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Abstract 
The random walk (RW) is a very important model in science and engineering researches. It has 
been studied over hundreds years. However, there are still some overlooked problems on the RW. 
Here, we study the mean absolute distance of an N-step biased random walk (BRW) in a d- 
dimensional hyper-cubic lattice. In this short paper, we report the exact results for d = 1 and 
approximation formulae for 2d ≥ . 
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1. Introduction 
As a mathematical model, the random walk (RW) has been widely used in almost all branches of sciences and 
engineering [1]-[9]. Although the unbiased random walk has been studied extensively in literature, the biased 
random walk (BRW) has not been studied carefully in some cases. 

In this short paper, we first give a brief description of the conventional results, and then report our study with 
some results on the BRW. 

Let us consider the one dimensional BRW: a probability p of going forward and a probability (1 − p) of going 
backward with uniform step length L. Traditionally, the average distance gone in one step is expressed as:  

( )( ) ( )1  1 2 1L p L p p Lµ = + − − = −                                (1) 

The variance of a one step BRW can be calculated as:  

( ) ( ) ( ) ( )2 2 22 2 2 2 2
1  1 2 1 4 1x x L p L p p L p p Lσ  = − = + − − − − = −                 (2) 

After N such steps, the mean distance becomes 
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( )2 1 2N N p L xNLµ = − = .                                   (3) 

In the last expression, 1
2

x p= −  is used. When 1
2

p =  (i.e., 0x = ), the mean distance becomes zero. The  

variance of the N steps is  

( ) ( )2 2 2 24 1 1 4N p p L N x NLσ = − = −                                (4) 

The standard deviation of the N steps is  

( ) ( )22 1  1 4N Np p L x N Lσ = − = −                              (5) 

In the case of the pure random walk (RW), i.e. when 1
2

p =  ( 0x = ), the standard deviation of the N-step  

RW is  

N N Lσ = .                                         (6) 

This value, known widely in literature, is usually considered as the absolute distance of an N-step RW. This 
expression is independent of the dimensions of the lattice.   

However, the mean absolute distance of the N-step RW in a d-dimensional hyper-cubic lattice cannot be ex-
pressed by (6), but is the following formula [10] 

( ) ( )d dD N N N Lα= ,                                   (7) 

where ( )d Nα  is a monotonic increasing function of dimension d with saturation value of one:  

( ) ( )
( ) ( ) ( ) ( )

1 2

3 4 5 6

2 0.7978845608, 2 0.8862269255,

64 0.9220, 36 0.9410, 18 0.9534, 13 0.9616,

N N

N N N N

α π α π

α α α α

→∞ = ≈ →∞ = ≈

≥ ≈ ≥ ≈ ≥ ≈ ≥ ≈ 

       (8) 

We compute the absolute distance for the N-step biased random walk (BRW). We find that (3) is a fairly good  

approximation for a reasonably large N and p away from the neighborhood of 1
2

p = .  

In Section 2, the exact results for d = 1 are presented. The approximation results for higher dimensions are 
shown in Section 3. A brief discussion is given afterward. A warning: it is possible that some of our results 
might have been already published in earlier literatures unknown to us.  

For convenience, without loss of generality, we choose a step length of L = 1 in hereafter expressions.  

2. Exact Results for d = 1 
For an N step biased random walker (BRW), if the walker moves forward n steps with probability p, and moves 
backwards (N – n) steps with probability 1 − p, this is a binomial process with probability p. The absolute dis-
tance from the origin will be  

( ) ( )1 , 2 1 , for 2,3,4,N nnD N p N n p p N−= − − = .                        (9) 

After taking the weighted configuration average, the mean absolute distance of the one-dimensional BRW can 
be expressed as:  

( ) ( )1
0

, 2 1 , for 2,3,4,
N N nn

n

N
D N p N n p p N

n
−

=

 
= − − = 

 
∑ .                   (10) 

Using Mathematica [11], we obtain the following relationship:  

( ) ( )1 , 1 2 , , for 2,3,4,D N p N p f N p N= − + = .                      (11) 

where ( ),f N p  are the polynomials of p to be discussed below.   
Furthermore, we obtain the following relationship (via Mathematica):  

( ) ( )2 1, 2 , , for 1,2,3,f m p f m p m+ = = .                          (12) 
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The ( )2 ,f m p  are the m-term 2m'th order polynomials of p with the lowest term being a (m + 1)’th order 
term.   

