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Abstract 
Precessing ball solitons (PBS) in a ferromagnet during the first order phase transition induced by 
a magnetic field directed along the axis of anisotropy, while the additional action of high-frequency 
field perpendicular to the main magnetic field, are analyzed. It is shown that the spatial motion of 
solitons, associated with thermal fluctuations in the crystal, does not destroy the equilibrium of 
self-organized PBS. 
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1. Introduction 
Precessing ball solitons (PBS) that may occur at the first order phase transition in a uni-axis ferromagnet under 
the action of a magnetic field along the easy axis has been considered in several papers [1]-[11]. The main cha-
racteristics of PBS have been investigated in articles [10] [11]. In [12] it was shown that with the additional ef-
fect of high-frequency magnetic field perpendicular to the main field, there may be of self-organizing state of PBS, 
when the decrease of the energy associated with dissipation, fully offset by the influx of energy from the source 
of the high-frequency field. But in this case, only immobile PBS were considered, i.e. without three-dimensional 
motion. The question of the existence of equilibrium self-organizing states of moving PBS remained open. 

In this paper, an analysis was conducted and it was shown that the existence of self-organizing state for PBS 
had a dynamic character, in which strict observance of the equilibrium was disrupted, but immediately the 
movement was damped, and thereby the equilibrium state of self-organized PBS restored. i.e. actually self-  
organizing state for PBS exists even at three-dimensional motion. 
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2. Analysis of PBS Movement 
To analyze magnetic solitons in a ferromagnet at the first-order transition in the presence of periodic magnetic 
field, as in [12], we use the Landau-Lifshitz equation with a Gilbert form of dissipative term [13]: 

2 B W
t t

µ δ
κ

δ
∂ ∂ = × + × ∂ ∂ 

m mm m
m

                             (1) 

and corresponding expression for the density of thermodynamic potential (as in [12]) 

( ) ( ) ( )
2 2 2

2 21
0 0

2π4π 1
2 2 2 3

z
z z z

KW m m H M m M
X Y Z

αα
⊥ ⊥

      ∂ ∂ ∂
 = + + + − + − − +     ∂ ∂ ∂       

m m m mH .     (2) 

Here Hz > 0, ⊥H  is the periodic field directed perpendicular to the Z-axis and to the main field Hz, 1 0K > , 
0κ > ; m is a non-dimensional vector of ferromagnetism equal in the absolute value to 1; x ym m im⊥ = + , in in-

itial state: 1zm = − . 
We consider the PBS in a flat plate perpendicular to the Z-axis, use the following dimensionless values: 

1
12 B K tτ µ −=  , 0.5 0.5

1x K Xα−= , 0.5 0.5
1y K Yα−= , 0.5 0.5

1 zz K Zα−= ; and note: 1 0 14πzh H K M K= + , 

0 14π 3D M K= . The change of sign of the self-demagnetizing field for PBS, ( )2
, 0

2π 1
3dem s zE m M= − +  in  

Equation (2), in comparison with article [12], does not lead to a qualitative change in results, but is logically 
more correct. 

If added periodic field is 

0
1 eiK h ω τ

⊥ ⊥=H ,                                    (3) 

the Equation (1) can be present in form 

( ) ( ) ( ) 01 ei
z z z z z zim h D m D m m m m m m m m m m h m ω τκ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= − + − + + ∆ − ∆ + − +   .        (4) 

In the case if the movement of PBS is directed along Z-axis, i.e. ( )zk k τ=


, the expression for magnetic 
component is 

( ) ( ) ( ) ( )( )0 ,, , e , e .z zi k r rim p p r ω τ β τφτ τ τ − −
⊥ = =r r                         (5) 

In this paper, the PBS is considered in a spherical coordinate system, when its beginning coincides with the 
center of the soliton: 

( ) ( ) ( )( )0 cos ,, , , e zi km p ω τ ρ θ β ρ τρ θ τ ρ τ − −
⊥ = .                          (6) 

In this case coszr ρ θ= , the phase shift associated with moving becomes zero in the center of the PBS, and 
phase shift for other parts of the soliton is determined by the values of ρ  and the angle θ  between vector ρ

  
and Z-axis: cos 0ρ θ >  if π 2θ < , and cos 0ρ θ <  if π 2θ > . 

