1 2 3 4

d d

d d d
1 1 1 1

: ,

t
W

t

Lin G H W z a d G H W z a u z G H

ab c ab cW H W u z H
b b b b

R R R R L L L L

β β

β

′− = − − − − −

     ′+ − − −    + + + +    
= − − + + − − +

∫∫ ∫

∫∫ ∫∫ ∫
   

 

where ( ) ( ) ( )( )*
1 0: , d ,R W t W t z z G H t z= −∫∫  and the other integrals are defined similarly. Following the same  

arguments as in Lemma 1, relying on integration by parts and Assumptions A1)-A2), we see that all the terms  
are ( )o G H

∞
− , which finishes the proof. Detailed calculations are shown in [15]. 

Proof of Theorem 1. By Lemmas 1 and 3, for all W ∈  and Bβ ∈ , there exists some constant 0M  so 
that  

( ) ( ) 02
, , , , .L G W L H W M G Hβ β

∞
− ≤ −                          (16) 

Also by Lemma 2, ( ) ( ) ( )( )0 0, , , , , 0L H W L H W H Wβ β β β− − − = , so that adding to (16) we get  
( ) ( )( )0 02

, , ,L G W H W M G Hβ β β
∞

− − ≤ − , for ( )0, , 0L H Wβ = . Since by Assumption A3),  

( ){ }: det ,a H W=   is finite and positive, this ensures that  
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Take now 1
0: 0pM M a−= >  and define a continuous function :g B B  by  

( ) ( ) ( )1: , , , ,g H W L G Wβ β β−= −  

for some fixed H ∈ , ( ),G H ε∈  and W ∈ . Thus by (17) we have that  

( )0 2
.g M G Hβ β

∞
− ≤ −                                 (18) 

So for G H
∞

−  sufficiently small, the ball { }0 2
: M G Hβ β β

∞
− ≤ −  is a subset of B. Also, by  

Equation (18), if some Bβ ∈ , its image ( )g Bβ ∈  too. By Brouwer’s fixed point theorem, there exists 
Bβ ∗ ∈  for which ( )g β β∗ ∗= , i.e.  

( ) ( )1 , , , ,H W L G Wβ β β∗ − ∗ ∗− =  

which implies that ( ), , 0L G Wβ ∗ = . 
Proof of Theorem 2. Since ( )0, , 0L H Wβ = ,  
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( ) ( ) ( ) ( ) ( )0, , , , , , , , , , .L G W L G W L H W L H W L H Wβ β β β β= − + −                (19) 

Also by Lemmas 1 and 2 respectively, for all W ∈  and Bβ ∈ ,  

( ) ( ) ( ) ( )0,, , , , ,WL G W L H W Lin G H o G Hββ β
∞

− = − + −  

( ) ( ) ( )( )0 0, , , , , .L H W L H W H Wβ β β β− = −  

Adding the above Equations in (19) we get  

( ) ( ) ( )( ) ( )0, 0, , , .WL G W Lin G H H W o G Hββ β β
∞

= − + − + −  

Note that by Theorem 1, for G H
∞

−  sufficiently small, there exists ( ),G Wβ  so that  
( ) ( )0,G W o G Hβ β

∞
− = −  and ( )( ), , , 0L G G W Wβ = . i.e.  

( ) ( ) ( ) ( )00 ,, , .WH W G W Lin G H o G Hββ β
∞

− + − = −                    (20) 

Now since by Assumption A3) ( )det ,H W  is nonzero and bounded on  , premultiplying by the inverse 
we get  

( ) ( ) ( ) ( )0

1
0 ,, , .WG W H W Lin G H o G Hββ β −

∞
− + − = −                   (21) 

Proof of Theorem 3. Decompose n nH G G H
∞∞ ∞

− ≤ − + −  . By assumption ( )1 2G H o n−
∞

− =   

and by Glivenko-Cantelli’s Theorem ( )1 2
n pG o n−

∞
− = . Then by Theorem 2,  

( ) ( ) ( ) ( )0

1 1 2
0 ,, , ,n W n pW H W Lin H o nββ β − −− + − =                    (22) 

( ) ( ) ( ) ( )
0

11 2
0 ,, , 1 .n W n pn W H W Lin H oββ β − − + − =                    (23) 

Since ( )
0,W nLin Hβ −  is linear and ( )

0, 0WLin H Hβ − = , the conclusion follows by the classical Central 
Limit’s Theorem. 
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