For convenience, we have listed some exact results for small values of N as follows: 

( ) 22, 2f p p= , 

( ) ( )34, 2 2f p p p= − ,  

( ) ( )4 26, 2 5 6 2f p p p p= − + ,  

( ) ( )5 2 38, 2 14 28 20 5f p p p p p= − + − ,  

( ) ( )6 2 3 410, 2 42 120 135 70 14f p p p p p p= − + − + ,  

( ) ( )7 2 3 4 512, 2 132 495 770 616 252 42f p p p p p p p= − + − + − ,  

( ) ( )8 2 3 4 5 614, 2 429 2002 4004 4368 2730 924 132f p p p p p p p p= − + − + − + ,  

( ) ( )9 2 3 4 5 6 716, 2 1430 8008 19,656 27,300 23,100 11,880 3432 429f p p p p p p p p p= − + − + − + − ,  

( ) ( )10 2 3 4 5 6 7 818, 2 4862 31,824 92,820 157,080 168,300 116,688 51,051 12,870 1430f p p p p p p p p p p= − + − + − + − + , 

( ) (
)

11 2 3 4 5

6 7 8 9

20, 2 16,796 125,970 426,360 852,720 1,108,536 969,969

570,570 217,360 48,620 4862

f p p p p p p p

p p p p

= − + − + −

+ − + −
 

Further algebraic calculations yield the following recursion equations (for an even N, let N = 2 m in the fol-
lowing expressions):  

( ) ( ) ( )
( ) ( ) 112 2 !

2 2, 2 , 1 , for 1,2,3,
! 1 !

mmm
f m p f m p p p m

m m
+++ − = − − =

+
                 (13) 

i.e.  

( ) ( ) ( )2

2

2 2 3 !!
2 , 2 1 , for 2,3,4,

!

nm nn

n

n
f m p p p p m

n=

−
= − − =∑                     (13*) 

Additionally, because ( ) ( )2 1, 2 ,f m p f m p+ =  we can obtain the following expression:   

( ) ( )
( ) ( ) ( )1 1 22

2

2 , 2 1, 2 2 3 !!
1 1 , for 2,3,4,

2 2 1 !

nm nn

n

D m p D m p n
p p p p m

m m n=

+ −
= = + − − − =

+ ∑         (14) 

If we let 1
2

p x= +  and 
1 1,
2 2

x  ∈ −  
, we can see that the following is an even function for x: 

( ) ( ) ( )
( ) ( )

* *
1 1

2 2

2

2 , 2 1, 2 3 !!1 2 1 4 , for 2,3,4,
2 2 1 2 2 !!

m n

n

D m x D m x n
x x m

m m n=

+ −
= = + − − =

+ ∑            (15) 

When 0x = , the above becomes the unbiased random walk result [10]:  

( ) ( ) ( )
( )

* *
1 12 ,0 2 1,0 2 1 !!

, for 2,3,4,
2 2 1 2 !!

D m D m m
m

m m m

+ −
= = =

+
                     (16) 

In order to obtain these results, we use the following identity:  

( ) ( )
( )

( )
( )

( )
( )2 2

2 2 3 !! 2 1 !! 2 3 !! 2 1 !!1 1 , for 2,3,4,
! 4 2 !! 2 !! 2 !! 2

nnm m

n n

n m n m
m

n m n m= =

− − − −  + = + = = 
 

∑ ∑              (17) 
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Therefore, Equation (15) can be expressed as a polynomial of x2: 

( ) ( )

( )
( )

( )
( )

( )
( ) ( )

( ) ( ) ( )

* *
1 1

2 2

2 2 2

2 4
1 1 1

2 , 2 1,

2 2 1
2 1 !! 2 3 !! 2 3 !!

2 1 4
2 !! 2 2 !! 2 !!