The phase of precession of magnetic moments for localized excitation depends on a radius, i.e. ( ),β β ρ τ= . 
From (4) equation, we have the next two equations that describe the configuration of the soliton and the time 
dependence of the parameter ( ),zm ρ τ : 
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             (8) 

(In these equation, andρ θi i  are the unit vectors of spherical coordinate system.) 
The (7) and (8) equations correspond to the expressions describing the time dependencies of the density pa-

rameter zm  and energy e: 

( )2 2
0

change

1 1 cos sin cosz z
z z z

m km m h kβκ ω ρ θ ρ θ β
τ τ τ ⊥
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,                     (9) 
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 (1

0) 

(It does not show here the gradient of these expressions related to “domestic” parts of these parameters, which 
are vanish when integrated over the volume of the soliton.) 

We see that for unmoving PBS, i.e. if kz = 0 and d 0
d

zk
τ
= , these equations corresponds to a solution for self- 

organizing state, when 
changechange

0zm e
τ τ

∂ ∂   = =  ∂ ∂  
 and 0β

τ
∂

=
∂

 (see [12]). In this case 2
0 01 sinzm hκ ω β⊥− = . 

For spherical solitons (PBS) at 0zk ≡ , the (7) equation for equilibrium state takes the form: 
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           (11) 

here 

20
0 arcsin 1 zm

h
κω

β
⊥

 
= − 

 
                               (12) 

(In (11): 21zm p= − −  for 0zm < , and 21zm p= + −  for 0zm > .) 

However if 0zk ≠ , d 0
d

zk
τ
≠ , this equilibrium state of PBS disappears. Let us consider this situation quanti-  

tatively. Kinetic energy of PBS 

( )
( )

( )2 2
2 2 2 2

0

1 1
d d

2 2
z z

skin z z

m m
E L k Lkβ ρ ρ ρ ρ

∞− −
= +∇ ≅∫ ∫ ,                  (13) 

where 12 0.5 0.5
1 04π 0.625 10 zL K Mαα−= ⋅ × . For example, at 100 KT =  the average energy of motion of PBS is  

skinE kT= . This corresponds for PBS at h = 0.998, 0 0.01ω = , 51.5 10h −
⊥ = ×  ( 14

0 3

eV0.5 10 80 Oe
Oecm

M = × ≅ , 

1 1000 OeK = , 10 23 10 Oecmzα α −= = × , see Figure 1 and Figure 2) to the average value of the wave vector  
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Figure 1. Frequency dependencies of energy and amplitude smp  of PBS for 

0.998h = , 51.5 10h −
⊥ = × , 45 10κ −= ×  (from [12]). 
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Figure 2. Configuration of equilibrium PBS for 0.998h = , 51.5 10h −

⊥ = × , 
45 10κ −= × , at 0 0.01ω = , and corresponding dependency of parameter β  

(from [12]). 
 

1.73zk ≅ . Consider how parameters of zm  and e of equilibrium PBS are changed at occurrence and decreasing  

of movement. We expand the expression (9) and (10) in powers of the quantities coszk
ρ θ

τ
∂
∂

 and coszk ρ θ ,  

leave only the first degree of decomposition, and believing that at the initial time, at 0τ = , all the conditions for 
equilibrium are fulfilled, we obtain the expression for the change of parameters directly related to the pres-  

ence of zk
τ

∂
∂

 and zk  at 0τ > : 

( ) ( )2 2 2 2 2
0 0 0

1 2

d1 1 cos ,
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z

z z z z
z z z
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m k m mm h m kκ κ ω ρ θ
τ τ τ τ⊥

∂ ∂ ∂       = − − + − − = +       ∂ ∂ ∂       
       (14) 
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d
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     (15) 

There expressions can be split to two parts, proportional to zk
τ

∂
∂

 and zk  correspondingly. Here is important 

dependence on the θ . 
Excitation of PBS movement due to thermal fluctuations in a crystal are random and chaotic. Evolution of 

PBS can be presented in two stages. In the first stage, movement due to fluctuations of the kinetic energy arises.  

In this case 0
k
τ

∂
>

∂
 and 0k > . For example at 0zk > , in correspondingly with (14) and (15), there is a de-  

formation of the soliton and redistribution of zm  and e densities between the front and the back parts of PBS: 
at cos 0θ >  there are decreasing of zm  but increasing of e—on the front part of PBS, and contrary, increasing 
of zm  but decreasing of e—on the back part of PBS. Of course, strictly speaking, PBS ceases be in equilibrium 
in this stage. However further, in the second stage of process, restoration of the initial configuration of PBS is 
carried out, also in accordance with (14) and (15) expressions. In this case 0zk → , and as a consequence,  

0zm
τ

∂
→

∂
 and 0e

τ
∂

→
∂

, i.e. accurate to linear values by κ  and h⊥ , equilibrium state of PBS is restored. 

