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Abstract 
A delayed HIV/AIDS epidemic model with treatment and vertical transmission is investigated. The 
model allows some infected individuals to move from the symptomatic phase to the asymptomatic 
phase; next generation of infected individuals may be infected and it will take them some time to 
get maturity and infect others. Mathematical analysis shows that the global dynamics of the spread 
of the HIV/AIDS are completely determined by the basic reproduction number R0 for our model. If 
R0 < 1 then disease free equilibrium is globally asymptotically stable, whereas the unique infected 
equilibrium is globally asymptotically stable if R0 > 1. 
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1. Introduction 
Mathematical models play an important role in the study of the transmission dynamics of HIV/AIDS, and in 
some sense, delay models give better compatibility with reality, as they capture the dynamics from the time of 
infection to the infectiousness. Some HIV/AIDS models are introduced in [1]-[5]. In recent years, a few studies 
of vertical transmission have been conducted to describe the effects of various epidemiological and demograph-
ical factors [6]-[8], and some models considered vertical transmission with time delay [9] [10]. Some specific 
HIV models with imperfect vaccine were introduced in [11]-[13]. 

In [1], L. Cai and X. Li studied local and global stability of the equilibria of a SIJA model with treatment: 
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In model (1), it is assumed that some individuals with the symptomatic phases J can be transformed into 
asymptomatic individuals I after treatment and they get the result that when 0 1R <  the disease free equilibrium 
is globally asymptotically stable and if 0 1R >  the endemic equilibrium is globally asymptotically stable. 

In [9], Ram Naresh et al. considered the following SIA model with vertical transmission: 
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Here, the authors assume that a fraction of newborns, who sustain treatment, join the infective class while 
others, who do not sustain treatment, join the AIDS class after getting sexual maturity. The infectives through 
vertical transmission at any time t are given by ( )e dI t τγ τ −− . The authors proved the local and global stability 
of disease free equilibrium and endemic equilibrium under some conditions. Inspired by these works, we con-
sider an HIV/AIDS model with vertical transmission and with time delay. 

The organization of the paper is as follows. In the next section we present the model with delay. Section 3 
presents the basic properties of the model. In Section 4, we analyze local and global stability of equilibrium 
points. In the last section, we present a brief conclusion. 

2. Mathematical Model 
We propose an HIV/AIDS model which incorporates time delay during which a newly born infected child attains 
sexual maturity and becomes infectious. In this model, the sexually mature population is divided into four sub-
classes: the susceptibles (S), the asymptomatic infectives (I), the symptomatic infectives (J) and full-blown 
AIDS group (A). The number of total population is denoted by ( )N t , for any time t. We assume that the sus-
ceptibles become HIV infected via sexual contacts with infectives. It is also assumed that all newborns are in-
fected at birth ( )0, 1pτ = = . It is reasonable to assume that full-blown AIDS patients are sexually inactive and 
symptomatic stage patients feel uncomfortable (some may know they are AIDS) and the possibility of producing 
children is small, so can be taken negligible. We also assume that a fraction of infected newborns, who sustain 
treatment, joins the asymptomatic infective class while others, who do not sustain treatment, joins AIDS class 
after getting sexual maturity. The infectives through vertical transmission at any time t is given by ( )pI tγ τ− , 
because those who are infected at time ( )t τ−  becomes infectoius (asymptomatic stage infectious) at time t, if 
they do not develop to AIDS patient by that time. The fraction of infectives which became AIDS patient during 
the period of getting sexual maturity, if they survive to the maturity, joins to the AIDS class. However, for the 
model to be biologically reasonable, it may be more realistic to assume that not all those infected will survive 
after τ  time units, and this claim support the introduction of the survival term e µτ− . Thus, in our model the 
term ( )epI t µτγ τ −−  also represents the introduction of infectives through vertical transmission. If the birth 
rate of newborns γ  equals to zero, then our model will back to the model (1). 

With the above considerations and assumptions, the spread of the disease is assumed to be governed by the 
following model: 
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where Kµ  is the recruitment rate of the population, µ  is the death rate. c is the average number of contacts 
of an individual per unit of time. β  and bβ  are the probability of disease transmission per contact by an in-
fective in the first stage and in the second stage, respectively. 1k  and 2k  are transfer rate from the asympto-
matic phase I to the symptomatic phase J and from the symptomatic phase to the AIDS cases, respectively. α  
is transformation rate from the symptomatic phase J to asymptomatic phase I. d is the disease-related death rate 
of the AIDS cases. γ  is the birth rate of infected newborns, p is the fraction of infected newborns joining the 
asymptomatic infective class after getting sexual maturity and remaining part ( )1 p−  of the infected newborns 
joins the AIDS class after getting sexual maturity ( )0 1p≤ ≤ . It is also assumed that all the parameters of the 
model are non-negative. Based on it’s biological meaning, we always assume that 2 1k k≥ . 

3. Basic Properties 
For model (2), let the initial condition be ( ) 00 0S S= > , ( ) 0I Iθθ = ≥ , ( ) 00 0J J= ≥ , ( ) 00 0A A= ≥  for 
all [ ],0θ τ∈ − , with ( )0 0 0I > . Then, it is clear that the solution ( ) ( ) ( ) ( )( ), , ,S t I t J t A t  of the model (3) 
remain positive for all time 0t > . 

Let ( ) ( ) ( ) ( ) ( )N t S t I t J t A t= + + + , then 

( ) ( ) ( ) ( ) ( ) ( )eN t K N t dA t I t K N t N tµτµ µ γ τ µ µ γ−′ = − − + − ≤ − +  

which gives, 
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This implies that if µ γ>  all solutions of model (3) starting in 3R+  are bounded and eventually enter the at-
tracting set Ω . 