,   where 2   or  2 1.
for 2,3,4,

m m n k

n n k

D m x D m x

m m
m n n n

x x
km n n

a N b N x c N x N m m
m

= = =

+
=

+
 − − −  

= + + − −    −   
= + − + = +

=

∑ ∑ ∑





,           (18) 

In order to see the quantitative behavior of the averaged absolute distance as a function of ( )0.5x p= − , we 
plot Equation (18) in Figure 1 for three typical examples: N = 10, 100, and 1000, respectively. For comparison, 
line y = 2x is also presented in this figure. It is easy to see that the linear relationship [expressed by Equation (3)] 
can be used for a reasonable large N. Furthermore, the validity range (x value) of the linear approximation be-
comes larger and larger as N becomes greater and greater. For reasonable accuracy, the ranges are x > 0.25, 0.05, 
and 0.02, for N = 10, 100, and 1000, respectively.   

We have computed some typical values of the approximation error as follows (and partially shown in Figure 
2): 

( ) ( )* *
1 1

12 15

0.5 0.1 0.5 0.15

1000, 1000,
2 10 and 2 10 .

1000 1000
x x

D x D x
x x− −

≥ ≥ ≥ ≥

   
   − < − <   
      

 

In the range for which the linear approximation is invalid (the neighborhood of 0x = ), a 3-term polynomial 
is a fairly good approximation. In the neighborhood of 0x ≈ , it can be expressed as 

( )
( ) ( ) ( )

*
1

2 4
1 1 1

,D N x
a N b N x c N x

N
≈ + −                            (19) 

where 
 

 

Figure 1. The normalized plot of the averaged absolute distance ( )*
1 ,D N x N  

vs. 1
2

x p = − 
 

 for 10,  100,  1000N =  in the range of [0, 0.5]. The reference 

line 2y x=  is also shown for comparison.                                           
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Figure 2. The semi-log plot of the difference between the normalized absolute dis-
tance and the linear approximation vs. the biased probability x. For accuracy reasons 

( )15~ 10− , we have only plotted the range for [ ]0,0.1x∈ .                              

 

( )

( )

( )
( )

1

1 !!
  when  is 

!!
, for 2,3,4, .

2 !!
  when  is 

1 !!

N
N even

N
a N N

N
N odd

N

 −

= = −
 −

                        (20) 

( ) ( )
( )

2

1
2

2 3 !!
2 1 , for 4,5,6, .

2 2 !!

N

n

n
b N N

n

  

=

 −
= + =  − 

∑                           (21) 

( ) ( )
( )

2

1
2

2 3 !!
2 , for 4,5,6, .

2 4 !!

N

n

n
c N N

n

  

=

−
= =

−∑                             (22) 

The relationship between ( )1a N  and ( )1a N  is given by ( ) ( ) 1/2
1 1a N N Nα −= , where ( )1a N  is defined  

by Equation (7). The second term coefficient ( )1b N  can be expressed as ( ) ( )1 1b N N Nβ= . The third term  
coefficient ( )1c N  can be expressed as ( ) ( ) 3 2

1 1c N N Nγ= . We compute these Greek letter coefficients 
( )1a N , ( )1 Nβ , and ( )1 Nγ  as functions of N, which are shown in Figure 3. It is easy to see that these Greek 

letter coefficients are of order of one. The asymptotic values of them are obtained as:  

( ) ( ) ( )1 1 1
2 2 2 2, 2 , and

3
N N Nα β γ

π π π
→∞ = →∞ = →∞ =                 (23) 

We also compute the next three terms of Equation (18): ( ) ( )6 5 2 6
1 1d N x N N xδ= , ( ) ( )8 7 2 8

1 1e N x N N xε− = −  
and ( ) ( )10 9 2 10

1 1f N x N N xϕ= . The asymptotic values for the three coefficients are obtained as:  

( ) ( ) ( )1 1 1
4 2 2 2 8 2, , and
5 21 135

N N Nδ ε ϕ
π π π

→∞ = →∞ = →∞ =             (24) 

From Figure 3, it is easy to see that, for a reasonable large N, the coefficients are very close to their asymp-
totic values. Therefore, in the neighborhood of 0x = , Equation (19) can be expressed as:  