( ) ( )π

0

, , ,
d 0,

z z

z z

chk chk

m mρ θ τ ρ τ
θ

τ τ
∂ ∂   

= =   
∂ ∂   

∫                      (16) 

( ) ( )
0

, , ,
d 0.

z zchk chk

e eπ ρ θ τ ρ τ
θ

τ τ
∂ ∂   

= =   
∂ ∂   

∫                        (17) 

Note that during the deformation of PBS due moving, and magnetic moment 

( ) 2
0

1

1 ds z
LM m
K

ρ ρ
∞

= +∫                              (18) 

and energy ( ) 2
0

, dsE L e ρ τ ρ ρ
∞

= ∫  where 

( )
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( ) ( )
( )

2 2

2

2 2
2

1 1 1,
2 2 1

1
1 cos ,

2

z z
z

z

z
z

D m me h D m
m

m
h m h D

ρ τ
ρ

β
β

ρ ⊥

+ −  ∂
= − + +  ∂−  

−  ∂
+ − − − − ∂ 

                 (19) 

without taking into account the kinetic energy (see [12]), do not change. 
For 0 0.01ω =  at 10ρ = , the value 0.15p ≅ , i.e. 0.988zm ≅ −  (see Figure 2). In accordance with the  

expression 
1

zm
τ

∂ 
 ∂ 

 in Equation (14), the change 1.73zk∆ =  causes a change 41.9 10zm −∆ ≅ − × , i.e. only to  

410−≅  part of the initial value. Can be estimated the time t∆  during which this change is carried out at return  

to the initial state. In accordance with the expression 
2

zm
τ

∂ 
 ∂ 

 in Equation (14), taking into account that  

51.5 10h −
⊥ = × , 0 2.5β ≅  , we receive for 41.9 10zm −∆ ≅ − × : 33.8 10 sct −∆ ≅ × µ . 
For 0 0.03ω =  at 4ρ = , the value 0.6p ≅ , i.e. 0.8zm ≅ −  (see Figure 3). The change 0.836zk∆ =  

causes a change 30.72 10zm −∆ ≅ − × , i.e. only to 310−≅  part of the initial value. Taking into account that in 
this case 0 36β ≅  , we receive 31.3 10 sct −∆ ≅ × µ . 

3. Angle Parameter as Invariant of Landau-Lifshitz Equation for Equilibrium PBS 
Let us consider one more invariant of (4) equation, namely density of a momentum: 
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Figure 3. The same as in Figure 2, at 0 0.03ω = . 

 

( ) ( )* *1,
2 1

z

z

mi m m m m
m

τ ⊥ ⊥ ⊥ ⊥
+

= − ∇ − ∇
−

p r .                        (20) 

Using (6) expression, we obtain for the density of momentum in spherical coordinate system: 

( ) ( ), , 1 cos sinz z zm k i k i iρ θ ρ
β

ρ θ τ θ θ
ρ

 ∂
= + − + ∂ 

 

  

p .                    (21) 

This expression refers to the case of moving precessing ball soliton at the presence of high-frequency field 
when the energy dissipation is almost completely offset by the influx of energy from the source of the high- 
frequency field. Note that if 0zk =



: 

( ) ( ), 1 .zm iρ
βρ τ
ρ
∂

= +
∂

p


                               (22) 

Integrating the expression (21) on the values of the angle θ , we obtain the expression for total momentum of 
PBS: 

( ) ( ) ( ) 20 0

0

2π
, , d 1 d .

2s z z
B B

M M
V m k iρ

βτ ρ θ τ ρ ρ
µ µ ρ

∞  ∂
= = + + ∂ 

∫ ∫P p





               (23) 

Differentiating (21) and using (9), we have 

( ) ( ) 0
changegrad

d , d d1
d d d

z
z

km iρ
τ β

ω ρ
τ τ τ τ

 ∂   = −∇ + − − +    ∂    





p r p
,              (24) 

where 

( )2 2
0

change

0

dd 1 1 cos sin cos
d d

cos cos .

z
z z z

z z
z

km m i h k

m kk i i

ρ

ρ ρ

βκ ω ρ θ ρ θ β
τ τ τ

β βθ ω ρ θ
ρ ρ τ τ

⊥
 ∂   = − − − − − − +    ∂    

∂ ∂ ∂ ∂ × + + − −   ∂ ∂ ∂ ∂  

p 

 

     (25) 

Note that (24) equation also satisfies all the conditions for equilibrium of PBS in self-organizing state, if 
d 0
d

z
z

kk
τ

= = . 
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It is believed that similar to momentum (21), the value 
β
ρ
∂
∂

 is invariant for the PBS, moving along the axis 

z: 

( ) ( )
( ) ( ), ,

, cos sin
1 z

z

i k i i
mρ ρ θ

ρ θ τβ
ρ τ θ θ

ρ
∂

= − −
∂ +





  p
.                   (26) 