It is reasonable to assume that the general death rate µ  is greater than the birth rate of infected newborns γ , 
that is µ γ> . In some models, death rate equal to birth rate. However, in this model, γ  is smaller than birth 
rate. Below we assume µ γ> . 

Since the variable A of model (3) does not appear in the first three equation, in the subsequent analysis, we 
only consider the submodel: 
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Model (4) always has a disease-free equilibrium ( )0 ,0,0E K= . Further we define the basic reproduction 
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number 0R  as follows. 
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By straightforward computation, when 0 1R >  model (4) has the unique positive equilibrium ( )* * * *, ,E S I J , 
where 
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4. Stability Analysis 
First we will study the local and global stability of disease free equilibrium 0E . 

The variational matrix of model (4) is given by 
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Theorem 4.1. If 0 1R < , the disease free equilibrium 0E  is locally asymptotically stable. 
Proof. The Jacobian matrix corresponding to model (4) about 0E  as follows, 
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where 1w kµ= + , 2v kµ= + . 
The characteristic equation of this matrix is given by ( )( )0 0det I J Eλ − = , where I is the unit matrix. 
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Clearly, one root of this equation is λ µ= − . So we consider the following equation. 
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1 0 1 0 e 0.a a b b λτλ λ λ −+ + + + =                              (6) 

If 0τ = , the equation becomes 
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when 0 1 1 0 01, 0, 0R a b a b< + > + > , notice that ( )1 2 1 1 0a bλ λ+ = − + < , 1 2 0 0 0a bλ λ = + > . Hence the roots of 
this equation have negative real part by the Hurwitz criterion. 

If 0τ > , we assume that ( )0iλ ω ω= >  is the root of characteristic Equation (6), then ω  satisfies 
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Eliminating τ  by squaring and adding above the two equation, we get that 
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Let 2p ω= , then this equation becomes 

( )2 2 2 2 2
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Through simple computation, we can found that all the coefficients of this equation is positive, so Equation (7) 
have no solution, it implies that Equation (6) have not the root like iλ ω= . Hence all roots of (6) have negative 
real part. 

We are now in a position to investigate the global stability of the disease-free equilibrium 0E . 
Theorem 4.2. If 0 1R < , then the infection free equilibrium 0E  is globally asymptotically stable. 
Proof. Consider the following Lyapunov functional. 
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Calculating the derivative of L along with the solution of model (4), we have 
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≤  when 0 1R < , the equality 0L′ =  holds if and only if 0, 0I J= = , the maximal  

invariant set of ( ){ }, , : 0S I R L′ =  is the singleton { }0E . Hence 0E  is globally asymptotically stable by the 
LaSalle invariance principle [14]. 

Now, when 0 1R >  we will study the local and global stability of *E . 
Theorem 4.3. If 0 1R > , the infected equilibrium *E  is locally asymptotically stable. 
Proof. For this purpose, we obtain the Jacobian matrix corresponding to model (4) about *E  as follows, 
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where 1w kµ= + , 2v kµ= + , ( )* *q c I bJβ= + . 
The characteristic equation of this matrix is 
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when 0τ = , the characteristic Equation (8) yields 
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Obviously, 0 1 20, 0, 0l l l> > >  and 1 2 0 0l l l− > . This implies that when 0 1R >  and 0τ = , *E  is locally 
asymptotically stable by the Hurwitz criterion. 

Now we study the stability behavior of *E  in the case 0τ > . 
We assume that ( )0iλ η η= >  is the root of characteristic equation, then η  satisfies 
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Eliminating τ  by squaring and adding (9) and (10), we get the equation determining for η  as, 
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Substituting 2 uη =  in above Equation, we have 
3 2

2 1 0 0u d u d u d+ + + =                                 (11) 

when 2 1k k≥ , through simple computation we can see that 0 0d > , 1 0d > , 2 0d > , in this circumstance (11) 
has not positive root. So all roots of (8) has negative real part. 

Next, we consider the global stability of *E  when 0 1R > . 
Theorem 4.4. If 0 1R > , then the infected equilibrium *E  is globally asymptotically stable. 
Proof. Firstly, we define a function, ( ) 1 lng ξ ξ ξ= − − , Rξ +∈ . Take the Lyapunov functional as follows. 
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Then, through a straight computation, we have 

( )2
* * * * * *1 1 12 2 3 .

x z y xz yV S c I S x J c bJ S
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µ β α β
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Since the arithmetic mean is greater than or equal to the geometric mean and function g is a positive function, 
we have 

1 12, 2, 3.z y xz yx
x y z x y z
+ ≥ + ≥ + + ≥  

Thus, 0V ′ ≤  in Ω . The equality 0V ′ =  holds if and only if 1x y z= = = . That is, * * *, , S S I I J J= = = . 
The maximal invariant set of model (4) on the set ( ){ }, , : 0x y z V ′ =  is the singleton { }*E . Thus, the endemic 
equilibrium *E  is globally asymptotically stable if 0 1R >  by LaSalle Invariance Principle [14]. 

5. Conclusion 
In this paper, we have considered an HIV/AIDS model with treatment, vertical transmission and time delay. Un-
der the assumption that asymptomatic infectives (J) have the symptoms of AIDS, AIDS patients (A) are isolated; 
hence their probability of producing children is small; and it is neglected. From the local stability of disease free 
equilibrium, we calculated the basic reproduction number 0R . Further we get the results that when 0 1R <  the 
disease free equilibrium is globally asymptotic stable, and when 0 1R >  the endemic equilibrium is globally 
asymptotic stable. 
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