( )
( ) ( ) ( )

*
1

1/2 1/2 2 3/2 4
1 1 1

,D N x
N N x N x

N
α β γ−≈ ∞ + ∞ − ∞                  (25) 



Z. J. Yang, C. Yang 
 

 
1164 

 
Figure 3. The coefficients, ( )1 Nα , ( )1 Nβ , and ( )1 Nγ  as functions of the total 

step number N for { }2,3,4, ,100N =  . The asymptotic lines are also presented for 
comparison.                                                                      

 

To verify the validity of the approximation (25), we plot ( )*1 100, 100D x  and ( )*1 1000, 1000D x   

with exact results vs. the 3-term approximation Equation (25) for small values of x in Figure 4. It is easy to see 
that formula (25) is a very good approximation in the neighborhood of 0x ≈ .   

3. For 2d ≥  
For a ( )2d ≥  dimensional hyper-cubic lattice, let ip  ( 1, 2,3, ,i d=  ) be the probability of walking forward  

along the i'th coordinate. We define 
1

d

i i
i

x
=

= ∑x e , where 1
2i ix p= −   ( 1, 2,3, ,i d=  ) and { }1, 2,3, ,i i d= e   

are the unit vectors. The absolute value of x  can be expressed as: 2

1

d

i
i

x
=

= ∑x . The angle of each compo-  

nent is: cos i ixθ = x  ( 1, 2,3, ,i d=  ). For a reasonable large N and off the neighborhood of 0=x , this is 
similar to the case of d = 1, and the displacement of the BRW should be the linear relationship, i.e., 

( )*, 2dD N N≈x x .                                 (26) 

In the neighborhood of 0=x , the three term approximation may be expressed as:   

( ) ( ) ( ) ( )* 1/2 3/2 2 5/2 4
1 1,d dD N N N x N xα β γ ≈ ∞ + ∞ − ∞ 

xx
x

                 (27) 

Here, ( )dα ∞  are given in Equation (8).  
Alternatively, we can consider the multidimensional BRW by transposing the coordinate system so that only 

one direction is biased. For instance, we can consider a diffusion process via an interface in which there is a 
pressure applied in the direction perpendicular to the interface. In this situation, all directions except the (biased) 
direction perpendicular to the interface follow a pure random walk. This model can be applied to many diffusion 
problems in physics and chemistry. Generally speaking, we can express the dimension, d as 1d g= + , where 
we consider the g dimensions to be unbiased random walks and the additional 1 dimension to be biased. For this 
model, we can study the g dimensions to be unbiased random walks first. According to [10], the mean absolute  
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Figure 4. The normalized plot of the averaged absolute distance ( )*
1 ,D N x N  vs. 

1
2

x p = − 
 

for 100N =  and 1000 in the neighborhood of 0x = . The 3-term ap-

proximations lines are also presented for comparison.                                  
 
distance of the g-dimensional 1N -step RW  

( ) ( )1 1 1g gD N N Nα= , where ( )1g Nα  is given by (8). Additionally, in a d-dimensional hyper-cubic  

lattice, the (pure random walk) displacement is perpendicular to the (biased) direction of the BRW. In many 
problems, we are only concerned with the absolute distance in the (biased) direction, i.e., the projection portion 
of the total absolute distance. For this reason, we can model it as a modified 1d approach as follows: a probabil-
ity q walking in the g-dimensional hyper-cubic lattice, a probability ( )1 q p−  of going forward and a probabil-
ity ( )( )1 1q p− −  of going backward in the 1-dimension. Because the g-dimensional lattice is perpendicular to 
the biased direction, the (projected) absolute distance can be expressed as:  

( ) ( ) ( )11 1
, , , 1

M NM N
d

N

M
D M q p D N p q q

N
−

=

 
= −  

 
∑                        (28) 

We study two cases, one for reasonably large p and the other in the neighborhood of 0.5p ≈ , separately. For 
the first case, when N is large enough, we have obtained the results in the previous section:  

( )1 , 0.5 2D N p x xN= + ≈ .                                (29) 

Substituting this into (28) and using the results of the Appendix yields:    

( ) ( ) ( )
1 1

, , 2 1 2 1
M NM N

d
N

M
D M q p xNq q x q M

N
−

=

 
≈ − = − 

 
∑                   (30) 

It is not surprising that the modification of higher dimensions on the 1d result requires only multiplication of 
the probability factor ( )1 q− .   