To evaluate the effect of motion on the PBS, we consider value β
τ
∂
∂

 obtained from (9) and (12). We are  

using (9) where there is the most direct connection between zm  and zk . From here, the change in the angular 
parameter near equilibrium is equal to 

( )
( )

( )
( )

20 0 0

2 2 2 2 2
0 0 0

20 0
0 0

2 2 2 2 2
0 0 0

, ,
arcsin 1

1 1

1 cos cos .
1 1

zz

z z
z

chkchk z z

z z
z z

z z

m mm
h h m m

m km h k
h m m

β ρ θ τ κω κω
τ τ τκ ω

κω
κ β ρ θ

τκ ω

⊥ ⊥

⊥

⊥

∂    − ∂∂  = − =     ∂ ∂ ∂    − − −

∂ = − + ⋅ ∂ − − −

    (27) 

This expression can be split into two parts: 

( )
( )

2 2
0 0 0

2 2 2 2
1 0 0

1d , ,
cos

d 1
z z

z ch z

m m
k h m

κ ωβ ρ θ τ
ρ θ

κ ω⊥

− 
= 

  − −
                     (28) 

• quantity related with d
d

zk
τ

, and 

( )
( )

0 0 0

2 2 2 2 2
2 0 0 0

, , cos
cos

1 1
z z

ch z z

h m k

h m m

β ρ θ τ κ ω β
ρ θ

τ κ ω
⊥

⊥

∂ 
= 

∂  − − −
                 (29) 

• quantity related with zk . Here values 0β  and 0zm  relate to initial equilibrium state, at 0τ = . 

We see that the changes of d
d

zchk

β
τ

 
 
 

, as for 
z

z

chk

m
τ

∂ 
 ∂ 

, is proportional to cosθ . With an increase in zk , if  

0 π 2θ< < , i.e. on front part (fore-part) of soliton, the values β  are increasing, but decreasing with the iden-
tical value on back part of soliton, i.e. for condition π 2 πθ< < . There is contrary change of zm  (see the sign 
in (14)). Thus, we have: 

( )π

0

, ,
d 0

zchk

β ρ θ τ
θ

τ
∂ 

= 
∂ 

∫ .                             (30) 

Note that 

( )π

0 0

, ,
d d 0

zchk

β ρ θ τ
θ ρ

ρ
∞ ∂ 

= 
∂ 

∫ ∫ .                           (31) 

Moreover, integral value 

( )
2 2 2

2 0 0 0 0 0 0
0 20

, d d d 4π d 4π 1 arcsin 1m m mp p p
h h h

κω κω κ ω
β ρ θ ρ θ ϕ βρ ρ

∞

⊥ ⊥ ⊥

  
≅ = = = − − −  

   
∫ ∫B B    (32) 

(here 0mp  is amplitude of PBS) in equilibrium state of PBS does not change. 
Therefore, self-organizing state of PBS does not disappear, but continues to live, in spite of the thermal vibra-



V. V. Nietz 
 

 
1754 

tions in the crystal. 

Like to consideration for 
z

z

chk

m
τ

∂ 
 ∂ 

 and 
zchk

e
τ
∂ 

 ∂ 
, we calculate the estimate for 

zchk

β
τ
∂ 

 ∂ 
. For 0 0.01ω =   

at 10ρ = , where 0.988zm ≅ − , in accordance with Equation (28), the change 1.73zk∆ =  causes a change 
0.025β∆ = . Note that in this case initial value is 0 2.5β ≅ . The time required to return from ( )0 2.525β β+ ∆ =  

to the initial value 0 2.5β =  , in accordance with Equation (29), equals 42.8 10 sct −∆ ≅ × µ . 
For 0 0.03ω =  at 4ρ = , where 0.8zm ≅ − , the change 0.84zk∆ =  causes a change 0.015β∆ ≅  . Taking 

into account that in this case 0 36β =  , we receive for 0.015β∆ ≅  : 30.45 10 sct −∆ ≅ × µ . 

4. Conclusions 
The analysis of moving precessing ball solitons, arising at the first-order phase transition in ferromagnet at the 
combined action of main field, causes the transition, and transverse high-frequency magnetic field. 

It is shown that the movement caused by thermal fluctuations in a crystal causes a small change in the para-
meters of solitons and thereby to a very small distortion of equilibrium self-organizing state of PBS. However, 
this distortion is eliminated very quickly and verily equilibrium state is restored. In practice, equilibrium self- 
organizing PBS, when dissipative losses of energy are compensated by the influx of energy from the high-  
frequency field, continues to exist at mechanical motion of PBS inside the crystal. 
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