For the second case, i.e., in the neighborhood of 0.5p ≈ , we can express the following:       

( ) ( ) ( ) ( )2 4
1 1 1

11

1, , 1
2

M NM N
d

N

M
D M q p x q q a N N b N Nx c N Nx

N
−

=

    = + = − + − +       
∑       (31) 

where ( )1a N , ( )1b N and ( )1c N  are defined by (20-22).   
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Using the 1d results, (31) can be estimated to be a very simple formula:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1/2 3/2 2 5/2 4
1 1 1

11
3/2 5/22 4

1 1 1

1, , ~ 1
2

                                   ~ 1 1 1

M NM N
d

N

M
D M q p x q q N N x N x

N

M q M q x M q x

α β γ

α β γ

−

=

    = + − ∞ + ∞ − ∞ +       

∞ − + ∞ − − ∞ − +      

∑ 



  (32) 

where ( )1α ∞ , ( )1β ∞ , and ( )1γ ∞  are defined by (23). In the last step, (A1) in the Appendix was used.   

4. Discussion and Concluding Remarks 
The biased random walk has widely applications in various fields: for examples, a pressured diffusion process, 
an ionic injection with bombardment, a ballistic transport, financial market data, etc. For most natural pheno-
mena and engineering processes, the particle number is about the order or a fraction of the Avogadro’s constant 
(~1023), the traditional treatment is good enough. However, the financial data and some high precision experi-
mental data are far away from a large number, say 1010. For example in financial industry, the most active index 
futures, SP500, has only the order of 105 open interest contracts before rolling the date. The daily trading vo-
lume is one or two order smaller than the open interest. Therefore, when the particle number is not large enough, 
one has to consider the new behavior. The present results are just the better quantitative descriptions for those 
phenomena. In some high precision experiments in physical sciences, one may have to measure parameters with 
small amount of particles. To quantify the property, the present results can provide better mathematical expres-
sions. 
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Appendix  
In this appendix, we present a very useful approximation formula: for a large enough M and 0α > ,  

( ) ( ) ( )
1

1 ~ 1
M nM n

n

M
f q q n M q

n
ααα −

=

 
= − −    

 
∑                          (A1) 

It is easy to see that ( )f α  and ( )f α′  are continuous and greater than zero, so that ( )f α  is a smooth 
and restricted monotonic increasing function. Let us compute some special values of ( )f α :  

( ) ( ) ( )
0

0 1 1 1 1
M MnM n

n

M
f q q q

n
−

=

 
= − = + − =    

 
∑  

( ) ( ) ( ) ( ) ( )
1 1 11

d d1 1 1 1 1 1
d d

M M Mn nM n M n n

n n xx

M M
f q q n q q x q x M q

n nx x
− −

= = ==

    
= − = − = + − = −       

    
∑ ∑  

( ) ( ) ( ) ( )

( )( ) ( ) ( )

2

1 1 1, 1

22

2 1 1

         1 1 1 ~ 1

M Mn n nM n M n

n n x y

M M
f q q n q q xy

n nx y

M M q M q M q

− −

= = = =

    ∂ ∂
= − = −    ∂ ∂    

= − − + − −  

∑ ∑
 

( ) ( ) ( ) ( )

( )( )( ) ( )( ) ( ) ( )

3

1 1 1, 1, 1

33 2

3 1 1

         1 2 1 3 1 1 1 ~ 1

M Mn n nM n M n

n n x y z

M M
f q q n q q xyz

n nx y z

M M M q M M q M q M q

− −

= = = = =

    ∂ ∂ ∂
= − = −    ∂ ∂ ∂    

= − − − + − − + − −  

∑ ∑
 

Numerically, we computed the values of 
1
2

f  
 
 

, 
3
2

f  
 
 

, 
5
2

f  
 
 

, 
7
2

f  
 
 

, and concluded that (A1) is a  

very good approximation. 
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